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Débruitage géométrique d'images dans des bases orthonormées de bandelettes

Cet article présente le premier estimateur quasi minimax adaptatif pour les images géométriquement régulières dans un modèle de bruit blanc. Cet estimateur combine les capacités d'approximation des bases orthonormées de bandelettes à la théorie de la sélection de modèles. L'estimateur ainsi obtenu est calculable par un algorithme rapide dont l'efficacité théorique peut être prouvé. Ces performances sont confirmées par des expériences numériques sur des images naturelles.

L'estimation d'une image f dans le cadre du modèle de bruit blanc gaussien est un problème classique en statistique. Il s'agit de retrouver une image f de N pixels à partir d'une observation bruitée Y = f + εW où W est un bruit blanc gaussien normalisé et ε un paramètre de variance supposé connu. Pour les images f de classe C α en dehors de contours eux-mêmes C α , Korostelev et Tsybakov [START_REF] Korostelev | Minimax Theory of Image Reconstruction[END_REF] ont montré au début des années 90 que pour tout estimateur F le risque quadratique E( Ff ) 2 ne peut décroître, en fonction de l'écart type ε, plus rapidement que ε 2α/(α+1) . Cet article présente la construction d'un estimateur atteignant cette vitesse pour les images géométriques à un facteur logarithmique prêt sans connaître le paramètre de régularité α. Cet estimateur repose sur la combinaison des bases orthonormées de bandelettes qui permettent une représentation optimale de ces fonctions dans des bases adaptées et des algorithmes de sélection de modèles qui permettent de trouver une telle base dans un cadre bruité. L'estimateur obtenu est calculable avec un algorithme rapide et ses performances sur les images naturelles sont étudiées. Les détails théoriques de cette construction sont exposés dans l'article [START_REF] Dossal | Denoising with bandelets[END_REF]. (1) Donoho et Johnstone [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF] ont montré que seuil T = γ log 2 (N )ε est optimal quand ε tend vers 0, dès que γ est suffisamment grand (N est le nombre de pixels de l'image f ). Ils relient de plus la décroissance de l'erreur entre f et son approximation f M avec les M plus grands coefficients à la performance de l'estimateur 

Estimation et approximation d'images géométriques

f -f M 2 ≤ C 1 M -α (2) =⇒ E( f -F 2 ) ≤ C 2 log 2 (N )ε 2α α +1 , (3) 

Bandelettes de seconde génération

La construction des bandelettes a été raffinée par Mallat et Peyré [START_REF] Mallat | Orthogonal bandelet bases for geometric image approximation[END_REF] pour obtenir des bases orthonormées adaptées aux fonctions géométriquement régulières. Ces bases de bandelettes de seconde génération sont définies à partir d'une représentation en ondelettes en ajoutant une étape de une transformation géométrique sur les coefficients en ondelettes eux-mêmes.

Une base de bandelettes B(λ) = {b ν } ν est paramétrée par une géométrie λ ∈ Λ qui spécifie pour chaque échelle 2 j et chaque orientation k d'une transformée en ondelettes :

-une segmentation dyadique des coefficients d'ondelettes correspondants, -un flot vectoriel indiquant la direction approximative de la géométrie pour chaque carré de la segmentation contenant de l'information géométrique, c'est-à-dire un contour. Les bandelettes sont obtenues par un changement de bases orthogonal orienté par cette géométrie sur les ondelettes correspondantes à chacun des carrés de la segmentation. La transformée en multi-ondelettes de Alpert [START_REF] Alpert | Wavelets and Other Bases for Fast Numerical Linear Algebra[END_REF], produit alors ces fonctions appelées bandelettes b ν qui per- Algorithme de recherche de meilleure base. L'introduction de ce seuil T peut paraître artificielle mais elle est nécessaire pour obtenir un algorithme de meilleure base.

Le problème sous contrainte de la recherche de la meilleure approximation avec M termes se transforme en effet par la formulation Lagrangienne en un problème non contraint de minimisation de 

L(f, T, B(λ)) = f -f M 2 + T 2 M (5) où f M est
f -f M 2 = O(M -α ). (6) 
Ce résultat est adaptatif puisqu'il ne nécessite pas la connaissance du paramètre de régularité α pour obtenir la vitesse optimale. La minimisation du Lagrangien de l'équation (5) s'effectue par un algorithme rapide qui ne nécessite pas l'exploration exhaustive de toutes les bases [START_REF] Mallat | Orthogonal bandelet bases for geometric image approximation[END_REF]. Il utilise la structure hiérarchique de la partition dyadique des coefficients de bandelettes et une discrétisation adaptée des géométries dans les carrés, Cet algorithme opère sur une image discrétisée de N pixels en un temps linéaire en fonction de N et polynomial en fonction de T -1 . 

