
HAL Id: hal-00365931
https://hal.science/hal-00365931

Preprint submitted on 5 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical Mesh Processing
Gabriel Peyré

To cite this version:

Gabriel Peyré. Numerical Mesh Processing. 2008. �hal-00365931�

https://hal.science/hal-00365931
https://hal.archives-ouvertes.fr

Numerical Mesh Processing

Gabriel Peyré

Ceremade, Université Paris Dauphine,

Place du Marchal De Lattre De Tassigny,

75775 Paris Cedex 16, France

gabriel.peyre@ceremade.dauphine.fr

http://www.ceremade.dauphine.fr/∼peyre/

April 6, 2008

These course notes are an introduction to the geometry of sur-
faces both from a local (differential), global (geodesic) and multi-
scale point of view. The emphasis is put on the discrete computa-
tion of differential and geodesic quantities on 3D meshes. These
computational tools can be used to perform various mesh pro-
cessing tasks such as surface denoising, compression or recogni-
tion. All the numerical experiments shown in these notes can be
reproduced with a set of Matlab scripts available in the courses
section of my webpage.

iv

Contents

1 Linear Mesh Processing 1

1.1 Surface Discretization with Triangulated Mesh . 1
1.1.1 Continuous Geometry of Surfaces . 1
1.1.2 Discretization of Surfaces with Triangulations 2

1.2 Linear Mesh Processing . 3
1.2.1 Functions on a Mesh . 3
1.2.2 Local Operators . 4
1.2.3 Approximating Integrals on a Mesh . 5
1.2.4 Example on a Regular Grid . 7
1.2.5 Gradients and Laplacians on Meshes . 8
1.2.6 Examples in 1D and 2D . 9
1.2.7 Example of a Parametric Surface . 10

1.3 Diffusion and Regularization on Surfaces . 10
1.3.1 Heat Diffusion . 10
1.3.2 Spectral Decomposition . 12
1.3.3 Spectral Theory on a Regular Grid . 14
1.3.4 Spectral Resolution of the Heat Diffusion 15
1.3.5 Quadratic Regularization . 16
1.3.6 Application to Mesh Compression . 16
1.3.7 Application to Mesh Parameterization . 18
1.3.8 Application to Mesh Flattening . 19

2 Geodesic Mesh Processing 21

2.1 Manifold Geometry of Surfaces . 21
2.1.1 Riemannian Manifold . 21
2.1.2 Geodesic Distances . 22
2.1.3 Mapping Between Surfaces . 23

2.2 Numerical Computations of Geodesic Distances . 24
2.2.1 Front Propagation Algorithms . 24
2.2.2 Geodesic Computation on a Graph . 25
2.2.3 Geodesic Computation on a Square Grid . 26
2.2.4 Geodesic computation on a triangulation 28

2.3 Applications and Extensions of Fast Marching . 31
2.3.1 Shape Analysis . 31
2.3.2 Heuristically Driven Propagation . 33

2.4 Surface Sampling . 36
2.4.1 Farthest Point Sampling . 36
2.4.2 Triangulations . 37
2.4.3 Centroidal Tesselation . 38

3 Multiresolution Mesh Processing 43

3.1 Semi-regular Meshes . 43
3.1.1 Nested Multiscale Grids. 43
3.1.2 Semi-regular Triangulation. 43
3.1.3 Spherical Geometry Images . 45

3.2 Subdivision Curves . 46
3.3 Subdivision Surfaces . 47

3.3.1 Interpolation Operators . 48

3.3.2 Some Classical Subdivision Stencils . 48
3.3.3 Invariant Neighborhoods . 51
3.3.4 Convergence of Subdivisions . 52

3.4 Wavelets on Meshes . 53
3.4.1 Multiscale Biorthogonal Bases on Meshes 53
3.4.2 The Lifting Scheme . 54
3.4.3 Imposing vanishing moments. 56
3.4.4 Lifted Wavelets on Meshes . 56
3.4.5 Non-linear Mesh Compression . 57

Bibliography 61

1 Linear Mesh Processing

This chapter exposes the basics of surface approximation with 3D meshes and the way to process
such meshes with linear operators. In particular, it studies filtering on 3D meshes and explains
how a Fourier theory can be built to analyze these filters.

1.1 Surface Discretization with Triangulated Mesh

1.1.1 Continuous Geometry of Surfaces

In this course, in order to simplify the mathematical description of surfaces, we consider only
globally parameterized surfaces. We begin by considering surfaces embedded in euclidean space
M⊂ Rk.

Definition 1 (Parameterized surface). A parameterized surface is a mapping

u ∈ D ⊂ R2 7→ ϕ(u) ∈M.

Of course, most surfaces do not benefit from such a simple parameterization. For instance, a
sphere should be split into two parts in order to be mapped on two disks D1,D2. These topological
difficulties require the machinery of manifolds in order to incorporate a set of charts D = {Di}i
that overlap in a smooth manner. All the explanations of this course extend seamlessly to this
multi-charts setting.

A curve is defined in parameter domain as a 1D mapping t ∈ [0, 1] 7→ γ(t) ∈ D. This curve can

be traced over the surface and its geometric realization is γ̄(t)
def.

= ϕ(γ(t)) ∈ M. The computation
of the length of γ in ambient k-dimensional space Rk follows the usual definition, but to do the
computation over the parametric domain, one needs to use a local metric defined as follow.

Definition 2 (First fundamental form). For an embedded manifoldM⊂ Rk, the first fundamental
form is

Iϕ =

(
〈 ∂ϕ
∂ui

,
∂ϕ

∂uj
〉
)

i,j=1,2

.

This local metric Iϕ defines at each point the infinitesimal length of a curve as

L(γ)
def.

=

∫ 1

0

||γ̄′(t)||dt =

∫ 1

0

√
γ′(t)

T
Iϕ(γ(t))γ′(t)dt.

This fundamental form is an intrinsic invariant that does not depends on how the surfaces is iso-
metrically embedded in space (since the length depends only on this tensor field Iϕ). In contrast,
higher order differential quantities such as curvature might depend on the bending of the surface
and are thus usually not intrinsic (with the notable exception of invariants such as the gaussian cur-
vature). In this course, we restrict ourselves to first order quantities since we are mostly interested
in lengths and the intrinsic study of surfaces.

Example 1 (Isometry and conformality). A surfaceM is locally isometric to the plane if Iϕ = Id2.
This is for instance the case for a cylinder. The mapping ϕ is said to be conformal if Iϕ(u) =
λ(u)Id2. It means that the length of a curve over the plane is only locally scaled when mapped
to the surface. In particular, the angle of two interescting curves is the same over the parametric
domain and over the surface. This is for instance the case for the stereographic mapping between
the plane and a sphere.

1

1 Linear Mesh Processing

1.1.2 Discretization of Surfaces with Triangulations

Mesh Data Structure A triangulated mesh is a discrete structure that can be used to approximate
a surface embedded in Euclidean space Rk. It is composed of a topological part M = (V,E, F) and
a geometrical realizationM = (V, E ,F). It is important to make the distinction between these two
parts since many algorithms rely only on geometry (point clouds processings such as dimension
reduction) or on topology (such as compression).

The topology M of the mesh is composed of

Vertices (0D): this is an abstract set of indices V ≃ {1, . . . , n}.
Edges (1D): this is a set of pair of vertices E ⊂ V × V . This set is assumed to be symmetric

(i, j) ∈ E ⇐⇒ i ∼ j ⇔ (j, i) ∈ E.

Faces (2D): this is a collection of 3-tuples of vertices F ⊂ V × V × V , with the additional
compatibility condition

(i, j, k) ∈ F =⇒ (i, j), (j, k), (k, i) ∈ E.

We further assumer that there is no isolated edges

∀ (i, j) ∈ E, ∃ k, (i, j, k) ∈ F.

The set of edges can be stored in a symmetric matrix A ∈ Rn×n such that Aij = 1 if (i, j) ∈ E
and Aij = 0 otherwise. This matrix is often stored as a sparse matrix since the number of edges is
usually much smaller than n2. The set of vertices and edges form a non-oriented graph G = (V,E).
Faces are often stored as a matrix AF ∈ {1, . . . , n}3×m where m is the number of faces and a
column ((AF)i,1, (AF)i,2, (AF)i,3) stores the indices of a face. In a triangulation, the face matrix
AF allows to recover the edge incidence matrix A. The face data structure allows to really capture
the 2D geometry of surfaces, which is not possible with graphs alone.

The geometric realizationM is defined through a spacial localization of the vertices (for instance
in 3D space)

V def.

= {xi \ i ∈ V } ⊂ R3.

This allows to define a piecewise linear mesh

F def.

=
⋃

(i,j,k)∈F

Conv(xi, xj , xk) ⊂ R3,

where the convex envelop Conv(x, y, z) of three points is the Euclidean triangle generated by
(x, y, z).

This piecewise linear realizationM can be displayed as a 3D surface on a computer screen. This
is performed through a perspective projection of the points and a linear interpolation of color and
light inside the triangle. Figure 1.1 shows an example of 3D display, with a zoom on the faces of
the mesh.

Adjacency Relationships From the basis topological information given by M = (V,E, F), one
can deduce several adjacency data-structures that are important to navigate over the triangulation.

Definition 3 (Vertex 1-ring). The vertex 1-ring of a vertex i ∈ V is

Vi
def.

= {j ∈ V \ (i, j) ∈ E} ⊂ V.‘ (1.1)

The s-ring is defined by induction as

∀ s > 1, V
(s)
i =

{
j ∈ V \ (k, j) ∈ E and k ∈ V (s−1)

i

}
. (1.2)

2

1.2 Linear Mesh Processing

Figure 1.1: Example of display of a 3D mesh.

Definition 4 (Face 1-ring). The face 1-ring of a vertex i ∈ V is

Fi
def.

= {(i, j, k) ∈ F \ i, j ∈ V } ⊂ F.

The geometrical realization of a vertex 1-ring is

Vi =
⋃

(i,j,k)∈Vi

Conv(xi, xj , xk).

A triangulated mesh is a manifold mesh if all the rings Vi for i ∈ V are homeomorphic to either a
disk (for interior vertices) or to a half disk (for boundary vertices). This ensures that the geometrical
mesh really has the topology of a 2D surface embedded in R3 (possibly with boundaries). In
particular, it implies that there is at most two faces connected to each edge

∀ (i, j) ∈ E, # {k \ (i, j, k) ∈ F} 6 2.

As an application of these local rings, one can compute a normal at each point using a simple
rule

∀ f = (i, j, k) ∈ F, −→nf def.

=
(xj − xi) ∧ (xk − xi)
||(xj − xi) ∧ (xk − xi)||

.

and where

∀ i ∈ V, −→ni def.

=

∑
f∈Fi

−→nf
||
∑
f∈Fi

−→nf ||
.

These normals are used to define for instance a light intensity I(i) = max(〈ni, ℓ(i), , 〉0), where ℓ(i)
is the incident light. In practice one uses a infinite light source ℓ(i) = ℓ =constant or a local spot
located at position s ∈ R3 through ℓ(i) = (vi − s)/||vi − s||. This light intensity is interpolated on
the whole mesh during display.

1.2 Linear Mesh Processing

The light intensity I is a particular example of a function defined at each vertex of the mesh.
Mesh processing is intended to process such functions and we thus define carefully vector spaces
and operators on meshes.

1.2.1 Functions on a Mesh

In this course, a function is a discrete set of values defined at each vertex location.

3

1 Linear Mesh Processing

Definition 5 (Linear space on a mesh). A function on a mesh is a mapping f ∈ ℓ2(V) ≃ ℓ2(V) ≃
Rn and can be viewed equivalently as

f :

{
V −→ R

xi 7−→ f(xi)
⇐⇒ f :

{
V −→ R

i 7−→ fi
⇐⇒ f = (fi)i∈V ∈ Rn.

The linear space of the functions on a mesh is equipped with an Hilbert space structure that
allows to quantify approximation error and compute projections of functions.

Definition 6 (Inner product and norm). One defines the following inner product and norm for
vector f, g ∈ Rn

〈f, g〉 def.

=
∑

i∈V

figi and ||f ||2 = 〈f, f〉.

In order to modify (process) functions on a mesh (such as a light intensity I), this course considers
only linear operations that are defined through a large matrix.

Definition 7 (Linear operator A). A linear operator A is defined as

A : ℓ2(V)→ ℓ2(V) ⇐⇒ A = (aij)i,j∈V ∈ Rn×n (matrix).

and operate on a function f as follow

(Af)(xi) =
∑

j∈V

aijf(xj)⇐⇒ (Af)i =
∑

j∈V

aijfj .

Example 2. If the coordinates of the point of a mesh are written xi = (x1
i , x

2
i , x

3
i) ∈ R3, then the

X-coordinate defines a function f : i ∈ V 7→ x1
i ∈ R. A geometric mesh M is thus 3 functions

defined on M .

Mesh processing is the task of modifying functions f ∈ ℓ2(V). For instance, one can denoise a
mesh M as 3 functions on M . The usual strategy applies a linear operator f 7→ Af . Sometimes,
A can computed from M only (for instance for compression) but most of the times it requires both
M andM.

1.2.2 Local Operators

In most applications, one can not store and manipulate a full matrix A ∈ Rn×n. Furthermore,
one is usually interested in exploiting the local redundancies that exist in most usual functions
f ∈ Rn defined on a mesh. This is why we restrict our attention to local operators that can be
conveniently stored as sparse matrices (the zeros are not kept in memory).

Definition 8 (Local operator). A local operator W ∈ Rn×n satisfies wij = 0 if (i, j) /∈ E.

(Wf)i =
∑

(i,j)∈E

wijfj .

A particularly important class of local operators are local smoothings (also called filterings) that
perform a local weighted sum around each vertex of the mesh. For this averaging to be consistent,
we define a normalized operator W̃ whose set of weights sum to one.

