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DYNAMIC TEXTURE SYNTHESIS

WITH GROUPLETS

Gabriel Peyré1

Abstract. This paper proposes a new method to synthesize dynamic

geometric textures from a given exemplar image. It solves the Navier

Stokes equations of fluid dynamics to drive the evolution of a geometric

layer and a grouplet coefficients layer. The geometric layer describes the

turbulent structures of the texture while the coefficient layer lays a set of

strokes along the flows. These strokes corresponds to grouplet atoms, that

have a wide range of width and lengths. These grouplets atoms generate

a tight frame that is adapted to represent the texture to analyze and

synthesize.

Résumé. Ce papier décrit une nouvelle méthode pour synthétiser des tex-

tures géométriques dynamiques à partir d’une image donnée en exemple.

Les évolutions d’un flot géométrique et des coefficients de grouplets suiv-

ent les équation de Navier Stokes. Le flot géométrique dicte la structure

turbulente de la texture, tandis que les coefficients de grouplets génèrent

des formes le long de ce flot. Les atomes de grouplets ont un support al-

longé suivant une large gamme de longueurs et de largeurs. Ces atomes

forment une trame ajustée qui est adaptée à la représentation compacte

des textures à analyser et à synthétiser.

Natural images often contain regions composed of locally oriented structures, such
as those depicted in Figure 1. These anisotropic textures are said to be locally parallel
since they are composed of approximately parallel oscillations that propagate over the
image plane. This paper is focussed on the animation of a static locally parallel texture
according to fluid dynamics motions. This creates a turbulent texture whose patterns
are similar to those of the exemplar.

1 CNRS and Ceremade, Université Paris-Dauphine, 75775 Paris Cedex 16 France.
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Figure 1. Examples of locally parallel textures.

1. Introduction

Anisotropic texture processing. The analysis of the local geometry of textures is
studied extensively in computer vision through the computation of local differential
estimators, see for instance [13,15]. Section 2 uses such a local orientation descriptor
to build the geometric layer of the grouplet representation.

Geometric decompositions. Texture models based on non-adaptive wavelet de-
compositions fail to represent in a compact manner geometric singularities. Geomet-
rical decompositions improve over the wavelets for the approximation of edges and
textures in images. Local oscillating atoms such as Gabor [24], steerable wavelets [31]
or wave-atoms [5] better capture the directionality of textures. These fixed trans-
forms are however not adaptive and are sub-optimal for texture processing. Adaptive
representations such as bandlets [20, 26] and grouplets [25] are tuned for a specific
image to process. This adaptivity is achieved by computing an optimized geometry
that parameterizes the representation. Section 2.2 reviews the grouplet transform
that computes the coefficients layer of the grouplet representation.

Static texture synthesis. Texture synthesis is performed by sampling a texture
model that constrains the geometric patterns of the images. Fourier and fractals mod-
eling of texture [22,28] creates cloud-like texture that are suitable to model some nat-
ural phenomena. Multiscale models constrain the distribution of wavelet coefficients
of textures that characterizes point-wise singularities in textures. Retaining only
wavelets marginal coefficients generates textures without geometric patterns [4, 12].
Higher order statistical modeling of wavelets coefficients [30, 35] improves the visual
quality of synthesis by capturing geometric singularities. The representation of local
features in these methods is however implicit and thus hard to analyze or control.

Computer graphics methods generate new images of a given texture through careful
and consistent copying of pixels and patches from an example image [7,8,34]. Despite
the high visual quality of the results, these approaches do not provide a parametric
model for compact charactization of texture classes.

Dynamic Textures. Fluid texture synthesis generates oriented patterns that are
warped along a coherent flow. Such a turbulent flow is animated by discretizing the
Navier-Stokes equations of fluid motion [10, 33] or using texture synthesis of vector
fields [3]. Dynamic textures are rendered by advecting particules [27], and is used to
simulate physically plausible phenomena [19, 32]. Wavelet domain texture synthesis
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enhances the visual quality of turbulence simulation by adding fine scale details [14].
Dynamic textures can be generated by statistical modeling that captures the space
and time homogeneity of natural dynamics [6,18]. Patch recopy methods in computer
graphics can be animated according to a vector field [17, 21] and can be mapped on
a fluid in motion [2,16]. Texture mixing animates an image by interpolating between
two texture models [1]. A grouplet model is introduced by Peyré [29] to perform
geometric texture inpainting and synthesis. Section 4 uses the grouplet model to
synthesize dynamic anisotropic textures.