Estimation géométrique en bandelettes

L(f, T, B(λ)),

où le Lagrangien est introduit à l'équation (5). L'estimateur est défini comme

F = S T (Y, B(λ )) avec T = γ log 2 (N )ε (7)
où γ est une constante suffisamment grande, et l'opérateur de seuillage est défini à l'équation (1). Le calcul de B(λ ) s'effectue à l'aide de l'algorithme rapide de recherche de meilleure base comme expliqué à la section 2. La décomposition de Y dans B(λ ) et la reconstruction après seuillage exploitent également les algorithmes rapides.

Sélection de modèles et bandelettes. Pour démontrer les propriétés statistiques de cet estimateur, on ne peut pas utiliser la théorie classique du seuillage dans une base orthonormée. Celui-ci s'intègre cependant dans le cadre de la sélection de modèles [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. Cette théorie décrit un estimateur statistique non-linéaire comme une projection des observations Y sur un sous espace vectoriel m , solution d'un problème de minimisation pénalisée

m = argmin m∈M Y -P m Y 2 + T 2 dim(m).
Lorsque l'ensemble M des sous-espaces possibles m est l'ensemble des sous-espaces engendrés par les vecteurs d'une base B = {b ν }, le meilleur modèle se détermine facilement :

m = vect{b ν ; | Y, b ν | ≥ T }.
Dans le cas général, cette détermination peut être plus complexe. La théorie de la sélection de modèles permet de contrôler le risque quadratique dès que le nombre de vecteurs utilisés pour engendrer M est polynomial en la dimension M. On obtient dans ce cas [BBM99]

E( f -F 2 ) ≤ C min m∈M f -P m f 2 + γ 2 log 2 (N )ε 2 dim(m) + N -1 (8)
Dans le cas des bandelettes, on choisit pour l'ensemble M comme l'union des sous-espaces engendrés par les vecteurs des différentes bases de bandelettes B(λ). On trouve alors que P m Y = S T (Y, B(λ )) = F. Le nombre des bandelettes qui engendrent M est polynomial en fonction du nombre N de pixels de l'image. On peut ainsi appliquer le résultat (8), qui se formule en utilisant le Lagrangien défini en ( 5)

E( f -F 2 ) ≤ C min B(λ) L(f, γ log 2 (N )ε, B(λ)) + N -1 .
Théorème d'estimation en bandelettes. En combinant cette dernière équation au résultat (6) d'approximation dans une base adaptée de bandelettes pour les fonctions C α -C α , on déduit le théorème de quasi optimalité de l'estimateur en bandelettes [START_REF] Dossal | Denoising with bandelets[END_REF].

Théorème 1 Pour toute fonction f géométriquement régulière C α -C α , il existe une constante C, telle que pour tout niveau de bruit ε l'estimateur F en bandelettes satisfait

E( f -F | 2 ) ≤ C log 2 (N )ε 2α α+1 + N -1 .
L'estimateur exploite l'adaptivité des bandelettes puisqu'il ne nécessite pas la connaissance du paramètre de régularité α. Ce résultat peut être amélioré pour ε 2 grand devant N -1 en remplaçant le terme log 2 (N ) par un terme en log 2 (ε). L'incorporation d'a priori géométrique dans l'estimation semble nécessaire pour obtenir des résultats d'optimalité pour ces fonctions géométriquement régulières. L'utilisation de base ne l'est pas. L'estimateur non adaptatif proposé par Korostelev et Tsybakov est par exemple basé sur une méthode de détection des contours et de noyaux adaptés aux voisinages de ceux-ci. Elle permet cependant une analyse fine des propriétés de l'estimateur et de souligner le lien profond entre l'estimation et l'approximation dans ce cadre. Elle fournit de plus un cadre pratique qui évite le difficile problème de la détection de contours.