Definition 9 (Local averaging operator). A local normalized averaging is W̃ = (w̃ij)i,j∈V > 0
where

∀ (i, j) ∈ E, w̃ij =
wij∑

(i,j)∈E wij
.

It can be equivalently expressed in matrix form as

W̃ = D−1W with D = diagi(di) where di =
∑

(i,j)∈E

wij .

4

1.2 Linear Mesh Processing

The smoothing property corresponds to W̃1 = 1 which means that the unit vector is an eigen-
vector of W with eigenvalue 1.

Example 3. In practice, we use three popular kinds of averaging operators.

Combinatorial weights: they depends only on the topology (V,E) of the vertex graph

∀ (i, j) ∈ E, wij = 1.

Distance weights: they depends both on the geometry and the topology of the mesh, but do not
require faces information,

∀ (i, j) ∈ E, wij =
1

||xj − xi||2
.

Conformal weights: they depends on the full geometrical realization of the 3D mesh since they
require the face information

∀ (i, j) ∈ E, wij = cot(αij) + cot(βij). (1.3)

Figure 1.2 shows the geometrical meaning of the angles αij and βij

αij = ∠(xi, xj , xk1) and βij = ∠(xi, xj , xk2),

where (i, j, k1) ∈ F and (i, j, k2) ∈ F are the two faces adjacent to edge (i, j) ∈ E. We will see
in the next section the explanation of these celebrated cotangent weights.

xi

xj

xk1

xk2

αij

βij

Figure 1.2: One ring around a vertex i, together with the geometrical angles αij and βij used to
compute the conformal weights.

One can use iteratively a smoothing in order to further filter a function on a mesh. The resulting
vectors W̃f, W̃ 2, . . . , W̃ kf are increasingly smoothed version of f . Figure 1.3 shows an example of
such iterations applied to the three coordinates of mesh. The sharp features of the mesh tend to
disappear during iterations. We will make this statement more precise in the following, by studying
the convergence of these iterations.

1.2.3 Approximating Integrals on a Mesh

Before investigating algebraically the properties of smoothing operators, one should be careful
about what are these discrete operators really approximating. In order for the derivation to be
simple, we make computation for a planar triangulation M of a mesh M⊂ R2.

In the continuous domain, filtering is defined through integration of functions over the mesh. In
order to descretize integrals, one needs to define a partition of the plane into small cells centered
around a vertex or an edge.

Definition 10 (Vertices Voronoi). The Voronoi diagram associated to the vertices is

∀ i ∈ V, Ei = {x ∈M \ ∀ j 6= i, ||x− xi|| 6 ||x− xj ||}

5

1 Linear Mesh Processing

Figure 1.3: Examples of iterative smoothing of a 3D mesh.

Definition 11 (Edges Voronoi). The Voronoi diagram associated to the edges is

∀ e = (i, j) ∈ E, Ee = {x ∈M \ ∀ e′ 6= e, d(x, e) 6 d(x, e′)}

i

j

Ai

cf

mesh

i

j

A

c

i

j

A(ij)cf

mesh shFigure 1.4: Left: vertex Voronoi cell, right: delaunay Voronoi cell. The point cf is the orthocenter
of a face f = (i, j, k).

These Voronoi cells indeed form a partition of the mesh

M =
⋃

i∈V

Ei =
⋃

e∈E

Ee.

The following theorem gives the formula for the area of these cells.

Theorem 1 (Voronoi area formulas). For all e = (i, j) ∈ E, ∀ i ∈ V , one has

Ae = Area(Ee) =
1

2
||xi − xj ||2 (cot(αij) + cot(βij))

Ai = Area(Ei) =
1

2

∑

j∈Ni

A(ij).

With these areas, one can approximate integrals on vertices and edges using
∫

M

f(x)dx ≈
∑

i∈V

Ai f(xi) ≈
∑

e=(i,j)∈E

Ae f([xi, xj]).

6

1.2 Linear Mesh Processing

Of particular interest is the approximation of the so-called Dirichelet energy
∫
M
||∇xf ||2dx. In

order to compute it on a triangular mesh, one can use a finite difference approximation of the
gradient of a function at the point xij = (xi + xj)/2 along an edge (i, j)

〈∇xij
f,

xi − xj
||xi − xj ||

〉 ≈ f(xi)− f(xj)

||xi − xj ||
.

This leads to the following approximation of the Dirichlet energy
∫

M

||∇xf ||2dx ≈
∑

(i,j)∈E

A(i,j)〈∇xij
f,

xi − xj
||xi − xj ||

〉2 ≈
∑

(i,j)∈E

A(i,j)
|f(xj)− f(xi)|2
||xj − xi||2

(1.4)

=
∑

(i,j)∈E

wij |f(xj)− f(xi)|2 where wij = cot(αij) + cot(βij). (1.5)

This discrete formulation shows that the correct weights to approximate the Dirichlet energy are
the cotangent one, already introduced in equation (1.3).

1.2.4 Example on a Regular Grid

A regular grid is an uniform discretization with n points of [0, 1) (in 1D) or [0, 1)2 (in 2D).
One usually assumes periodic boundary conditions, which means that each side of the square is
associated with its opposite.

Since the geometry of a regular grid is invariant under translation, local averaging operators can
be computed as convolution on D = (Z/pZ)d where n = pd for d the dimension of the domain
(d = 1 or d = 2)

∀ i ∈ D, W̃f(i) =
∑

k∈D

f(k)w̃(i− k),

where the operation + and − should be computed modulo p and w̃(k) = W̃ (0, k) is the convolution
kernel.

Example 4 (Averaging). The uniform averaging filter is defined as

W̃f(i) =
1

|N |
∑

k∈N

f(i+ k),

where N is the set of neighbors of the point 0 and |N | = 2d. In this case, in dimension 1,
w̃ = (1, 0, 1)/2, where this notation assumes that w̃ is centered at the point 0.

In order to study translation invariant operators like local filtering, one needs to use the discrete
Fourier transform that diagonalizes these operators.

Definition 12 (Discrete Fourier transform). The 1D discrete Fourier transform Φ(f) ∈ Cn of the
vector f ∈ Cn

Φ(f)(ω) = f̂(ω)
def.

=
1

n

∑

k

fke
2iπ
n
kω.

A similar definition can be given for the 2D discrete Fourier transform. The main property of
the Fourier transform is the following diagonalization result.

Theorem 2 (Convolution and Fourier). For any vector f , one has

Φ(W̃ kf) = Φ(w̃ ∗ . . . ∗ w̃ ∗ f) =⇒ Φ(W̃ kf)(ω) = ̂̃w(ω)k f̂(ω).

The main interest of this tools is that Φ(f) can be computed in O(n log(n)) operations with the
FFT algorithm. Using the following theorem, it gives an alternative expression of a local filtering.
This expression in the Fourier domain can be used to speed up the computation of w̃ ∗ f if w̃ has
a lot of non zero entries (which is not the case in our setting of local operators). It is also useful
to analyze theoretically the behavior of iterated filterings.

7

1 Linear Mesh Processing

Theorem 3 (Convergence). For any function f defined on a regular grid in 1D or 2D, one has

W̃ kf
k→+∞−→ 1

|V |
∑

i∈V

fi

This Fourier theory can only be developed for domains that have a group structure that enables
translation invariant filtering. In particular, it does not carry over easily to an arbitrary surface.
In the remaining, we define a corresponding theory for graphs and triangulated surfaces using the
eigenvector of Laplacian operators. This Fourier transform on meshes enables the analysis of the
convergence of many filtering schemes.

1.2.5 Gradients and Laplacians on Meshes

Gradient operator A gradient operator defines directional derivatives on a triangulation. It maps
functions defined on vertices to functions defined on the set of oriented edges

Ē
def.

= {(i, j) ∈ E \ i > j} .

Definition 13 (Gradient). Given a local averaging W , the gradient operator G is defined as

∀ (i, j) ∈ E, i < j, (Gf)(i,j)
def.

=
√
wij(fj − fi) ∈ R.

This mapping can be viewed equivalently as

G : ℓ2(V) −→ ℓ2(E), or G : Rn −→ Rp where p = |E|,
or G ∈ Rn×p (a matrix).

The value of (Gf)e for an edge e = (i, j) can be thought as a derivative along direction −−→xixj .
Example 5. For the local averaging based on square distances, one has

wij = ||xi − xj ||−2, (Gf)(i,j) =
f(xj)− f(xi)

||xi − xj ||
.

which is exactly the finite difference discretization of a directional derivative.

One a regular grid, one can note that

Gf discretizes ∇f =
(
∂f
∂x ,

∂f
∂y

)T

.

GTv discretizes div(v) = ∂v1
∂x + ∂v2

∂y .

Laplacian Operator A Laplacian operator is a discrete version of a second order derivative oper-
ator.

Definition 14 (Laplacian). Given a local averaging W , the Laplacian operator D is defined as

L
def.

= D −W, where D = diagi(di), with di =
∑

j

wij .

In the remaining, we also make use of normalized operators, which have an unit diagonal.

Definition 15 (Normalized Laplacian). The normalized Laplacian is defined as

L̃
def.

= D−1/2LD−1/2 = Idn −D−1/2WD1/2 = Idn −D1/2W̃D−1/2.

This normalized Laplacian correspond to the weighted graph Laplacian used in graph theory,
see for instance [4].

8

1.2 Linear Mesh Processing

Remark 1. One can note that

Laplacians are symmetric operators L, L̃ ∈ Rn×n.

L acts like a (second order) derivative since L1 = 0.

in contrast, the normalized Laplacian is not a real derivative since L̃1 6= 0 in general.

The main interest of the gradient operator is that it factorizes the Laplacian as follow.

Theorem 4 (Laplacian factorization). One has

L = GTG and L̃ = (GD−1/2)
T
(GD−1/2).

This theorem proves in particular that L and L̃ are symmetric positive definite operators. The
inner product defined by the Laplacian can be expressed as an energy summed over all the edges
of the mesh

〈Lf, f〉 = ||Gf ||2 =
∑

(i,j)∈E

wij ||fi − fj ||2.

In the particular case of the cotangent weights introduced in equation (1.3), one can see that the
Laplacian norm 〈Lf, f〉 is exactly the finite differences approximation of the continuous Dirichlet
energy

∫
M
|∇xf |dx derived in equation (1.5). This is why these cotangent weights are the best

choice to compute a Laplacian that truly approximates the continuous Laplace Beltrami operator
(see definition 16).

A similar expression is derived for the normalized laplacian

〈L̃f, f〉 = ||GD−1/2f ||2 =
∑

(i,j)∈E

wij

∣∣∣
∣∣∣ fi√
di
− fj√

dj

∣∣∣
∣∣∣
2

.

Of particular interest for the study of filtering on meshes is the behavior of the spectrum of the
Laplacian. We can first study its kernel.

Theorem 5 (Kernel of the Laplacian). If M is connected, then

ker(L) = span(1) and ker(L) = span(D1/2).

1.2.6 Examples in 1D and 2D

In 1D, all local weights are equivalent since the points are equi-spaced. The corresponding
Laplacian is a convolution that can be written as

(Lf)i =
1

h2
(2fi − fi+1 − fi−1) =

1

h2
f ∗ (−1, 2, 1) ,

where it is important to remember that the notation (−1, 2, 1) means that the vector is centered
around 0.

This discrete 1D Laplacian is the finite difference approximation of the continuous Laplacian on
the torus T of the segment [0, 1) modulo 1. Up to a minus sign, this Laplacian is just the second
order derivative

L
h→0−→ −d2f

dx2
(xi)

One should be careful with our notation that consider positive semi-definite Laplacian, that have
the opposite sign with respect to second order derivative operators (which are definite negative).

The gradient operator corresponds to a discretization of the first order derivative f 7→ f ′ (which
is anti symmetric). The continuous counterpart of the factorization L = GTG is the integration
by part formula on the torus

∫

T

f ′′(x)g(x)dx = −
∫

T

−f(x)g′(x)dx =⇒
∫

T

f ′′(x)f(x)dx = −
∫

T

|f ′(x)|2 6 0.

9

1 Linear Mesh Processing

The discrete Laplacian on a 2D grid can also be written as a 2D convolution

(Lf)i =
1

h2
(4fi − fj1 − fj2 − fj3 − fj4) =

1

h2
f ∗




0 -1 0
-1 4 -1
0 -1 0




where {jk}k are the four neighbors of the point i. This operator is the finite difference approxima-
tion to the continuous 2D Laplacian

L
h→0−→ −∂

2f

∂x2
(xi)−

∂2f

∂y2
(xi) = −∆f(xi).

The factorization Lf = GTGf corresponds to the decomposition ∆f = div(∇f).

1.2.7 Example of a Parametric Surface

We recall that a parameterized surface is a mapping u ∈ D ⊂ R2 7→ ϕ(u) ∈ M. Whereas the
continuous Laplacian is simple to define on the plane using partial derivatives, its definition on
a surface requires the intervention of an arbitrary parameterization ϕ which makes its expression
cumbersome.

Definition 16 (Laplace-Beltrami). The Laplace-Beltrami operator on a parametric surface M is
defined as

√
g∆M

def.

=
∂

∂u1

(
g22√
g

∂

∂u1
− g12√

g

∂

∂u2

)
+

∂

∂u2

(
g11√
g

∂

∂u2
− g12√

g

∂

∂u1

)

where g = det(Iϕ) and Iϕ = (gij)i,j=1,2.

The Laplacian is however an intrinsic operator that does not depends on the chosen parameter-
ization, as shown by the following approximation theorem.

Remark 2 (Laplacian using averaging).

∆Mf(x) = lim
h→0

1

|Bh(x)|

∫

y∈M

f(y)dy where Bh(x) = {y \ dM(x, y) 6 h}

where dM is the geodesic distance onM and h = max(i,j)∈E ||xi−xj || is the discretization precision.