2. Grouplet Texture Analysis

The grouplet framework is a two layers model composed of a geometric layer Γ
and a coefficients layer that stores the decomposition of the texture in a wavelet-
grouplet tight frame Bw(Γ). The wavelet-grouplet tight frame Bw(Γ) = {bΓj,ℓ,m}j,ℓ,m
is composed of elongated atoms. Each bΓj,ℓ,m is an anisotropic stroke of width ∼ 2j

and length ∼ 2ℓ, located around a pixel m, and that follows the flow Γ.
The estimation of the model from an exemplar f0 is performed by computing an

optimized flow Γ adapted to f0 as explained in Section 2.1, and the collection of
coefficients {〈f0, b

Γ
j,ℓ,m〉}j,ℓ,m of f0 in the wavelet-grouplet family Bw(Γ), as explained

in Section 2.3. The application of the model to perform dynamic texture synthesis
corresponds to the generation of new geometric and coefficients layer, see Section 4.

2.1. Computation of the Geometric Layer

The geometric layer of our grouplet model is a vector field Γ the describes the
local direction of a given input texture f0 ∈ R

N of N pixels. It is then discretized to
obtained a set of discrete association field Aℓ that integrate the flow Γ on a distance
of 2ℓ. These discrete association fields drive the grouplet transform.

Local orientation and direction computation. The local direction of the edges
in an image f0 is captured by the vector v(x) orthogonal to the gradient ∇xf0. This
vector is computed numerically on the discrete grid {0, . . . , n− 1}2 using finite differ-
ences. While v is suitable to estimate the direction of step edges in images, it cannot
be used directly to estimate the orientation of locally parallel textures such as those
depicted on Figure 1. Indeed, the gradient vector vanishes at the top of ridges or at
the bottom of valleys. As described in [13,15], this problem is alleviated by averaging
locally the tensor field vvT,

Tf0
(x) = (Gσ ⋆ (vvT))(x) = Gσ ⋆

(

v2
1 v1v2

v1v2 v2
2

)

(x),

where Gσ is a Gaussian kernel of variance σ2 and where the convolution is applied
on each component of the tensor. This scale σ should match the width of the texture
oscillations, and is set to 5 pixels in the numerical experiments.
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Each symmetric tensor Tf0
(x) is decomposed as a sum of two rank-1 tensors

Tf0
(x) = λ(x)(Γ0(x)Γ0(x)

T
) + λ⊥(x)(Γ⊥

0 (x)Γ⊥
0 (x)

T
). (1)

where the eigenvalues are λ(x) > λ⊥(x) > 0 and (Γ0(x),Γ
⊥
0 (x)) are the correspond-

ing orthonormal eigenvectors. The dominant eigenvector Γ0(x) indicates the local
direction of the texture.

This orientation field Γ0 is not directional since Γ0(x) or −Γ0(x) can be used
indifferently in the decomposition (1). A directional vector field Γ(x) = ε(x)Γ0(x)
with ε(x) ∈ {−1,+1} is optimized to align the singularity of Γ with integral lines of
the flow Γ0, see [29]. This geometrical flow Γ is the geometric layer that drives the
computation of the grouplet coefficients layer.

Discrete association field. A set of non-local discrete association fields {Aℓ}
L−1
ℓ=0

is computed from the geometrical flow Γ. Each field Aℓ is then used to compute the
grouplet decomposition at a scale 2ℓ. Each association field Aℓ groups together two
pixels x→ y = Aℓ(x) that are separated by a distance of ||x− y|| ≈ 2ℓ.

Our construction of the association fields Aℓ differs from the original one of [25].
The original construction is based on a fixed directional ordering of the grid pixels,
that forbids an arbitrary association field. Such a directional ordering is not well
suited to process turbulent textures that might exhibit circular patterns or vortices.

The directional vector field Γ is the seed for a linear differential flow

∀x, ∀ t > 0,
dϕx

dt
(t) = Γ(ϕx(t)) and ϕx(0) = x.