Résultats numériques

La figure 4 quantifie les résultats de débruitage à l'aide du PSNR, défini par 

PSNR(f, g) = -20 log 10 ( f -g 2 / f ∞ ),

À

  partir d'une base orthonormée B = {b ν } ν , un estimateur non-linéaire est obtenu par seuillage F = S T (Y, B) des observations Y par l'opérateur S T S T (g, B) = | g,bν |≥T g, b ν b ν .
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 1 Fig. 1 -(a) Une fonction géométriquement régulière. (b,c) Ses coefficients d'ondelettes, la couleurs gris correspondant au coefficients voisins de zéros. Les coefficients sont organisés par échelles 2 j et orientation k. ne peut décroître en fonction de la variance ε 2 plus vite que O(ε 2α/(α+1) ) simultanément sur toutes les fonctions C α -C α . A partir de ce résultat, on montre que la vitesse d'approximation optimale pour les fonction C α -C α est ff M 2 ≤ O(M -α ). Ce résultat se déduit de la relation (2) à un facteur logarithmique près. L'approximation en ondelettes atteint cette vitesse pour la classe restrictive des fonction uniformément C α . Les ondelettes fournissent donc un estimateur par seuillage asymptotiquement optimal pour cette classe particulière. L'introduction des discontinuités dans le modèle des fonctions C α -C α fait perdre cette optimalité, l'erreur d'approximation ne satisfaisant plus que f -f M 2 ≤ O(M -1 ). Les curvelets de Candès et Donoho [CD99] se rapprochent de la vitesse optimale avec une erreur d'approximation en O(log 2 (M ) 3 M -2 ) pour des fonctions géométriquement régulières C 2 -C 2 . Elles ne permettent cependant pas d'exploiter des régularités plus grandes. Grâce à une représentation dans un frame adaptatif de bandelettes, Le Pennec et Mallat [LM05] ont obtenu la décroissance optimale O(M -α ) pour α ≥ 1 à un facteur logarithmique près.
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 2 Fig. 2 -(a) Coefficients en ondelettes d'une image. (b) Exemple de segmentation dyadique d'une image géométriquement régulière. (c) Un flot adapté est calculé sur chaque carré. mettent de capturer la régularité directionnelle des contours. La figure 2 montre un exemple de paramètre λ ∈ Λ possible pour une base de bandelettes adaptée. Les bandelettes forment ainsi une famille de bases orthonormées indicées par des géométries. L'efficacité de ces bases repose sur l'utilisation de deux algorithmes rapides : le premier permet de calculer la décomposition/reconstruction d'une fonction f dans une base donnée B(λ) et le deuxième calcule une base B(λ ) adaptée à f . Algorithme d'approximation en bandelettes. Étant donnée une géométrie λ ∈ Λ, l'algorithme rapide de transformée en bandelettes permet de calculer la décomposition d'une image f dans la base de bandelettes B(λ) = {b ν } ν . Cet algorithme, détaillé dans [MP06], calcule une transformée en ondelettes orthogonale puis applique une transformée de Alpert directionnelle sur chaque carré de la segmentation décrite par λ. La meilleure approximation f M de f avec M termes dans cette base s'obtient en conservant les M plus grands coefficients en valeur absolue. Ceci est équivalent à définir f M par un opérateur S T de seuillage avec un seuil T adapté f M = S T (f, B(λ)) = | g,bν |≥T

  Pour l'estimation d'une fonction f à partir d'observation Y = f +εW , l'équation (2) montre que la performance d'un estimateur par seuillage est liée aux propriétés d'approximation dans la base choisie. Un seuillage de Y dans la meilleure base de bandelettes associée à la fonction f et au seuil T = γ log 2 (N )ε devrait donc fournir une estimation optimale pour les fonctions C α -C α . Cette meilleure base dépend de f et est donc inaccessible. En revanche, la recherche de la meilleure base pour l'observation Y permet d'obtenir un estimateur quasi optimal. Estimateur en bandelettes. L'estimateur en bandelettes F est défini en deux temps. On cherche d'abord la meilleure base B(λ ) associé à Y et T , B(λ ) = argmin B(λ)

  Fig. 3 -Comparaison visuelle des trois estimateurs. pour g = Y (PSNR bruité) et g = F (PSNR débruité). Les débruitages ont été effectués pour trois estimateurs : -ondelettes invariantes par translation, -BLS-GSM [PSWS03], qui utilise un modèle statistique avancé pour les coefficients d'ondelettes, -l'estimateur en bandlettes, qui est appliqué 4 fois sur des versions translatées de l'image pour palier au manque d'invariance par translation. Pour une image géométrique (figure 4, droite), l'estimateur en bandelettes surpasse les autres estimateurs. Les résultats théoriques de ce papier ne donnent a priori aucune indications sur les performances de l'algorithme pour des images naturelles qui ne sont pas dans la classe des fonctions étudiées. Pour une image complexe, la figure 4, gauche, montre que l'estimateur en bandelettes est au niveau de l'état de l'art. La figure 3 montre une comparaison visuelle entre les différents estimateurs. La reconstruction en bandelettes respecte mieux les contours et les textures directionnelles, mais est moins efficace pour les textures complexes et les parties homogènes, où une modélisation statistique [PSWS03] s'avère plus performante.
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 4 Fig. 4 -Comparaison des trois méthodes pour divers niveaux de bruits.

  M correspondante dans la base B(λ ) est optimale pour le problème sous contrainte pour le nombre M de coefficients obtenus. Si f est une image géométriquement régulière C α -C α , Peyré et Mallat[START_REF] Mallat | Orthogonal bandelet bases for geometric image approximation[END_REF] démontrent que

défini dans une base B(λ) par l'équation (4). L'algorithme de recherche de meilleure base permet d'optimiser le Lagrangien L sur l'ensemble des bases B(λ) pour λ ∈ Λ. Pour un seuil T fixé et une image f , cet algorithme fournit la géométrie λ = argmin λ∈Λ L(f, T, B(λ)).

L'approximation f