1.3 Diffusion and Regularization on Surfaces

1.3.1 Heat Diffusion

The main linear PDE for regularization of functions is the heat equation that governs the isotropic
diffusion of the values of a function in time.

Definition 17 (Heat diffusion). ∀ t > 0, one defines Ft : M → R solving

∂Ft
∂t

= −D−1LFt = −(Idn − W̃)Ft and ∀ i ∈ V, F0(i) = f(i)

In order to compute numerically the solution of this PDE, one can fix a time step δ > 0 and use
an explicit discretization in time F̄k as F0 = f and

1

δ

(
F̄k+1 − F̄k

)
= −D−1LF̄k =⇒ F̄k+1 = F̄k − δD−1LF̄k = (Id− δ)F̄k + δW̃ F̄k. (1.6)

If δ is small enough, one hopes that the discrete solution F̄k is close to the continuous time solution
Ft for t = δk. This is indeed the case as proven later in these notes.

10

1.3 Diffusion and Regularization on Surfaces

Remark 3. In order for this scheme to be stable, one needs δ < 1. This is be proven later using
the extension of Fourier theory to meshes.

Remark 4. If δ = 1, then the discretization of the Heat equation corresponds to iterative smoothing
since F̄k = W̃ kf . In this case stability is not guaranteed but only pathological meshes give unstable
filtering (see theorem 13).

Instead of using the explicit discretization in time (1.6), one can use an implicit scheme which
compute an approximate solution F̃k at step k by solving

1

δ

(
F̃k+1 − F̃k

)
= −D−1LF̃k+1 =⇒ ((δ + 1)Idn − δW̃)F̃k+1 = F̃k. (1.7)

Computing F̃k requires the solution of a sparse linear system at each step k. The implicit scheme
(1.7) is thus computationally more involved than the explicit scheme (1.6). We will however see
later that the implicit scheme is always stable for any value of δ 6 1.

Example 6 (Mesh smoothing). In order to smooth a mesh whose points are xi = (x1
i , x

2
i , x

3
i), one

can perform a heat diffusion for each component fi = (xki), k = 1, 2, 3. Figure 1.5 shows an example
of such a smoothing.

In practice, mesh smoothing is used to denoise a function f = f0 + σg where g ∈ Rn is a
realization of a gaussian white noise (each entry g(i) are independent and follow a gaussian law with
unit variance). The difficult task it to find an optimal stopping time t to minimize ||Ft−f0||, which
is not available since one does not know f0. For uniformly smooth surfaces, the theory predicts that
a linear filtering such as the heat equation requires a stopping time proportional to the noise level
σ. This is however false for more complex surfaces such as the one used in computer graphics. In
these case, alternate non linear diffusions such as non-linear PDE or wavelet thresholding usually
perform better, see [24] for an overview of these methods in image processing.

Original Iter #1 Iter #2 Iter #3 Iter #4 Iter #5

Original Iter #1 Iter #2 Iter #3 Iter #4

Figure 1.5: Examples of mesh denoising with the heat equation.

11

1 Linear Mesh Processing

Other differential equations. One can solve other partial differential equations involving the
Laplacian over a 3D mesh M = (V,E, F). For instance, one can consider the wave equation, which
defines, for all t > 0, a vector Ft ∈ ℓ2(V) as the solution of

∂2Ft
∂t2

= −D−1LFt and

{
F0 = f ∈ Rn,
d
dtF0 = g ∈ Rn,

(1.8)

In order to compute numerically the solution of this PDE, one can fix a time step δ > 0 and use
an explicit discretization in time F̄k as F0 = f , F1 = F0 + δg and for k > 1

1

δ2
(
F̄k+1 + F̄k−1 − 2F̄k

)
= −D−1LF̄k =⇒ F̄k+1 = 2F̄k − F̄k−1 − δ2D−1LF̄k.

Figure 1.6 shows examples of the resolution of the wave equation on 3D meshes.

Figure 1.6: Example of evolution of the wave equation on 3D mesh. The initial condition f is a
superposition of small positive and negative gaussians.

1.3.2 Spectral Decomposition

In order to better understand the behavior of linear smoothing on meshes, one needs to study
the spectral content of Laplacian operators. This leads to the definition of a Fourier theory for

meshes. The decomposition L̃ = (GD−1/2)
T
(GD−1/2) of the Laplacian implies that it is a positive

semi-definite operator. One can thus introduce the following orthogonal factorization.

Theorem 6 (Eigen-decomposition of the Laplacian). It exists a matrix U, UTU = Idn such that

L̃ = UΛUT where Λ = diagω(λω), λ1 6 . . . 6 λn.

The eigenvalues λω correspond to a frequency index that ranks the eigenvectors uω of U = (uω)ω.
One can first state some bounds on these eigenvalues.

Theorem 7 (Spectral bounds). ∀ i, λi ∈ [0, 2] and

If M is connected then 0 = λ1 < λ2.

λn = 2 if and only if M is 2-colorable.

We recall the definition of a colorable graph next.

12

1.3 Diffusion and Regularization on Surfaces

Definition 18 (Colorable graph). A graph (V,E) is k-colorable if it exist a mapping f : V →
{1, . . . , k} such that

∀ (i, j) ∈ E, f(i) 6= f(j).

A 2-colorable graph is also called bi-partite. A 2-colorable mesh is pathological for filtering since
one can split the set of vertices into two parts without inner connexions. The filtering process can
oscillate by exchanging values between these sets, thus never converging.

The orthogonal eigen-basis U = (uω)ω is an orthogonal basis of the space Rn ≃ ℓ2(V), which
can be written as

uω :

{
V −→ R

i 7−→ uω(xi)

The orthogonality means that 〈uω, uω′〉 = δω
′

ω . This basis allows to compute an orthogonal de-
composition of any functions f

∀ f ∈ ℓ2(V), f =
∑

ω

〈f, uω〉uω.

Having such a tool allows to split a function f in elementary contributions 〈f, uω〉 with a control
in the energy because of orthogonality

||f ||2 =
∑

ω

|〈f, uω〉|2.

ω = 2 ω = 4 ω = 8 ω = 12 ω = 16

Figure 1.7: Examples of eigenvectors uω of the Laplacian L̃. The blue colors indicated negative
values, red colors positive ones. The black curve is the 0 level set of the eigenvector.

Figure 1.7 shows some examples of eigenfunctions depicted using color ranging from blue (neg-
ative values of the eigenfunction) to red (positive values). One can see that these functions are
oscillating, in a way similar to the traditional Fourier basis. In some sense (made more precise
latter), this basis is the extension of the Fourier basis to meshes. A function uω corresponding to
a large spectral value λω is highly oscillating and corresponds thus intuitively to a high frequency
atom.

Extracting numerically eigenvectors from a large matrix is a difficult problem. If the matrix is
sparse, a method of choice consists in using iterative powers of a shifted version of the laplacian.
One starts from a random initial vector v0 and iterates

vk+1 =
wk+1

||wk+1||
where wk+1 = (L̃− λIdn)

−1vk. (1.9)

13

1 Linear Mesh Processing

These iterates converges to the eigenvectors corresponding to the eigenvalue the closest to λ, as
staten in the following theorem.

Theorem 8 (Inverse iterations). For a given shift λ, lets denote

ω⋆ = argmin
ω

|λ− λω| and ω+ = argmin
ω 6=ω⋆

|λ− λω|

If |λ− λω⋆ | < |λ− λω+ |, then

vk
k→+∞−→ uω⋆ and 〈Lvk, vk〉 k→+∞−→ λω⋆ .

The speed of convergence of these inverse iterations is governed by the conditioning of (L̃ −
λIdn)

−1 since

||vk − uω⋆ || 6 Cρ(λ)k where ρ(λ)
def.

=
|λ− λω⋆ |
|λ− λω+ | < 1.

The smallest ρ(λ) is, the faster the method converges.

In order to compute an iteration (1.9) of the method, one needs to solve a sparse linear system
Awk+1 = vk whith A = L̃ − λIdn. In order to do so, one can use a direct method such as LU
factorization. The advantage of such an approach is that the factorization is computed once for
all and can be re-used to solve very quickly at each step k. These factorization are however quite
slow to compute especially for large matrices. For large problems, one can solve this linear system
using an iterative algorithm such as conjugate gradient. These iterative method are attractive for
sparse matrices, but a fast convergence requires 1/ρ(λ), the conditioning of L̃ − λIdn to be not
large, with is contradictory with the constraint for iterations 1.9 to converge fast.

1.3.3 Spectral Theory on a Regular Grid

In the particular case of a 1D or 2D lattice, the eigenfunctions defined earlier correspond exactly
to the Fourier basis used in the discrete Fourier transform.

Theorem 9 (Spectrum in 1D). For a 1D regular lattice,

uω(k) =
1√
n

exp

(
2iπ

n
kω

)
and λω = 4 sin2

(
2π

n
ω

)
.

Theorem 10 (Spectrum in 2D). For a 2D regular lattice, n = n1n2, ω = (ω1, ω2)

uω(k) =
1√
n

exp

(
2iπ

n
〈k, ω〉

)
and λω = 4

(
sin2

(
2π

n1
ω1

)
+ sin2

(
2π

n2
ω2

))
.

As already mentioned, on a mesh, the eigenvectors of L̃ correspond to a extension of the Fourier
basis to meshes. The definition of the Fourier transform on meshes requires a little care since a
diagonal normalization by D is used as defined next.

Definition 19 (Manifold-Fourier transform). For f ∈ ℓ2(V),

Φ(f)(ω) = f̂(ω)
def.

= 〈D1/2f, uω〉 ⇐⇒ Φ(f) = f̂ = UTD1/2.

where (uω)ω are the eigenvectors of L̃.

One can note that there is still a degree of freedom in designing this Fourier transform since
one can use any local weighting (for instance combinatorial, distance or conformal). Depending
on the application, one might need to use weights depending only on the topology of the mesh
(combinatorial for mesh compression).

A major theoretical interest of this Fourier transform is that it diagonalizes local averaging
operators.

14

1.3 Diffusion and Regularization on Surfaces

Theorem 11 (Spectral smoothing). One has ΦW̃Φ−1 = Idn − Λ and thus for any function f

̂̃Wf(ω) = (1− λω)f̂(ω)

This diagonalization allows to prove the convergence of iterative smoothing.

Theorem 12 (Convergence of iterated smoothing). If λn < 2 (i.e. M is not 2-colorable), then for
any function f

W̃ kf
k→+∞−→ 1

n

∑

i∈V

fi.

1.3.4 Spectral Resolution of the Heat Diffusion

Recall that the heat diffusion is defined as

∀ t > 0,
∂Ft
∂t

= −D−1LFt = −(Idn − W̃)Ft

Using the manifold Fourier expansion F̂t
def.

= UTD1/2Ft, this differential equation can be re-written
as

∂F̂t(ω)

∂t
= −λωF̂t(ω) =⇒ F̂t(ω) = exp(−λωt)f̂(ω). (1.10)

This allows to study the convergence of the continuous heat equation.

Theorem 13 (Convergence of heat equation). If M is connected,

Ft
t→+∞−→ 1

n

∑

i∈V

fi.

Recall that the heat equation is discretized using the following explicit and implicit schemes,
equations (1.6) and (1.7) {

F̄k = (1− δ)F̄k + δW̃ F̄k,

((1 + δ)Idn − δW̃)F̃k+1 = F̃k.

These filtering iterations can be re-written over the Fourier domain as





̂̄Fk+1(ω) = (1− δλω)̂̄Fk(ω),
̂̃Fk+1(ω) = 1

(1+δλω)
̂̄Fk(ω).

This allows to state the stability and convergence of the finite difference discretization.

Theorem 14 (Convergence of discretization). The explicit scheme is stable if δ < 1. The implicit
scheme is always stable. One has {

F̄t/δ
δ→0−→ Ft,

F̃t/δ
δ→0−→ Ft.

with the restriction that for the explicit scheme, the mesh must not be 2-colorable.

Other Differential Equations. The manifold Fourier transform can also be used to solve the wave
equation (1.8) since

∂2F̂t(ω)

∂t2
= −λωF̂t(ω) =⇒ F̂t(ω) = cos(

√
λωt)f̂(ω) +

1√
λω

sin(
√
λωt)ĝ(ω).

15

1 Linear Mesh Processing

1.3.5 Quadratic Regularization

Instead of using a PDE for regularization, one can try to find a new function that is both close
to the original one f and that is smooth in a certain sense. This leads to the notion of quadratic
regularization, where one uses a Laplacian as a smoothness prior on the recovered function.

Definition 20 (Quadratic regularizer). For t > 0, one defines

F q

t = argmin
g∈Rn

||f − g||2 + t||G̃g||2 where G̃ = GD−1/2.

This optimization replaces f ∈ ℓ2(V) by F q
t ∈ ℓ2(V) with small gradients. This optimization

can be found in closed form by inverting a sparse linear system.

Theorem 15 (Solution of quadratic regularization). F q

t is unique and

F q

t = (Idn + tL̃)−1f.

Over the Fourier domain, this inversion reads

F̂ q
t (ω) =

1

1 + tλω
f̂(ω).

This corresponds to an attenuation of the high frequency content of f , in a way very similar to
equation (1.10).

Once again, similarly to the heat equation, the spectral expression of the quadratic regularizer
allows to study its convergence for large t.

Theorem 16 (Convergence of quadratic regularization). If M is connected,

F q

t
t→+∞−→ 1

n

∑

i∈V

fi.

1.3.6 Application to Mesh Compression

We have shown how the Fourier basis on meshes can be used to compute in a diagonal fashion
filtering, heat diffusion and quadratic regularization. This Fourier transform is however of little
interest in practice, since the original filterings (or finite difference approximation of the heat equa-
tion) are usually faster to compute directly than over the Fourier domain. The Fourier transform
is thus mainly of theoretical interest in these cases since it allows to prove convergence results.