Each integral curve {ϕx(t)}t>0 follows the vector field Γ. The discrete association
field Aℓ at various scales ℓ is computed by sampling this integral curve at dyadic
locations

∀x, Aℓ(x) = [ϕx(2ℓ)]n×n ∈ {0, . . . , n− 1}2,

where [ · ]n×n is the rounding operator that projects the points on the sampling grid
{0, . . . , n− 1}2. Although the association fields are quantized in order to link points
on the grid {0, . . . , n− 1}2, they follow closely the structure of the input texture f0.

2.2. Grouplet Transform

Once the geometric layer Γ is known, the coefficients layer is computed with a
fast redundant grouplet transform. A redundant grouplet transform is introduced by
Mallat in [25]. It corresponds to the decomposition of an image on a redundant family
of vectors B(Γ). This family is a tight frame of R

N chosen adaptively to process in
an optimized way some given input image of N = n2 pixels. This section describes a
new construction of grouplets frame parameterized by a local geometric flow Γ. The
grouplet atoms follow closely the flow lines of Γ. These grouplets are thus efficient to
represent textures whose geometry is locally parallel to the orientation field Γ.

A grouplet tight frame

B(Γ) =
{

bΓℓ,m \ m ∈ {0, . . . , n− 1}2, ℓ = 0, . . . , L
}
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is a redundant family of (L+1)N vectors bΓℓ,m ∈ R
N parameterized by the local direc-

tion flow Γ. Each grouplet vector bΓℓ,m is localized around the pixel m ∈ {0, . . . , n−1}2

and follows the flow Γ on a length of 2ℓ pixels. This family of vectors is thus efficient
to compress a texture whose structures follow closely the direction of Γ. This is in
particular the case for the image f0 that has been used to extract the flow Γ as ex-
plained in section 2, but the tight frame B(Γ) can be used to analyze any image f of
N pixels.

The forward grouplet transform [25] corresponds to the computation of the decom-
position of f onto the vectors of B(Γ) = {bℓ,m}ℓ,m

∀ ℓ, ∀m, dℓ(m) = 〈f, bΓℓ,m〉. (2)

The grouplet vectors bΓℓ,m are defined implicitly through a decomposition algorithm

that computes directly the coefficients dℓ(m).
This decomposition is computed with a fast algorithm similar to the Haar wavelet

transform. At a given scale ℓ, it processes the pixels m sequentially according to
an ordering computed from the association field Aℓ, see [29]. It maintains a filtered

residual f̃ initialized to f . Each pixel m is linked to another pixel m̃ = Aℓ(m).

The grouplet detail coefficient dℓ(m) is proportional to the difference f̃(m) − f̃(m̃)

and the value of the low pass residual f̃(m̃) is updated to be proportional to the

average (f̃(m) + f̃(m̃))/2. After processing the final scale ℓ = L − 1, the low pass

coefficients dL are set proportional to the low pass residual f̃ . The proportionality
factors at each step of the transform are computed to ensure energy conservation
even in the situation where several associations are converging from different points
Aℓ(m1) = Aℓ(m2). The complexity of this fast grouplet transform is O(N(L + 1))
operations for an image of N pixels and L grouplet scales.

The backward grouplet transform retrieves an image f from the coefficients {dℓ(m)}m,ℓ

of the decomposition on the tight frame B(Γ). A stable inversion is obtained using
the pseudo inverse that implements the reconstruction formula

f =
∑

06ℓ6L

τℓ
∑

m

dℓ(m)bΓℓ,m,

where τℓ = 2−ℓ for ℓ < L and τL = 2−L+1. The fast backward grouplet transform
performs this reconstruction and has a complexity of O(N(L+1)) operations, see [29].