Another class of applications makes use of an orthogonal expansion such as the Fourier one to
perform mesh compression. This section shows how to compute a linear M -term approximation
in this Fourier basis and to do mesh compression. We refer to the survey [1] for more advanced
non-linear mesh compression methods.

The orthogonal basis U = (uω)ω of ℓ2(V) ≃ Rn, where L̃ = UΛUT allows to define a linear
approximation as followed.

Definition 21 (LinearM -term approximation). For any M > 0, the linear M -term approximation
of f is

f =
n∑

ω=1

〈f, uω〉uω
M-term approx.

=⇒ fM
def.

=
M∑

ω=1

〈f, uω〉uω.

The quality of the approximation is measured using the error decay, which can in turn be
estimated using the removed coefficients

E(M)
def.

= ||f − fM ||2 =
∑

ω>M

|〈f, uω〉|2.

16

1.3 Diffusion and Regularization on Surfaces

A good orthogonal basis U is a basis for which E(M) decays fast on the signals of interest. Equiv-
alently, a fast decay of E with M corresponds to a fast decay of |〈f, uω〉| for large ω. Figure 1.8
shows the decay of the Fourier spectrum for two different functions defined on a 3D mesh. The
smooth function (left in the figure) exhibits a fast decay of its spectrum, meaning that it can be
well approximated with only a few Fourier coefficients.Laplace Spectrum

ω

f̂(ω)

)

ω

f̂(ω)

ω

Figure 1.8: Examples of Fourier spectrum for a smooth and a non-smooth function.

We recall that the Fourier atoms

∀ω ∈ Z, uω(x) =
1√
2π
eiωx

are the eigenvectors of the compact, symmetric, semi-definite negative operator f 7→ f ′′ (that
should be defined on the Hilbert space of twice Sobolev derivable functions). This set of function
is also an Hilbert basis of the space L2(R/(2πZ)) of 2π-periodic square integrable functions and a

Fourier coefficient is f̂(ω)
def.

= 〈f, uω〉.
Approximation theory studies this linear error decay for classical functional spaces. One can for

instance study the Fourier expansion over euclidean spaces.

Theorem 17 (Fourier in 1D). If f is Cα regular on R/(2πZ),

|f̂(ω)| 6 ||f (α)||∞|ω|−α.

This result can be proven with a simple integration by parts. A slightly more difficult result
shows that the linear approximation error decays like M−α.

Theorem 18 (Fourier approximation). If f is Cα on R/(2πZ), then it exist C > 0 such that

∑

ω

|ω|2α|〈f, uω〉|2 < +∞ =⇒ E(M) 6 CM−α.

This kind of results can be extended to continuous surfaces thanks to the continuous Laplacian.
We suppose that M is a surface parameterized by ϕ, and a function f = ϕ ◦ f̄ is defined on it.
By definition, this function f is Cα if f̄ is Cα in euclidean space. For a compact surface M, the
Laplace-Beltrami operator ∆M is symmetric (for the inner product on the surface), is negative
semi-definite and has a discrete spectrum ∆Muω = −λωuω for ω ∈ N. The functions {uω}ω are
an orthogonal basis for function of finite energy on the surface L2(M). The inner product of an
arbitrary smooth function f ∈ Cα(M) can be bounded using integration by parts

〈f, uω〉 =
1

λkω
〈∆k

Mf, uω〉 =⇒ |〈f, uω〉| 6
||f ||Cα

λ
α/2
ω

.

17

1 Linear Mesh Processing

This proves the efficiency of the Fourier basis on surfaces to approximate smooth functions.

When computing the M -term approximation fM of f one removes the small amplitude Fourier
coefficients of the orthogonal expansion of f . Figure 1.9 shows some examples of mesh approxima-
tion where one retains an increasing number of Fourier coefficients. Mesh compression is only a
step further, since one also need to code the remaining coefficients. This requires first quantifying
the coefficients up to some finite precision and then binary code these coefficients into a file.

1% 2% 3% 4% 5%

1% 2% 3% 4%

Figure 1.9: Examples of spectral mesh compression.

1.3.7 Application to Mesh Parameterization

This section is restricted to the study of meshes that can be globally parameterized on a plane.
It means that they are topologically equivalent to a 2D disk. More complex meshes should be first
segmented in cells that are equivalent to a disk.

A parameterization of a continuous surfaceM is a bijection

ψ :M−→ D ⊂ R2.

A similar definition applies to a discrete mesh where one computes a 2D position ψ(i) for all the
vertices i ∈ V and then interpolates linearly the mapping to the whole piecewise linear geometric
mesh. This section explains the basics of linear methods for mesh parameterization. We refer to
various surveys [12, 35] for more details on mesh parameterization.

Usually, a 2D mesh is computed from range scanning or artistic modeling, so it does not come
with such a parameterization. In order to perform texture mapping or more general mesh deforma-
tions, it is however important to use such a parameterization. Since many bijections are possible
to layout the mesh in 2D, the mapping ψ has to satisfy additional smoothness assumptions. Classi-
cally, one requires that each coordinate of ψ has a vanishing Laplacian (it is thus harmonic) outside
a set of constrained vertices that enforce boundary conditions.

18

1.3 Diffusion and Regularization on Surfaces

More precisely, ψ = (ψ1, ψ2) is the solution of

{
∀ i /∈ ∂M, (Lψ1)(i) = (Lψ2)(i) = 0
∀ i ∈ ∂M, ψ(i) = ψ0(i) ∈ ∂D,

where ∂M is the boundary of the mesh, which consists in vertices whose face ring is not homeo-
morphic to a disk but rather to a half disk. This formulation requires the solution of two sparse
linear systems (one for each coordinate of ψ).

The boundary condition ψ0(i) for i ∈ ∂M describes a 1D piecewise linear curve in the plane,
that is fixed by the user. In the following, we will see that this curve should be convex for the
parameterization to be bijective.

Remark 5. For such an harmonic parameterization, each point is the average of its neighbors since

∀ i, ψ(i) =
1∑
j wij

∑

(i,j)∈E

wi,jψ(j).

The powerful feature of this linear parameterization method is that it can be proven to produce
a valid (bijective) parameterization as long as the constrained position (boundary values of ψ) are
along a convex curve.

Theorem 19 (Tutte theorem). If ∀ (i, j) ∈ E, wij > 0, and if ∂D is a convex curve, then ψ is a
bijection.

Figure 1.10 shows several examples of parameterizations. One is free to use any laplacian (com-
binatorial, distance or conformal) as long as it produces positive weights. There is a issue with
the conformal weights, which can be negative if the mesh contains obtuse triangles. In practice
however it leads to the best results. The efficiency of a parameterization can be measured by some
amount of distortion induced by the planar mapping. Linear methods cannot hope to cope with
large isoperimetric distortions (for instance large extrusions in the mesh) since harmonicity leads
to clustering of vertices.

1.3.8 Application to Mesh Flattening

One of the difficulty with linear parameterization methods is that they require to set up the
positions of the vertices along the boundary of the mesh. In order to let the boundary free to evolve
and find some optimal shape, one can replace the fixed point constraint by a global constraints of
unit variance as follow

min
ψ1,ψ2∈Rn

||G̃ψ1||2 + ||G̃ψ2||2 with




||ψi|| = 1,
〈ψ1, ψ2〉 = 0,
〈ψi, 1〉 = 0.

This optimization problem also has a simple global solution using eigenvectors of the Laplacian.

Theorem 20 (Mesh flattening solution). The mesh flattening solution is given by

Span(ψ1, ψ2) = Span(u1, u2) where L̃ = UΛUT.

In order to compute this flattening, one thus needs to extract 2 eigenvectors from a sparse matrix.
Note however that, in contrast to linear parameterization schemes, this flattening is not ensured to
be bijective. Figure 1.11 shows that for meshes with large distortion, this flattening indeed leads
to wrong parameterizations.

19

1 Linear Mesh Processing

C
o
m

b
in

a
to

ri
a
l

C
on

fo
rm

a
l

C
on

fo
rm

al

Mesh Circle Square Triangle

Figure 1.10: Examples of mesh parameterizations.

Mesh Combinatorial Conformal Isomap

Figure 1.11: Examples of mesh flattening.

20

2 Geodesic Mesh Processing

This chapter studies the numerical computation of geodesic distance on Riemannian manifolds.
It shows both the algorithms and applications to surface processing, in particular sampling, meshing
and comparison of surfaces.

The original book on Fast Marching methods is [34]. For other applications to computer graphics
and image processing one can see [26] and [17]. The recent book [3] treats all the details of the
geometry of non-rigid surfaces, including geodesic distance computation and shape comparison.
One can also see the two books [27, 28] that contain review articles with some applications of Fast
Marching and geodesic methods.

2.1 Manifold Geometry of Surfaces

2.1.1 Riemannian Manifold

We have seen in definition 1 that a parameterized surface is embedded into some Euclidean
domain Rk, which allows to define a local metric thanks to the first fundamental form Iϕ. It is
however possible to consider directly a field of positive definite tensors on a parametric domain
D = Rs (in practice here s = 2 for surfaces or s = 3 for volumes). With a slight abuse in notations,
we will even assimilate the resulting abstract surface M with D. Once again, we consider only
surfaces globally mapped some Euclidean domain, but handling generic surfaces requires to split
the manifold into overlapping charts.

Definition 22 (Riemannian manifold). A Riemannian manifold is an abstract parametric space
M⊂ Rs equipped with a metric x ∈M 7→ H(x) ∈ Rs×s positive definite.

Using the Riemannian metric, one can compute the length of a curve (γ(t))Tt=0 ∈M

L(γ)
def.

=

∫ T

0

√
γ′(t)

T
H(γ(t))γ′(t)dt.

This length is invariant under a reparameterization of the curve, which means that for any strictly
increasing ψ : [0, T ′]→ [0, T], one has

L(γ) = L(γ ◦ ψ).

This notion of curve length is well defined for smooth curves γ, but it can be extended to piecewise
smooth curves by splitting the integral into each part where the curve is smooth.

At each location x, the Riemannian tensor can be diagonalized as follow

H(x) = λ1(x)e1(x)e2(x)
T

+ λ2(x)e2(x)e2(x)
T

with λ1 6 λ2,

and e1, e2 are two orthogonal eigenvector fields. In fact, ei should be understood as direction (un-
oriented) field since both ei and −ei are eigenvectors of the tensor. A curve γ passing at location
γ(t) = x with speed γ′(t) has a shorter local length if γ′(t) is collinear to e1(x) rather to an other
direction. Hence shortest paths (to be defined in the next section) tends to be tangent to the
direction field e1.

In practice, the Riemannian metric H is given by the problem one wishes to solve. In image
processing, the manifold is the image plane M = [0, 1]2 equipped with a metric derived from the
image (for instance its gradient).

21

2 Geodesic Mesh Processing

Example 7. Figure 2.1 shows some some frequently used geodesic metric spaces:

Euclidean space: M = Rs and H(x) = Ids.

2D shape: M⊂ R2 and H(x) = Id2.

Parametric surface: H(x) = Iϕ(x) is the first fundamental form.

Isotropic metric: H(x) = W (x)Ids, W (x) > 0 being some weight function.

Image processing: given an image I : [0, 1]2 → R, one can use an edge-stopping weight W (x) =
(ε + ||∇xI||)−1. This way, geodesic curves can be used to perform segmentation since they will
not cross boundaries of the objects.

fMRI imaging: M = [0, 1]3, and H(x) is a field of diffusion tensors acquired during a scanning
experiment. For fMRI imaging, the direction field e1 indicates the direction of elongated fibers
of the white matter.

m
e
t
r
ic

g
eo

d
es

ic
s Ux0

W (x)

Figure 2.1: Examples of metric (top row) and geodesics (bottom row). From left to right: euclidean,
isotropic, shape, surface and 3D Riemannian manifold metrics (diffusion tensor). The blue/red
colormap indicates the geodesic distance to the starting point.

2.1.2 Geodesic Distances

The local Riemannian metric H(x) allows to define a global metric on the spaceM using shortest
paths. This corresponds to the notion of geodesic curves.

Definition 23 (Geodesic distance). Given some Riemannian space (M,H) with M ⊂ Rs, the
geodesic metric is defined as

∀ (x, y) ∈M2, dM(x, y)
def.

= min
T>0,γ∈PT (x,y)

L(γ)

where PT (x, y) denotes the set of piecewise smooth curves joining x and y

PT (x, y)
def.

= {γ \ γ(0) = x and γ(T) = y} .

The shortest path between two points according to the Riemannian metric is called a geodesic.
If the metric H is well chosen, then geodesic curves can be used to follow salient features on images
and surfaces.

Definition 24 (Geodesic curve). A geodesic curve γ(t) ∈ PT (x, y) is such such that L(γ) =
dM(x, y).

A geodesic curve between two points might not be unique, think for instance about two anti-podal
points on a sphere. A complete surface is a surface for which for any pair of points (x, y) ∈M2, it

22

2.1 Manifold Geometry of Surfaces

exists a geodesic in PT (x, y). In this course we consider only compact connected surfaces that are
complete. For instance the spaceM = [0, 1]2−{(1/2, 1/2)}, which is not closed, is not a complete
manifold for the euclidean metric since there is no shortest path in M between x = (0, 0) and
y = (1, 1).

In order to perform the numerical computation of geodesic distances, we fix a starting point x0

and consider only distance and geodesic curves from that point.

Definition 25 (Distance map). The distance map to a starting point x0 ∈ M is defined as

Ux0
(x)

def.

= dM(x0, x).

The main theorem that characterizes the geodesic distance is the following, that replaces the
optimization problem of finding the minimum distance by a non-linear partial differential equation.

Theorem 21 (Eikonal equation). If the metric H is continuous, then for any x0 ∈ M, the map
Ux0

is the unique viscosity solution of the Hamilton-Jacobi equation

||∇xUx0
||H(x)−1 = 1 with Ux0

(x0) = 0, (2.1)

where ||v||A =
√
vTAv.

It is important to notice that, even if the metric x 7→ H(x) is a smooth function, the distance
function Ux0

might not be continuous. This is why the machinery of viscosity solution is needed to
give a sense to the solution of the Hamilton-Jacobi equation. See for instance [7] for an introduction
to viscosity solutions and a proof of theorem 21.

It is possible to define the distance map US(x) to a compact set of points S ⊂M as the shortest
path between x and any point in S

dM(S, x)
def.

= US(x)
def.

= min
y∈S

dM(x, y).

The function US also satisfy the Eikonal equation (2.1), but with the boundary condition US(x) = 0
for x ∈ S. In this course, we restrict ourself to initial conditions that are either a single point
S = {x0} or a finite number of such points S = {xi}mi=1.

Once the distance map Ux0
has been computed by solving the Eikonal equation (2.1), one can

extract any geodesic joining x0 using a gradient descent on the function Ux0
.

Theorem 22 (Gradient descent). The geodesic curve γ between x1 and x0 solves

γ′(t) = − H(γ(t))−1∇γ(t)Ux0

||H(γ(t))−1∇γ(t)Ux0
|| with γ(0) = x1.

The geodesic curve γ extracted using this gradient descent is parameterized with unit speed since
||γ′|| = 1.

Example 8. For an isotropic metric H(x) = W (x)Idx, the Eikonal equation and the geodesic
extraction are

||∇xUx0
|| = W (x) and γ′(t) = − ∇xUx0

||∇xUx0
|| .

2.1.3 Mapping Between Surfaces

The notion of a parametric surface (M, ϕ) allows to compare the surfaceM with its parametric
domain thanks to the first fundamental form. For instance, a surface is isometric to euclidean
space if Iϕ = Ids for some parameterization ϕ.

However, in most situations, one wants to compare two different surfaces, maybe embedded in
different euclidean spaces and of course having different parameterizations with the same parametric
domain. Given two parameterized surfaces (M1, ϕ1) and (M2, ϕ2), a matching is a bijective
function f : M1 → M2. Such a matching allows to define an induced parameterization of M2 :
ϕ̃2 = f ◦ ϕ1. This leads to the notion of isometry between surfaces.

23

2 Geodesic Mesh Processing

Definition 26 (Isometry). M1 is isometric to M2 if it exists a matching f such that

∀u, Iϕ2
(u) = Iϕ̃2

(u).

This definition is local and requires only the comparison of the first fundamental forms. The
difficulty is that it requires the use of arbitrary parameterizations ϕ1 and ϕ2, although the notion
of isometry is intrinsic to the surface. The following theorem states that isometry can in fact be
checked in a global and intrinsic fashion by looking at geodesic lengths.

Theorem 23. f is isometric if and only if

∀ (x, y) ∈M2, dM1
(x, y) = dM2

(f(x), f(y)).

This theorem thus gives a new definition of isometry that can be used in numerical applications
to check if a mapping f is isometric, or even to optimize an unknown isometric mapping f between
two surfaces.

One can also relax the notion of isometry and ask only for a conservation of angles. This leads
to the notion of conformality between surfaces, which generalizes conformal parameterizations.

Definition 27 (Conformality). M1 conformally equivalent to M2 if it exists f such that

∀u, Iϕ2
(u) = λ(u)Iϕ̃2

(u) with λ(u) ∈ R.

2.2 Numerical Computations of Geodesic Distances

In order to make all the previous definitions effective in practical situation, one needs a fast algo-
rithm to compute the geodesic distance map Ux0

. This section explains algorithms based on front
propagation that enables to compute the distance map by propagating the distance information
from the starting point x0.

2.2.1 Front Propagation Algorithms

Depending on the properties of the metric, one needs to consider several algorithms, that all
rely on the idea of front propagation. This family of algorithms allows to order to computations in
such a way that each point of the discretization grid is visited only once. This ordering is feasible
for distance computation because the distance value of a grid point only depends (and can be
computed) from a small number of points having only smaller distances. If one can order the grid
points with increasing distance, then one gets a coherent ordering of the computations. Of course,
this is not that easy since this distance ordering would require the knowledge of the solution of the
problem (the distance itself). But depending on the application, it is possible to devise a selection
rule that actually select at each step the correct grid point.

A front propagation labels the points of the grid according to a state

S(x) ∈ {Computed, Front, Far}.

During the iterations of the algorithm, a point can change of label according to

Far 7→ Front 7→ Computed.

Computed points S(x) = Computed are those that the algorithm will not consider any more (the
computation of Ux0

(x) is done for these points). Front points S(x) = Front are the points that are
being processed (the value of U(x) ≈ Ux0

(x) is well defined but might change in future iterations).
Far points S(x) = Far are points that have not been yet processed.

In practice, a front propagation algorithm requires three key ingredients:

24

2.2 Numerical Computations of Geodesic Distances

Given a point x in the grid, a local set of neighbors Neigh(x) connected to x.

A priority P(x) among points x in the front, that allows to select the point to process at a given
iteration. In most application, this priority is computed as the current value of the distance

P(x)
def.

= U(x). Section 2.3.2 shows how to change this priority in order to speed up computations.

A procedure x 7→ Update(x) ∈ R that computes the distance value approximating Ux0
(x) know-

ing the value Ux0
(x) for computed point and an approximate value for points in the front. This

procedure usually solves some kind of equation that discretizes the Eikonal equation (2.1) one
wishes to solve.

Listing 1 gives the details of the front propagation algorithm that computes a distance map U
approximating Ux0

(x) on a discrete grid. The following section details for actual implementations
of the Update procedure for different metrics.

The numerical complexity of this scheme is O(n log(n)) for a discrete set of n points. This is
because all the points are visited (tagged Computed) once, and the selection of minP from the front
points takes at most log(n) operations with a special heap data structure (although in practice it
takes much less and the algorithm is nearly linear in time).

1. Initialization: U(x0)← 0, S(x0)← Front, ∀ y 6= x0, S(y)← Far.

2. Select point: x←− argmin
S(z)=Trial

P(z).

3. Tag: S(x)← Computed.

4. Update neighbors: for all y ∈ Neigh(x),
– If S(y) = Far, then S(y)← Front and U(y)← Update(y).
– If S(y) = Front, then U(y)← min(U(y), Update(y)).
– Recompute the priority P(y).

5. Stop: If x 6= x1, go back to 2.

Table 1: Front propagation algorithm.

2.2.2 Geodesic Computation on a Graph

A graph is a discrete data structure that links together points with edges. This is a crude dis-
cretization of many problems (such as those involving surfaces). In particular it is poorer than the
mesh data structure introduced in section 1.1.2 since it lacks two dimensional connectivity infor-
mation given by the faces of the mesh. However, in many applications including high dimensional
data processing, it is the only way to capture the local connectivity information.

Definition 28 (Graph). A graph is a data structure G = (V,E) where V = {1, . . . , n} and E ⊂
V × V is symmetric.

Similarly to the notion of local averaging weights introduced in section 1.2.2, a metric on a graph
is a weight defined on each edge.

Definition 29 (Graph metric). A metric H on a graph is given by ∀ (i, j) ∈ E, H(i, j) > 0.

It is important to note that the metric H(i, j) is usually very different from the local averaging
weights W (i, j) introduced in section 1.2.2. In general, H(i, j) is small to represent the fact that
i and j share similarities, and in this case W (i, j) should be large (to produce strong averaging
between values at i and j).

Example 9 (Geometric realization). In practice, a graph often comes with some geometric realiza-
tion, which is a set of positions V = {x1, . . . , xn} ⊂ Rk. In this case, the metric can be defined
as

H(i, j)
def.

= ||xi − xj ||.

25

2 Geodesic Mesh Processing

If the set of points is sampled from some continuous surface, this edge metric is a crude discretization
of the metric defined by the embedding of the surface in euclidean space. One can note that in this
case, if one uses the local averaging weights W based on distance, one has W (i, j) = H(i, j)−2.

Definition 30 (Path). A path π is π = (i1, . . . , im) ⊂ V m with (ik, ik+1) ∈ E. The starting point
is S(π) = i1 and the ending point is E(π) = im.

It is important to note that a path π is a topological structure. In order to compute its length,
one just needs to use the metric.

Definition 31 (Length). The length of a path π ⊂ V m is

L(π)
def.

=
n∑

i=1

W (vi, vi+1).

This path length allows to define a geodesic metric on vertices of the graph.

Definition 32 (Geodesic distance on a graph). The geodesic distance between (x, y) ∈ V 2 is defined
as

dG(x, y) = min
π
{L(π) \ S(π) = x, E(π) = y}

In order to compute the geodesic map Ux0
(x) = dG(x0, x), one can use the front propagation

algorithm, listing 1 with the following update procedure

Update(x) = min
(x,y)∈E

(
U(y) +H(x, y)

)
.

This corresponds to the Dijkstra propagation that is classical in graph theory, see for instance [6].

2.2.3 Geodesic Computation on a Square Grid

The classical Fast Marching algorithm, introduced by Sethian [34], is a fast procedure to solve
the Eikonal equation (2.1) for an isotropic metric H(x) = W (x)Idk for a uniform regular grid that
discretizes [0, 1]k. We recall this procedure for a planar domain k = 2 although it can be extended
to any dimension.

In order to capture the viscosity solution of an Hamilton Jabobi equation, one cannot use stan-
dard finite differences because of the apparition of chocks and singularities in the solution of the
equation. One needs to choose, at each grid point, the optimal finite difference scheme (differen-
tiation on the left or on the right to approximate d/dx for instance). This optimal differentiation
should be chosen in the direction where the solution of the equation decreases. This is called an
upwind finite difference scheme, and on a 2D grid it leads to find u = Update(x) at a grid point
x = xi,j that is the smallest solution of

max(u− U(xi−1,j), u− U(xi+1,j), 0)2 +
max(u− U(xi,j−1), u− U(xi,j+1), 0)2 = h2W (xi,j)

2.

Sethian shown that the smallest solution of this equation leads to a stable and convergent scheme
that can be safely used in the front propagation algorithm listing 1.

Figure 2.2 shows some examples of front propagation with the Fast Marching. The colored area
shows, at some given step of the algorithm, the set of computed points (its boundary being the set
of front points). During the iterations, the front propagates outwards until all the grid points are
visited. The numerical complexity of this scheme is O(n log(n)) for a grid of n points.

Figure 2.3 shows examples of distance functions to a starting point x0 with the corresponding
geodesics γ(t) extracted from some ending point x1. The front propagation is stopped when

26

2.2 Numerical Computations of Geodesic Distances

Figure 2.2: Examples of front propagation. The colormap indicates the values of the distance
functions at a given iteration of the algorithm.

S(x1) = Computed to avoid performing useless computations. The idea of using geodesics in order
to extract salient curves in images as been introduced in [18].

In practice, the difficult task is to design a metric W in order have meaningful geodesics. Here
are some examples of possible choices, for image processing with an input image f :

Pixel value based potential: in many application, one simply wishes to extract curves with a
constant value c. In this case, one can use a potential like

W (x) =
1

ε+ |f(x)− c| .

Figure 2.3, left and middle, shows examples of such curves extractions.

Gradient avoiding potential: for edge detection, one wants geodesics that avoid traversing image
edges. In this case, the potential should be small in area of large gradient in the image

W (x) = Gσ2
∗ 1

ε+ ||∇xf ∗Gσ1
|| ,

where Gσ are gaussian filter. One usually uses a very small σ1 but a larger σ2 to cope with noise.

Gradient attracting potential: for road tracking in satellite images, the structures to extract are
usually very thin, and one thus would only like to follow regions with elongated gradient. To
avoid cancellation in the gradient, only a smoothing on the magnitude of the gradient should be
performed

W (x) = ε+Gσ2
∗ ||∇xf ||.

Figure 2.3, right, shows an example of such a road extraction.

The Fast Marching works the same way in any spacial dimension k and in particular can be
used to extract shortest paths in 3D volumetric medical data. Such a volume is a discretization
of a mapping f : [0, 1]3 7→ R. Figure 2.4 shows two alternative ways to explore a 3D cube of a
scanned medical data. The first way is simply to visualize 2D slices that are traditional images, for
instance (f(x, y, z0))x,y for some fixed z0 ∈ [0, 1]. An alternative way is to perform a 3D display
with a semi-transparent mapping that removes more or less parts of the data. The transparency
at point (x, y, z) is defined as ρ(f(x, y, z)) where ρ : [fmin, fmax]→ [0, 1] is the α-mapping. A third

27

2 Geodesic Mesh Processing

Figure 2.3: Example of distance functions (top row) and geodesics (bottom row).

way (applied in figure 2.5 where one can see in red the front of the Fast Marching propagation) is
to display various isosurfaces which are level sets {(x, y, z) \ f(x, y, z) = c} for some c.

Figure 2.4: Example of volume data visualization with slices (top row) and semi-transparent
mapping (bottom row).

Figure 2.5 shows some examples of geodesic extraction on a medical image that represents
tubular structures (blood vessels) around the heart. The potential W (x) is chosen as W (x) =
(|f(x) − f(x0)| + ε)−1 where x0 is a point given by the user and supposed to lie inside some
vessel. A geodesic follows nicely a vessel since its density is constant and thus the value of f is
approximately equal to f(x0) inside the vessel.

2.2.4 Geodesic computation on a triangulation

The classical Fast Marching algorithm is restricted to isotropic metrics on a regular grid. It
can thus only be used to compute geodesics on surface parameterized conformaly on a 2D square.
This setting is useful for image and volumetric data processing, but in order to deal with arbitrary
surfaces embedded in Rk, one needs to use algorithms designed for triangulated meshes.

28

2.2 Numerical Computations of Geodesic Distances

Figure 2.5: Example of volumetric Fast Marching evolution (top row) and geodesic extractions
(bottom row).