2.3. Wavelet-Grouplet Transform

A grouplet basis vector bℓ,m has an arbitrary length 2ℓ but a fixed width of 1 pixel.
This is problematic to represent textures with patterns of arbitrary width. Applying
the grouplet transform over the wavelet coefficients of an image defines a wavelet-
grouplet transform. The corresponding wavelet-grouplet atoms have an arbitrary
width 2j that corresponds to the scale of the wavelet coefficients.
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In this wavelet-grouplet setting, one first computes the decomposition of the image
f on a set of wavelet vectors

∀ j = 0, . . . , J, ∀ p ∈ {0, . . . , n− 1}2, fj(p) = 〈f, ψj,p〉,

where ψj,p is a wavelet vector scale 2j and position p. A Laplacian pyramid tight
frame is used in the numerical experiments, which has a redundancy of J+1, see [24].
This multiscale transform has the advantage of being non-oriented, which leaves the
processing of orientation to the grouplet transform alone. The reconstruction from
the coefficients in such a tight frame reads

f =
∑

j

κj

∑

p

fj(p)ψj,p,

where κj = 2−2j for j < J and κJ = 2−2(J−1). The set of coefficients fj is re-
transformed using the grouplet transform explained in section 2.2.

The projection of each fj on a grouplet frame B(Γ) generates the following set of
coefficients

∀ j, ℓ,m, dj,ℓ(m) = 〈fj , b
Γ
ℓ,m〉 = 〈f, bΓj,ℓ,m〉

where bΓj,ℓ,m is the wavelet-grouplet basis vector defined by

bΓj,ℓ,m =
∑

p

bΓℓ,m(p)ψj,p ∈ R
N .

A wavelet-grouplet atom bΓj,ℓ,m is an elongated stroke of width ∼ 2j and length ∼ 2ℓ,
that follows the geometrical flow Γ.

This set of vectors {bΓj,ℓ,m}j,ℓ,m is a wavelet-grouplet tight frame Bw(Γ) of R
N

composed of (J + 1)(L + 1)N vectors. The pseudo-inverse reconstruction from the
wavelet-grouplet coefficients reads

f =
∑

j,ℓ

τj,ℓ
∑

m

dj,ℓ(m)bΓj,ℓ,m (3)

where τj,ℓ = κjτℓ.
The wavelet-grouplet forward transform corresponds to the computation of the

coefficients {dj,ℓ(m)}j,ℓ,m of a given image f in the tight frame Bw(Γ). This algorithm
first computes the fj using the fast translation invariant wavelet transform, see [24]
and then applies the fast grouplet transform, to each of these fj . The fast backward
wavelet-grouplet transform first applies the backward grouplet transform, and then
the backward wavelet transform. Both forward and backward algorithms have a
complexity of O((J + 1)(L+ 1)N) operations.
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3. Texture Synthesis with Grouplets

Grouplet texture synthesis creates a new geometric texture f visually similar to
a given input exemplar f0. This requires a statistical modeling of both the geomet-
ric layer and the wavelet-grouplet coefficients layer. The grouplet model for locally
parallel textures is based on non parameteric statistics of the wavelet-grouplet coeffi-
cients layer. Similarly to the work of Heeger and Bergen [12], we retain only marginal
statistics of the decomposition. In contrast to texture modeling over multiscale de-
compositions [12,30,35], our texture model also constrains the geometric layer of the
texture.

3.1. Geometric and Coefficients Layers Learning

Grouplet layer learning. The geometric layer of the grouplet model is learned by
computing the flow Γ0 of the exemplar texture f0 as detailed in Section 2.1.

Coefficients layer learning. The coefficients layer D0 learned from f0 is described
through a the set of coefficients in the frame Bw(Γ0)

∀ (j, ℓ), Dj,ℓ(f0,Γ0) = {〈f0, b
Γ0

j,ℓ,m〉}m,

together with the set of pixel values Dsp(f0) = {f0(x)}x. Each Dj,ℓ(f0,Γ0) is com-
puted using the fast transform algorithm.

The layer D0 is composed of several independent sets (one per scale (j, ℓ) and the
pixel values) that empirical marginals of the statistical distribution of coefficients.
They are used by the synthesis algorithm to enforce the synthesized texture to share
the same empirical marginals as f0.

3.2. Coefficients Layer Synthesis

Texture synthesis with the grouplet model corresponds to synthesizing both a new
geometric layer Γ and a new set of coefficients. This section assumes that the geo-
metric layer Γ is known. The synthesized image is drawn at random from a texture
ensemble parameterized by Γ. Section 4 describes how a dynamic layer can be com-
puted using fluid dynamics evolutions.