Kimmel and Sethian [19]have developed a version of the Fast Marching algorithm for surfaceM⊂
Rn with metric W (x) for x in embedded space Rn. In the continuous setting, a parameteric surface
(M, ϕ) embedded with a metric W (x) in ambient space correspond to a Riemannian manifold with
a metric Iϕ(x̄)W (ϕ(x̄)) in parameter space x̄ ∈ R2.

The algorithm of Kimmel and Sethian works on a triangulated mesh and treats the triangles of
this mesh as locally flat and equipped with an isotropic metric W . In order to compute the update
value at a given vertex x0, it computes an update value Updatef (x0) for each triangle f ∈ Fx0

in
the face 1-ring around x0, Fx0

= {f1, . . . , fk}. The resulting Fast Marching update step is defined
as

Update(x0) = min
f∈Fx0

Updatef (x0).

In order to derive the expression for Updatef (x0), one considers a planar triangle f = (x0 =
0, x1, x2) and denote as X = (x1, x2) ∈ R2×2. In the following, we assume, without loss of
generality that x = 0.

If only U(x1) or U(x2) is available for computation (meaning that one of the points has not been
reached by the front), then the update procedure is simply

Updatef (x0) = min(U(x0), U(x1) +W (x0)||x1||, U(x2) +W (x0)||x2||),

which corresponds to a simple Dijkstra-like update (propagation along the 1D edges of the triangle).

Otherwise, the known distances are u = (U(x1), U(x2))
T

and one wishes to solve for Updatef (x) =
p = U(x).

The discretization of the Eikonal equation leads to consider a linear approximation of the geodesic
distance map U inside the current triangle f .

U(x) ≈ 〈g, x〉+ p where ∇xU ≈ g.

One can evaluate this linear equation at x1 and x2, which leads to the following quadratic equation
in the unknown p

{
u = XTg + p1
||g||2 = W (x)2

=⇒ 1TQ1p2 + (21TQu)p+ (uTQu−W (x)2) = 0,

29

2 Geodesic Mesh Processing

where we have denoted Q = (XTX)−1. This matrix Q account for the local deformation of the
surface (which corresponds to the anisotropy of the metric). The only admissible solution to this
problem is

p =
1Qu+

√
(1TQd)2 + 1TQ1(uTQu−W (x)2)

1TQ1

Some care should be taken to compute the value of the update on triangle f so that the computed
value is larger than the available distances at x1 and x2

Updatef (x) =

{
p if p > max(U(x1), U(x2)), otherwise:
min(U(x0), U(x1) +W (x0)||x1||, U(x2) +W (x0)||x2||).

There is some technical difficulties with this scheme on triangulation that contains obtuse angles
that we shall ignore here.

Figure 2.6: Example of Fast Marching propagation on a triangulated mesh.

Figure 2.6 shows an example of propagation on a triangulated surface. The colored region
corresponds to the point that are computed (its boundary being the front).

Figure 2.7: Examples of geodesic extraction on a mesh with an increasing number of starting
points.

The propagation can be started from several starting points S = {x1, . . . , xm} in order to com-
pute the geodesic distance dM(S, x). Figure 2.7 shows examples of such distances to several points
together with geodesics. A geodesic γ links a point x to its closest point in S.

30

2.3 Applications and Extensions of Fast Marching

2.3 Applications and Extensions of Fast Marching

2.3.1 Shape Analysis

In order to analyze the shape of planar objects, one can consider the metric space obtained by
restricting the plane to the inside of a planar domain.

Definition 33 (2D shape). A 2D shape S is a connected, closed compact set S ⊂ R2, with a
piecewise-smooth boundary ∂S.

The geodesic distance inside such a shape is obtained by constraining the curve to lie inside S.

Definition 34 (Geodesic distance in S). The geodesic distance in S for the uniform metric is

dS(x, y)
def.

= min
γ∈P(x,y)

L(γ) where L(γ)
def.

=

∫ 1

0

|γ′(t)|dt.

where P(x, y) ⊂ S are the paths with starting point x and ending point y.

Figure 2.8: Geodesics inside a 2D shape.

Figure 2.8 shows examples of shapes together with the geodesic distance to a starting point. The
geodesic curve is the union of segments inside S and pieces of the boundary ∂S.

The geodesic distance can be used to define several functions on the 2D shape. This section
studies the eccentricity of a shape, as introduced by [15] to perform shape recognition.

Definition 35 (Eccentricity). The eccentricity ES :M 7→ R is

ES(x)
def.

= max
y∈S

dS(x, y) = max
y∈∂S

dS(x, y).

Figure 2.9 (top row) shows several examples of eccentricity. The colormap indicates in blue points
with small eccentricity. The points for which the minimum in the definition of ES is obtained are
called eccentric.

Definition 36 (Eccentric points). An eccentric point x ∈ E(S) satisfies ∃y,ES(y) = d(x, y).

These eccentric points define regions of influence which perform a segmentation of the shape as
follow

S =
⋃

x∈E(S)

{y ∈ S \ ES(y) = d(x, y)}

. These eccentric points are in fact located along the boundary.

Theorem 24 (Location of eccentric points). One has E(S) ⊂ ∂S.

A more general definition of eccentricity allows to replace the maximum by a weighted average
of geodesic distances.

31

2 Geodesic Mesh Processing

Figure 2.9: Example of eccentricity ES and corresponding histograms hS.

Definition 37 (α-eccentricity). The α eccentricity of some shape S is defined as

EαS(x)
def.

=

(∫

S

dS(x, y)αdy

)1/α

.

This eccentricity allows to generalize the notion of gravity center to the geodesic setting.

Definition 38 (Euclidean gravity center). The Euclidean gravity center is

argmin
x

∫

S

||x− y||2dy.

The α-eccentric center is
argmin

x
EαS(x).

Remark 6. For α = 2, the eccentric center is called geodesic gravity center (and equivalent to the
Euclidean center for an uniform metric).

Having defined a function such as ES inside a shape S, one can collect information about the
shape using the histogram of that function.

Definition 39 (Descriptors). The eccentricity histogram descriptor hS ∈ Rm of a shape is

∀ i = 1, . . . ,m, hS(i) =
1

|S|#
{
x ∈ S \ i− 1

m
6

ES(x)−min(ES)

max(ES)−min(ES)
<

i

m

}
.

In particular, one can compare shapes by measuring the distance between the histograms

δ(h, h̃)2
def.

=
m∑

i=1

(h(i)− h̃(i))2.

These histograms are invariant if one modifies a shape isometrically. In the plane, geodesic isometry
of shapes are not interesting since they are rotations and translations. One can however consider
approximate isometries such as articulations, that are useful to model deformations of planar
shapes, as defined in [22].

Definition 40 (ε-articulated object). An articulated object S can be split as

S =
m⋃

i=1

Si
⋃

i 6=j

Jij ,

with diam(Jij) 6 ε.

32

2.3 Applications and Extensions of Fast Marching

Definition 41 (Articulation). An articulation is a mapping between two articulated shapes S, S′

such that

f : S → S′ =
m⋃

i=1

S′
i

⋃

i 6=j

J ′
ij

is rigid on Si 7→ S′
i.

The eccentricity is approximately invariant for shapes that are modified by articulation.

Theorem 25 (Articulation and isometry). If f is an articulation, then

{
|dS(x, y)− dS′(x, y)| 6 mε
|ES(x)− ES′(x)| 6 mε

.

Starting from a shape library {S1, . . . , Sp}, one can use the shape signature hS to do shape
retrieval using for instance a nearest neighbor classifier, as shown in pseudo-code 2. Figure 2.10
shows examples of typical shape retrievals.More complex signatures can be constructed out of
geodesic distances and un-supervised recognition can also be considered.

1. Dataset:shapes {S1, . . . , Sp} (binary images).

2. Preprocessing: compute eccentricity descriptors hSi
.

3. Input: shape S.

4. Retrival: return i⋆ = argmin
i

δ(hS , hSi
).

Table 2: Shape retrieval process.

Figure 2.10: Examples of shape recognitions. The shape on the left is the input S and the second
shape in each raw is Si⋆ .

2.3.2 Heuristically Driven Propagation

The various implementations of the front propagation algorithm, pseudo-code 1, use a simple
priority P(x) = Ux0

(x), where U(x) ≈ dM(x0, x) is the current value of the distance to the starting
point. This strategy leads to an isotropic grow of the front which enforces the exploration of a
large area of the computational grid. The advantage of using this priority is that it does not favor
any points and thus produces provable valid approximations of geodesic distance (both on a graph
with Dijkstra and on a square/triangular grid with Fast Marching).

In order to reduce the computational burden, one could think about using more aggressive
ordering of the front that favors some specific direction in the front. The hope is that the front
would advance faster in the direction of the goal x1 one wishes to reach. Ultimately, one would
like the front to explore only points along the geodesic γ ∈ PT (x0, x1) joining the starting point to
the ending point.

33

2 Geodesic Mesh Processing

If one has an oracle: V (x) ≈ d(x1, x) that estimates the remaining geodesic distance from the
current point x to the end x1, one can use as priority map

P(x) = U(x) + V (x).

The map V is called an heuristic since the exact distance d(x1, x) is not available in practice. The
value of a good heuristic close to the real distance is revealed by the following theorem.

Theorem 26 (Geodesic segment). The function ψ(x) = d(x0, x)+d(x1, x) is minimal and constant
ψ(x) = d(x0, x1) along the geodesic path joining x0 and x1.

In the setting of graph theory, the Dijkstra algorithm can be replaced by the A∗ (A-star), [25],
which uses an heuristic to speed up computations. The following theorem proves the validity of
this approach.

Theorem 27 (A∗ validity). If the heuristic satisfies V (x) 6 d(x1, x), then the curve γ ∈ P(x0, x1)
extracted from the front propagation, algorithm 1, is a geodesic between x0 and x1.

Over a continuous domain, one can invoke a similar (but weaker) theorem.

Theorem 28 (Explored area). If the heuristic satisfies V (x) 6 d(x1, x), then the geodesic γ ∈
P1(x0, x1) between x0 and x1 satisfies

{γ(t) \ t ∈ [0, 1]} ⊂ {x \ P(x) = U(x) + V (x) 6 P(x1)} .

This theorem shows why it is important to approximated the geodesic distance by below, since
otherwise the region explored by the algorithm might not contain the true geodesic.

Figure 2.11: Example of propagations with a priority P(x) = U(x) + λV (x) for λ = 0, 0.5, 0.9.

Figure 2.11shows examples of heuristics that approximate the true remaining distance by bellow.
One can see how the explored area of the propagation progressively shrinks while containing the
true geodesic. Such an heuristic is however impossible to use in practice since one does not have
direct access to the remaining distance during the propagation.

Many strategies can be used to estimate an heuristic. For instance, on a Riemannian metric
(M,H(x)), one could use

V (x) = ρ||x− x1|| where ρ = min
x6=0,v 6=0

||v||H(x).

In this case, ρ is the minimum eigenvalue of all the tensors H(x). This heuristic estimates the
geodesic distance with an Euclidean distance and satisfies V (x) 6 d(x1, x).

For a propagation on a graph (A∗ algorithm) that is embedded in Euclidean space according to
i ∈ V 7→ xi ∈ Rk, one could also define

∀ i ∈ V, V (i) = ||xi1 − xi||,

34

2.3 Applications and Extensions of Fast Marching

where i1 is the index of the ending point. This heuristic also satisfy V (i) 6 d(i1, i).

These Euclidean heuristics performs poorly on spaces that are not relatively flat. In order to
compute more accurate heuristic, we use an expression of the geodesic distance as a minimization.

Theorem 29 (Reversed triangular inequality). For all (x, y) ∈M, one has

d(x, y) = sup
z

(
|d(x, z)− d(z, y)|

)
.

If one restricts the minimum to a small subset of landmark points {z1, . . . , zn} ⊂ M, one can
define the following approximate distance

d̃z1...zn
(x, y) = sup

k=1...n

(
|dk(x)− dk(y)|

)
,

This kind of approximation has been used first in graph theory [13] and it is defined in a continuous
setting in [29]. This leads to an heuristic V (x) = d̃(x, x1) that has the following properties.

Figure 2.12: Heuristically driven propagation in 2D with an increasing number of landmark points.

Theorem 30 (Convergence of heuristic). One has d̃ 6 d and d̃
n→+∞−→ d.

In a numerical application that requires the extraction of many geodesics in real time over a large
domain, one can pre-compute (off-line) the set of distance maps to the landmarks {d(x, zi)}mi=1.
At run time, this set of distances is used to compute the heuristic and speed up the propagation.
Figure 2.12 shows how the quality of the heuristic increases with the number of landmarks. Figure
2.13 shows an application to geodesic extraction on 3D meshes.

Figure 2.13: Heuristically driven propagation on a 3D mesh with landmark points.

35

2 Geodesic Mesh Processing

2.4 Surface Sampling

In order to acquire discrete samples from a continuous surface, or to reduce the number of samples
of an already acquired mesh, it is important to be able to seed evenly a set of points on a surface.
This is relevant in numerical analysis to have a good accuracy in computational simulations, or in
computer graphics to display 3D models with a low number of polygons. In practice, one typically
wants to enforce that the samples are approximately at the same distance ones from each others.
The numerical computation of geodesic distances is thus a central tool, that we are going to use
both to produce the sampling and to estimate the connectivity of a triangular mesh.

2.4.1 Farthest Point Sampling

A sampling of a Riemannian surface M is a set of points {x1, . . . , xn} ⊂ M. If the surface is
parameterized by ϕ : [0, 1]2 7→ M, the easiest way to compute a sampling is to seed points regularly
over the parametric domain

∀ (i, j) ∈ {1, . . . ,
√
n}2, xi,j = ϕ(i/

√
n, j/

√
n).

This strategy performs poorly if the mapping ϕ introduces heavy geodesic distortion and the
sampling might not be regular any more for the geodesic metric on the surface. In order to ensure
the quality of a sampling, one can use the notion of a well separated covering.

Definition 42 (ε-covering). A sampling {x1, . . . , xn} ⊂ M is an ε-covering if

⋃

i

Bε(xi) =M where Bε(x)
def.

= {y \ dM(x, y) 6 ε} .

Definition 43 (ε-separated). A sampling {x1, . . . , xn} ⊂ M is ε-separated if

max(dM(xi, xj)) 6 ε.

The farthest point sampling algorithm is a simple greedy strategy able to produce quickly a good
sampling. This algorithm has been introduced in image processing to perform image approximation
[11]. It is used in [30] together with geodesic Delaunay triangulation (to be defined in the next
section) to do surface remeshing.

Pseudo code 3 gives the details of this iterative algorithm. In particular, note that the update of
the distance d(x) to the set of already seeded points goes faster at each iteration since the domain
of update is smaller when the number of points increases.

1. Initialization: x1 ←random, d(x)← dM(x1, x), set i = 1.

2. Select point: xi+1 = argmax
x

d(x), ε = d(xi+1).

3. Local update of the distance: d(x)← min(d(x), dM(xi+1, x)).
This update is restricted to the set of points {x \ dM(xi+1, x) < d(x)}.

4. Stop: If i < n or ε > ε0, set i← i+ 1 and go back to 2.

Table 3: Farthest point sampling algorithm.

The output sampling of the algorithm enjoys the property of being a well separated covering of
the manifold.

Theorem 31 (Farthest seeding properties). The farthest point sampling {x1, . . . , xn} is an ε-
covering that is ε-separated for

ε = max
i=1,...,n

min
j=1,...,n

dM(xi, xj).

36

2.4 Surface Sampling

Note however that there is no simple control on the actual number of samples n required to
achive a given accuracy ε. We refer to [5] for an in-depth study of the approximation power of this
greedy sampling scheme.

Figure 2.14: Examples of farthest point sampling (the colormap indicates the distance function to
the seeds).

Figure 2.14 shows examples of farthest point sampling with an uniform (top row) and a spatially
varying isotropic metric W (x) (bottom row). One can see that this scheme seeds more points in
areas where the metric W is large. One can thus control the sampling density by modifying the
metric W .

2.4.2 Triangulations

Having computed, for instance with farthest points, a sampling {xi}i∈V ⊂ M, the next step is
to compute some connectivity between the samples in order to build a graph, or even better, a
triangulation. The problem of surface remeshing has been studied extensively in computer graphics,
see the survey [2]. This section explains a solution based on the geodesic Delaunay triangulation.

The following definition generalizes the notion of an Euclidean Voronoi diagram, definition 10,
to an arbitrary surface.

Definition 44 (Voronoi segmentation). The Voronoi segmentation of a sampling {xi}i∈V ⊂M is

M =
⋃

i

Vi with (Vi)
m
i=1

def.

= VoronoiM({xi}i)

where
Vi

def.

= {x \ ∀ j 6= i, dM(x, xi) 6 dM(x, xj).}

Each Voronoi cell Vi is thus composed of points that are closer to xi than to any other sampling
point. The boundary between two adjacent cells Vi and Vj is thus a piece of curve at equal distance
between xi and xj . One can then compute the graph dual to a given partition, which joins together
pair of adjacent cells. This leads to the notion of Delaunay graph.

Definition 45 (Geodesic Delaunay graph). The Delaunay graph (V,E) of a samplind {xi}i∈V ⊂
M is defined for V = {1, . . . , n} as

E = {(i, j) ∈ V \ ∂Vi ∩ ∂Vj 6= 0} .

The main interest of this Delaunay graph is that, if the number of points is large enough to
capture the topology of the surface (for instance at least 4 points are needed on a sphere), then
one gets a valid triangulation.

37

2 Geodesic Mesh Processing

Theorem 32. For a large enough number of points, the Delaunay graph is a valid triangulation.

This theorem means that one can find a set of faces F such that (V,E, F) is a triangulated mesh.
One can see [21] for a theoretical study of geodesic Delaunay triangulations.

Metric Sampling Voronoi Delaunay

Figure 2.15: Examples of sampling and triangulations.

This Delaunay triangulation can thus be used to perform a geodesic meshing or re-meshing of
any Riemannian surface, as explained in [30]. Figure 2.15 shows examples of Voronoi segmentations
on the plane for various isotropic Riemannian metrics W (x). The Delaunay graph allows to define
a planar mesh of points evenly sampled according to the metric.

Figure 2.16 shows examples of Voronoi cells on a surface embedded in R3.

In order to mesh the interior of a planar shape S ⊂ R2, one can use the Euclidean metric inside
the shape and compute a geodesic Delaunay triangulation. Figure 2.17 shows some examples of
shape meshing with this uniform metric. This triangulation is however very close to the usual
definition of a planar Euclidean Delaunay triangulation. In contrast, one can use a non-uniform
metric W (x) and compute a sampling inside the shape that conforms itself to this density. Figure
2.17 shows a sampling and meshing that uses a metric W (x) = (ε+ d(x, ∂S))−1 that tends to seed
more points on the boundary of the shape S.

Figure 2.18 shows an example of uniform remeshing of a 3D surface with an increasing number
of points. Figure 2.19 shows how one can adapt the density by defining a non-constant isotropic
metric on the surface.

An option to compute this metric is to use a texture mapped on the surface. Starting from some
parametric surface: ϕ : D ⊂ [0, 1]2 → M, a texture T is a mapping T : [0, 1]2 → R. It allows to
define an isotropic metric using for instance an edge adaptive function

∀x ∈ D, H(x) = ψT (x)Id2.

where the edge-based stopping function is ψT (x) = (||∇xT ||+ ε)−1. Figure 2.20 shows examples of
remeshing with a texture-adapted metric with a decreasing value of ε (increasing adaptivity).

2.4.3 Centroidal Tesselation

For some applications, the sampling quality provided by the greedy farthest point sampling,
pseudo code 3, might not be good enough. One can thus try to enhance its quality by a relaxation

38

2.4 Surface Sampling

Figure 2.16: Example of Voronoi segmentations for an increasing number of seeding points.

Figure 2.17: Shape meshing with an increasing number of points. Left and center: uniform
meshing, right: adaptive meshing.

scheme that updates the position of each sample in order for them to be globally more evenly
distributed. To give a precise definition of this sampling quality, one can use the geodesic gravity
center, already introduced in definition 38 in the special case of a planar shape.

Definition 46 (Geodesic gravity center). The geodesic center of gravity of A ⊂M is

gM(A) = argmin
x

∫

A

dM(x, y)2dy.

For an Euclidean metric where H(x) = Id, one gets the traditional definition of gravity center

geucl(A) = argmin
x

∫

A

||x− y||2dy. =⇒ geucl(A) =
1

|A|

∫

A

ydy,

where |A| is the Euclidean area of A.

A good sampling is then defined as a sampling whose Voronoi cells are compact and rounded,
which is equivalent to each cell having a gravity center equal to its seed.

39

2 Geodesic Mesh Processing

Figure 2.18: Geodesic remeshing with an increasing number of points. Top: sampling with corre-
sponding distance function, bottom: corresponding geodesic triangulation.

Figure 2.19: Adaptive remeshing with a binary density function (top row) and a linearly increasing
density (bottom row).

Definition 47 (Centroidal tesselation). A sampling {xi}mi=1 is centroidal if its Voronoi tessellation
VoronoiM({xi}i) = {Vi}mi=1 satisfies xi = gM(Vi).

One can see [10] for an overview of the theory and applications of centroidal tesselations with
weighted Euclidean metrics. The geodesic centroidal tesselation has been introduced for surface
remeshing and segmentation in [30]. See also [2] for other ways to use centroidal tesselations for
remeshing.

This definition can be turned into an energy minimization as follow.

Theorem 33 (Variational characterization). A centroidal tesselation is a local minimizer of

E({xi}, {Vi}i) =
m∑

i=1

∫

Vi

dM(xi, y)
2dy.

Such a local minimizer can be computed by a gradient descent of E, using

Ei(x) =

∫

Vi

dM(xi, y)
2dy =⇒ ∇xEi =

∫

Vi

dM(xi, y)
−−−→
nx(y)dy,

where nx(y) = γ′(0)/||γ′(0)|| is the unit tangent at x to the geodesic γ ∈ PT (x, y) joining x to y.

40

2.4 Surface Sampling

Semi-Figure 2.20: Adaptive remeshing with a density given by a texture.

A gradient descent of Ei allows to compute the geodesic gravity center of a given region of
the surface. It is the central ingredient of the Lloyd algorithm detailed in pseudo code 4, that
converges in practice to a local optimum of the energy E and thus a centroidal tesselation. Of
course, centroidal tesselation of a given domain are not unique and computing the best one (with
the smallest value of E) is a difficult task. In a discrete setting (point clouds in the Euclidean space)
the Lloyd algorithm is equivalent to the k-means algorithm used to perform vector quantization
and classification.

1. Initialize: {xi}i ← random.

2. Update regions: ∀ i, {Vi}i ← VoronoiM({xi}i).

3. Update centers: ∀ i, xi ← gM(Vi).

4. Stop: while not converged, go back to 2.

Table 4: Max-Lloyd relaxation algorithm.

Figure 2.21, top row, shows examples of iterations of the Lloyd algorithm on a square with
euclidean metric. Middle and bottom row shows the Lloyd algorithm with a weighted euclidean
metric, for which the gravity center are defined as

gρ(A) = argmin
x

∫

A

ρ(y)||x− y||2dy. =⇒ gρ(A) =

∫
A
ρ(y)ydy∫

A
ρ(y)dy

,

where ρ : [0, 1]2 → R+ is a user-defined weight function. Not that this definition does not cor-
responds to a geodesic gravity center with an isotropic geodesic metric H(x) = ρ(x)Id2, but
this usually gives similar results. In practical situation, one wants to choose a weigth function
W (x) or ρ(x) in order for the size of the triangles near a position x to conform to some siz-
ing field s(x). As explained in [10], the weights should obey approximately the scaling relation
ρ(x) ≈W (x) ∼ s(x)−(d+2) where d is the dimension of the domain (d = 2 for a 2D surface mesh).

Figure 2.22 shows iterations of the algorithm on a 3D surface, equipped with an uniform metric.

41

2 Geodesic Mesh Processing

Figure 2.21: Iterations of the Lloyd algorithm on a square with euclidean metric (top row) and
weighted euclidean metric (middle and bottom rows). The Delaunay triangulation is depicted in
red and the corresponding Voronoi diagram is in blue.

Figure 2.22: Iterations of the Lloyd algorithm on two different surfaces.

42

3 High Dimensional Data Analysis

This chapter presents various methods to analyze point clouds in high dimension. The emphasis
is put on manifold models that allows to parameterize these point clouds with a small number of
parameters. Examples in image processing shows that some image ensemble indeed satisfy these
manifold models.

3.1 Manifold Models of High Dimensional Data

3.1.1 Point Clouds and Manifold

3.1.2 Graph Approximation and Geodesic Distances

3.1.3 Image Ensembles

3.2 Flattening and Dimension Reduction

In order to perform data analysis, one often has to reduce the dimension of the input set of
points. This can be useful to extract salient features from a data set and to speed up processing.
This section shows how several related problems all lead to dimensionality reduction using spectral
methods. In particular, surface flattening can be re-casted as a matrix approximation problem
with dimensionality reduction.

3.2.1 Point Clouds

A data set is a large point clouds X = (xj)
p
j=1 ∈ Rn×p with xj ∈ Rn, n ≪ p. From this set of

input data, one can define two matrices that represent in transposed forms the correlation present
in the input data (second order statistics).

Definition 48 (Correlation matrix). C = XXT ∈ Rn×n, Cij =
∑
k xk(i)xk(j).

Definition 49 (Gram matrix). K = XTX ∈ Rp×p,Kij = (〈xi, xj〉)i,j.

It is important to remember that these matrices do not carry the same amount of information
and depending on the application (flattening, dimension reduction, best approximation, etc) one
can use either the correlation or the gram matrix.

An important tools from numerical analysis is the singular value decomposition (SVD) that
generalizes the orthogonal diagonalization of symmetric matrices to non-symmetric, non-square
matrices. Such an orthogonal decomposition is crucial to perform matrix approximation by deleting
small spectral values.

Theorem 34 (Singular value decomposition). Any matrix X can be decomposed as

X = UΣV T = UΣnVn
T with U ∈ O(n), V ∈ O(p),

where O(n) ⊂ Rn×n is the group of orthogonal matrices and

Σ = diag(σi)i, Σn = diag(σ1, . . . , σn), Vn = (v1, . . . , vn) ∈ Rp×n.

43

3 High Dimensional Data Analysis

This decomposition satisfies {
XXT = UΛUT

XTX = V ΛV T .

The singular values Λ = Σ2 are ordered λ1 > . . . > λn > λn+1 = 0.

In order to compare point clouds, one can use various matrix norms, among which the most
popular are the Frobenius norm and the norm derived from the vectorial norm.

Definition 50 (Matricial norms).

||X||2 def.

= argmin
||a||=1

||Xa|| and ||X||2F =
∑

ij

X2
ij = tr(XTX) = tr(XXT).

The properties of these norms are recalled in this theorem.

Theorem 35. These norms are invariant under isometries, since for any orthogonal matrix U ,

||UX||F = ||X||F and ||UX||2 = ||X||2.

These matricial norms satisfy

||X||2 = σ1 and ||X||2F =
∑

i

σ2
i .

3.2.2 Linear Dimension Reduction

In order to perform linear approximation of some data set, one needs to use orthogonal projectors.

Definition 51 (Orthogonal projectors). The set of orthogonal projectors of rank k is defined as

Pk def.

=
{
P = AAT \ A ∈ Rn×k and ATA = Idk

}

The optimal projection of a given data set can be computed easily using a spectral decomposition.