Grouplet texture ensemble. Once both the geometric layer Γ0 and the coefficients
layers D0 have been learned, a grouplet texture ensemble T (Γ, D0) is defined for any
orientation field Γ. It is the set of textures having the same wavelet-grouplet and
pixels marginals as f0

T (Γ, D0) =
{

f ∈ R
N \ ∀ (j, ℓ), Dj,ℓ(f,Γ) = Dj,ℓ(f0,Γ0)

}

∩
{

f ∈ R
N \ Dsp(f) = Dsp(f0)

}

,

This texture ensemble is thus parameterized by the geometric layer Γ of the new
texture and by the coefficients layer D0 of the exemplar. The geometry Γ that defines
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the model might be different from the learned geometry Γ0. This allows one to
synthesize new textures with a different geometry.

Marginal constraint. Our texture model enforces synthesized coefficients to have
the same coefficients layer as the one of the exemplar D0. Each marginal Dj,ℓ,0 =
Dj,ℓ(f0,Γ0) generates a constraint on the texture to synthesize. The synthesis requires
to compute the orthogonal projection P(dj,ℓ, Dj,ℓ,0) of wavelet-groulpet coefficients
dj,ℓ ∈ R

N on

{

d ∈ R
N \ {d(m)}m = Dj,ℓ,0

}

.

The same projection algorithm applies to the pixel values constraints generated by
Dsp(f0).

This projection corresponds to an histogram equalization of dj,ℓ with the values of
Dj,ℓ,0, see [11]. We denote by dr

j,ℓ(i) the values of Dj,ℓ,0 ordered by increasing values,

and by dj,ℓ(r(i)) the ordered values of dj,ℓ, where r is a permutation of the indices.
The projection is

P(dj,ℓ, Dj,ℓ,0) = d̃j,ℓ with d̃j,ℓ(r(i)) = dr
j,ℓ(i). (4)

If dj,ℓ and Dj,ℓ,0 do not have the same number of coefficients, this formula requires
interpolation.

Sampling the grouplet texture ensemble. As explained in the FRAME model [35],
the uniform distribution on T (Γ, D0) has maximal entropy, thus leading to the least
synthesis bias. Performing an un-biased synthesis is difficult, and Portilla and Si-
moncelli [30] replace this uniform sampling by a sampling with high entropy. This is
achieved by iteratively projecting a white noise image on the set of constraints that
define the texture ensemble.

The grouplet coefficients synthesis algorithm detailed in Table 1 uses a similar
iterative projection strategy. The initial image f (0) is a random Gaussian white noise
image, and the synthesis algorithm converges to a synthesized image S(f (0) ; Γ, D0) ∈
T (Γ, D0). The procedure iteratively decomposes the image into the wavelet-grouplet
frame Bw(Γ), forces the wavelet-grouplet marginal Dj,ℓ(f,Γ) to match the coefficients
layer Dj,ℓ,0 of the exemplar, reconstructs an image from the grouplet coefficients and
then enforces consistency of the pixel marginal Dsp(f) with the one of the exemplar.

Figure 2 shows the iterations of the synthesis with a user defined geometric layer Γ.
The iterations progressively filter the noise along the geometric flow to create texture
patterns. The exemplar image f0 is twice smaller than the synthesized texture f .
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f0 Iter #1 Iter #3 Iter #20

Figure 2. Iterations of the synthesis algorithm 1.

Input: orientation flow Γ, initial image f (0), coefficients layer D0 = {Dj,ℓ,0}j,ℓ ∪D
sp
0 .

Output: synthesized texture f .

(1) Initialization: set i← 0.

(2) Forward transform: compute the wavelet-grouplet coefficients {d
(i)
j,ℓ(m)}j,ℓ,m

of f (i) in Bw(Γ).
(3) Grouplet constraints: for each (j, ℓ), perform the histogram equalization (4):

d̄
(i)
j,ℓ ← P(d

(i)
j,ℓ, Dj,ℓ,0).

(4) Backward transform: compute f̄ (i+1) from the coefficients {d
(i)
j,ℓ(m)}j,ℓ,m.

(5) Projection on gray-level constraint: equalize the pixel histogram:
f (i+1) ← P(f̄ (i+1), Dsp

0 ).
(6) Stop: while not converged, set i← i+ 1 and go back to 3.

Table 1: Synthesis algorithm to compute S(f (0) ; Γ, D0).

4. Dynamic Texture Synthesis

A dynamic fluid texture {f̃t}t>0 is created from a single exemplar image f0 by
evolving in time the direction field Γt a of the geometric layer according to the in-
compressible Navier Stokes equation

∂Γt

∂t
= Pinc (−(Γt · ∇)Γt + ν∆Γt) ,

with Neumann or periodic boundary conditions, where ν is the viscosity of the fluid
and ∆ is the Laplacian operator. The projector ṽ = Pinc(v) on the set of divergence
free vector fields, computed by solving the Poisson equation for a scalar potential V

ṽ = v −∇V where ∆V = ∇ · v. (5)

The synthesized texture f̃t for t > 0 is obtained by solving an advection equation
projected on the grouplet texture model T (Γt, D0) defined in Section (3.2) by the
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current geometry Γt and the coefficients layer D0 of f0

∂f̃t

∂t
= S

(

−(Γt · ∇)f̃t + ν̃∆f̃t ; Γt/||Γt||, D0

)

, (6)

where ν̃ is the viscosity of the texture, that might be different from ν. The projec-
tion S(· ; Γ, D0) on the grouplet model is computed with a few steps of the iterative
algorithm detailed in Table 1.

The solution of both (5) and (6) are computed numerically using the implicit solver
of Stam [33]. It makes use of the following flow-warping operator, that is defined for
scalar function and vector fields

WΓ(f) = f̃ where f̃(x) = f(x− Γ(x)). (7)

Table 2 details the steps of the fluid texture synthesis algorithm1. Figure 3 shows two
examples of dynamic texture synthesis.

Input: initial texture f0, time step size τ > 0.
Output: synthesized texture f̃i for times 0 6 τi 6 T .

(1) Initialization: compute Γ0 and D0 from f0, set i← 0.
(2) Advect: compute

Γ
(1)
i =WτΓi

(Γi) and f̃
(1)
i =WτΓi

(f̃i).

(3) Diffuse: compute

Γ
(2)
i = Γ

(1)
i + τ∆Γ

(1)
i and f̃

(2)
i = f̃

(1)
i + τ∆f̃

(1)
i .

(4) Project: compute Γi+1 = Pinc(Γ
(2)
i ) and

f̃i+1 = S(f̃
(2)
i ; Γi+1/||Γi+1||, D0)

(5) Stop: while τi < T , go back to 2.

Table 2: Grouplet fluid texture synthesis.

5. Conclusion

This paper proposed a new algorithm to perform fluid texture synthesis. The
analysis of the exemplar texture is carried over by computing a geometric flow that
drives the wavelet-grouplet transform. This defines a texture model using statistics of
the wavelet-grouplet coefficients of the exemplar. A dynamic texture is obtained by

1The turbulence image is obtained by the resolution of fluid dynamics equations computed by M.

Farge et al. [9]. The second texture is obtained from [23].
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t = 0 t = 2 t = 2 t = 4 t = 10

Figure 3. Example of dynamic texture synthesis. The exemplar

images used are the first two textures shown on Figure 1.

synthesizing the geometry using fluid dynamics and by evolving in time the texture
inside the texture model. This opens many questions regarding the dependancy of
geometry and texture in natural images, which is only partially addressed by our
model.

Acknowledgements. I would like to thank Stéphane Mallat and Eero Simoncelli
for fruitful discussions, and Marie Farge for providing the turbulence image.
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[14] T. Kim, N. Thürey, D. James, and M. Gross. Wavelet turbulence for fluid simulation. In Proc.

of SIGGRAPH ’08, pages 1–6, New York, NY, USA, 2008. ACM.

[15] U. Kothe. Edge and junction detection with an improved structure tensor. In Proc. DAGM03,
pages 25–32, 2003.

[16] V. Kwatra, D. Adalsteinsson, T. Kim, N. Kwatra, M. Carlson, and M. C. Lin. Texturing fluids.

IEEE Trans. Vis. Comput. Graph, 13(5):939–952, 2007.
[17] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture optimization for example-based synthe-

sis. ACM Transactions on Graphics, 24(3):795–802, July 2005.
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