Theorem 36 (Dimension reduction solution). Up to a rotation, Uk = (u1, . . . , uk) satisfies

UkUk
T = argmin

P∈Pk

||X − PX||F = argmin
P∈Pk

||X − PX||2.

The Principal component analysis (PCA) of a data set X corresponds to reducing the dimen-
sionality using the optimal linear projector

{
X ∈ Rn×p 7−→ Xk = Uk

TX ∈ Rk×p (dim. reduction)

Xk ∈ Rk×p 7−→ X̄
def.

= UXk (reconstruction)

The error that occurs from this linear reduction / reconstruction cycle can be monitored using
the singular values that have been removed during reduction

Theorem 37 (PCA error). One has ||X − X̄||2 =
∑
i>k σ

2
i .

It is important to remember that the PCA approximation is optimal only in a linear setting. for
input exemplar xj that corresponds to smooth function (or similarly for data set that are close to
gaussian), this linear approximation is very good and is close to the low-frequency Fourier expan-
sion. However for complex data xj such as points on non-smooth meshes or natural images, this
linear setting performs poorly. Non-linear methods such as wavelets can overcome this drawback.

44

3.2 Flattening and Dimension Reduction

3.2.3 Distance and Gram Matrices

An input data set is treated as a points cloud X = (xj)
p
j=1 ∈ Rn×p with xj ∈ Rn. In order

to manipulate this points cloud, this section considers two kinds of euclidean invariants: inner
products and distances. Inner products matrices are easy to deal with since they form a convex cone
that can be mapped back to the point cloud X using the diagonalization of symmetric operators.
In contrast, distance matrices form a complex set difficult to handle. To ease the computation with
distance matrices, we consider a simple mapping between inner products and distances.

Definition 52 (Gram matrices). The set of Gram matrices is defined as

Kn def.

=
{
XTX \ X ∈ Rn×p

}
⊂ Rp×p and K =

⋃

16n6p

Kn.

The nice property of inner product matrices is that they can be characterized by their spectral
content.

Theorem 38 (Kernel factorization). K ∈ Kn ⇐⇒ K is positive semi-definite and rank(K) = n.

Remark 7 (Description of the factorization). In particular, an inner product matrix can be mapped
back to a point cloud X using diagonalization.

{
K = V ΛV T

rank(K) = n
=⇒ K = XTX with

{
X =

√
ΛnVn

Vn = (v1, . . . , vn)
.

An other important set of matrices is those that contain pairwise distances between points in
Euclidean space.

Definition 53 (Distance matrices). The set of euclidean distance matrices is defined as

Dn def.

=
{
D = (||xi − xj ||2)i,j \ X ∈ Rn×p

}
⊂ Rp×p and D =

⋃

16n6p

Dn.

It is not obvious to check wether a given matrix is a distance matrix or not. At least it has to
satisfy the following properties of a pre-distance matrix.

Definition 54 (Pre-distance matrices). The set of pre-distance matrices is defined as

D+ def.

=
{
D \ D > 0, DT = D,diag(D) = 0

}
.

Remark 8. One has the inclusions: D1 ⊂ D2 ⊂ . . . ⊂ Dp ⊂ D+.

Using the expansion

||xi − xj ||2 = ||xi||2 + ||xj ||2 − 2〈xi, xj〉 = Kii +Kjj − 2Kij ,

one can define a mapping between kernels and distance matrices as follow

ϕ :

{
Kn −→ Dn
K 7−→ KI + IK − 2K

where I = 11T.

Remark 9. One can readily note that
{
ϕ((X + λ)

T
(X + λ)) = ϕ(X) =⇒ ϕ is not injective.

∀D ∈ D, ∃K, D = ϕ(K) =⇒ ϕ is surjective.

In order to make this mapping bijective, one has to consider only centered data sets.

Definition 55 (Centered points). The set of centered points clouds is

P̄n def.

=
{
X ∈ Rn×p \ X1 = 0

}
.

45

3 High Dimensional Data Analysis

Definition 56 (Centered inner products). The set of centered inner product matrices is

K̄n def.

=
{
XTX \ X ∈ P̄n

}
.

One can center a points cloud and a gram matrix using the following projectors
{

Rn×p −→ P̄n
X 7−→ XJ

and

{
Kn −→ K̄n
K 7−→ JKJ

.

where J
def.

= Idp − I/p.

The following theorem shows that centered inner product and distance matrices are in bijection.

Theorem 39 (Mapping between gram and distance). One has the following bijections

{
ψ ◦ ϕ = IdK̄n

,
ϕ ◦ ψ = IdDn

,
where ψ :

{
Dn −→ K̄n
D 7−→ − 1

2JKJ.

3.2.4 Manifold Flattening

In order to flatten a manifold M, we forget about the location of the points on the manifold
but only consider pairwise geodesic distances using the metric dM. This gives an input geodesic
distance matrix D̃ = (dM(x̃i, x̃j)

2)i,j ∈ D+, where x̃i ∈M.

The flattening corresponds to finding X = (xi)
p
i=1 ∈ Rn×p such that

ϕ(XTX)
def.

= D ≈ D̃.

The underlying idea is to find an euclidean layout of points that respects the geometry of the
manifold (the pairwise distances). The input matrix D̃ ∈ D+ is not euclidean. To find the layout,
one would ideally like to solve

min
D∈Dn

||D − D̃||.

This is a difficult optimization task, and in order to simplify it, this optimization can be approxi-
mated by replacing the distance matrices by gram matrices as follow

min
K∈Kn

||K − ψ(D̃)||.

This optimization has a simple spectral solution, that has been exploited in the Isomap algorithm,
introduced in [?] (listing ??). This corresponds to the classical multidimensional scaling theory.

Theorem 40 (Isomap solution). One has K = UΛnU
T where ψ(D̃) = UTΛU where

Λ = (λi)i, |λ1| 6 . . . 6 |λp| and Λn = diag(λ1, . . . , λn, 0, . . . , 0).

1. Compute geodesic distances D̃ = (dM(x̃i, x̃j)
2)i,j .

2. Compute centered kernel K = −JD̃J/2 with J = Id− I/p.

3. Compute spectral decomposition K = UΛUT, U = (uj)j ∈ Rp×p.

4. Embedding locations are

X =
√

ΛnUn
T = diag(

√
λ1, . . . ,

√
λn)(u1, . . . , un)

T ∈ Rn×p.

Table 5: Isomap algorithm.

Remark 10 (Equivalence PCA/Isomap). If D is euclidean, i.e. D = ϕ(XTX) ∈ D, then isomap is
equivalent to PCA.

46

3.2 Flattening and Dimension Reduction

A flattening is a mapping f = (f1, f2) → R2. Figure 1.11, right, shows an example of mesh
flattening using Isomap. Such a flattening has been used to perform texture mapping [?]. Figure
1.11 also compares this flattening method with the Laplacian-based methods introduced in section
1.3.8.

Laplacian eigenmaps enforces local smoothness through

fi = argmin
||f ||=1

||Gf ||.

In this case, (f1, f2) are eigenvectors (#2,#3) of L = GTG.

Isomap enforces global constraints through

||f(x)− f(y)|| ≈ dM(x, y).

In this case, (f1, f2) are eigenvectors (#1,#2) of −J(dM(xi,xj))ijJ .

In laplacian methods, the matrix to process is sparse, which eases computations but may leads to
poor global control over the flattening.

3.2.5 Bending Invariants

Instead of performing a reduction in dimension (flattening) one can use the Isomap embedding
in order to obtain a representation of the surface that is invariant under geodesic isometries, as
introduced by [?].

Definition 57 (Bending invariants). Given a surfaceM, the bending invariant IM(x) ∈ R3 is the
output of the Isomap algorithm.

A geodesic isometry is formally a mapping ψ :M→M′ such that

∀ (x, y) ∈M2, dM(x, y) = dM′(ψ(x), ψ(y)).

The main properties of bending invariants is the following theorem.

Theorem 41 (Bending invariance). Up to rigid motion, IM is invariant to geodesic isometries:

IM(x) = v + UIM′(ψ(x)) where U ∈ O(3) and v ∈ R3.

Figure ?? shows some examples of bending invariants. These bending invariants can be used to
perform shape recognition with isometric invariance, which is a useful property in face recognition
for instance, see [3].

47

3 High Dimensional Data Analysis

Figure 3.1: Top: original surfaces, bottom: examples of bending invariants.

48

4 Multiresolution Mesh Processing

This chapter shows how computations on a mesh can be performed in a multiscale manner,
by considering meshes of increasing resolutions. This leads to the notion of subdivision surfaces
and wavelet transform, which are two different tools to interpolates and decompose functions on
meshes. Both methods rely on a special kind of meshes whose triangulations can be obtained by
applying a regular refinement rule.

4.1 Semi-regular Meshes

4.1.1 Nested Multiscale Grids.

In order to perform multiscale mesh processing, one needs to pack the vertices V of a topological
mesh M = (V,E, F) in sets of increasing resolution. As explained in section 1.1.2, it is important to
remember that this construction is purely combinatorial, in that no geometrical information (such
as actual positions of the vertices in R3) is required to build the set of multi-resolution meshes.
In fact these multiscale grids can be used to actually process the geometrical realizationM of the
mesh M as three real valued functions (the three coordinates of the points).

We thus consider a set of nested indexes

V0 ⊂ V−1 ⊂ . . . ⊂ VL = V

which are split according to
Vj = Vj+1 ∪Hj+1.

Next section describes how to actually compute this set of nested grids using a triangular split,
but most of the mathematical tools are in fact valid for arbitrary set of indices, as long as they are
embedded in one each other through scales.

For mesh processing, an index ℓ ∈ Vj corresponds to a vertex xℓ ∈ V ⊂ R3. The signals to
be processed are vectors f ∈ Rn of size n = |VL| defined on the grid VL. We sometimes write
f ∈ ℓ2(VL) instead of f ∈ Rn to emphasis the domain on which f is indexed. This chapter
describes transforms for signals f ∈ ℓ2(VL) sampled on the finest grid VL.Regular 1:4 Subdivision

} .

} .

} .

e

σ1(e)

σ2(e)

γ(e) µ1(f)

µ2(f)µ3(f)

µ4(f)f
subdivision subdivision

Figure 4.1: Edge-splitting subdivision.

4.1.2 Semi-regular Triangulation.

The combinatorial structure of a triangular mesh is defined in section 1.1.2. This chapter con-
siders only a certain class of meshes M = (V,E, F) that can be obtained by a regular split of faces,

49

4 Multiresolution Mesh Processing

starting from an initial coarse triangulation. This splitting leads to a set of multiresolution meshes
Mj = (Vj , Ej , Fj) for J 6 j 6 0, where the full mesh is MJ = M .

j = 0 j = −1 j = −2 j = −3

Figure 4.2: Regular subdivision 1:4 of a single triangle. Regular subdivision of a planar triangu-
lation M0.

Starting from this coarse triangulation, one defines by subdivision a multiscale triangulation
(Vj , Ej , Fj)L6j60 where

For each edge e ∈ Ej , a central index γ(e) ∈ Vj−1 is added to the vertices

Vj−1 = Vj ∪ {γ(e) \ e ∈ Ej} .

Each edge is subdivided into two finer edges

∀ e = (a, b) ∈ Ej , σ1(e) = (a, γ(e)) and σ2(e) = (b, γ(e)).

The subdivided set of edges is then

Ej−1 = {σi(e) \ i = 1, 2 and e ∈ Ej} .

Each face f = (a, b, c) ∈ Fj is subdivided into four faces

{
µ1(f) = (a, γ(a, b), γ(a, c)), µ2(f) = (b, γ(b, a), γ(b, c)),
µ3(f) = (c, γ(c, a), γ(c, b)), µ4(f) = (γ(a, b), γ(b, c), γ(c, a)).

The subdivided set of faces is then

Fj−1 = {µi(f) \ i = 1, 2, 3, 4 and f ∈ Fj} .

Figure 3.1 shows the notations related to the subdivision process. Figure 3.2 shows an example
of recursive splitting of a triangle and a coarse triangulation. Figure 3.3 shows examples of semi-
regular triangulation using a geometric realization (position of the vertices) to create a 3D surface.

The set of vertices can be classified as

Regular vertices are those who belong neither to the coarse mesh V0 nor to a boundary of a
mesh Mj . These vertices have always 6 neighbors.

Extraordinary vertices are the initial vertices of V0. They exhibit arbitrary connectivity.

Boundary vertices are those belonging to a mesh boundary. Boundary vertices not in V0

always have 4 immediate neighbors.

50

4.1 Semi-regular Meshes

j = 0 j = −1 j = −2 j = −3

Figure 4.3: Examples of semi-regular meshes (Vj)j for increasing scale j (from left to right).

Obviously not every meshes can be obtained from such a subdivision process. In practice, an
arbitrary mesh, obtained from CAD design or range scanning usually does not have any multiscale
structure. It is thus necessary to remesh it in order to modify the connectivity of the mesh. During
this process, the position of the vertices in R3 is modified in order for the geometrical realization
to stay close from the original piecewise linear surface. One can see [2] fur a survey of various
semi-regular remeshing methods.

4.1.3 Spherical Geometry Images

Starting from some input surfaces S ⊂ R3, one typically wants to compute a semi-regular
meshes (Mj)j>L that approximate S. In most case, the surface S is actually given as an arbitrary
triangulated mesh and this process corresponds to a semi-regular remeshing. Many algorithm have
been devised for surface remeshing and we describe here a method [31] that works for surfaces
that have the topology of a sphere. It means that the surface has genus 0, without boundary and
without handles.

This methods works by computing several intermediate surface-wise parameterization.

Spherical parameterization: each points of the original triangulation of S is mapped onto the
unit sphere. This create a bijective parameterization

ϕS : S2 → S.

This is a non-linear process that differ from the planar parameterization introduced in section
1.3.7. We do not give the details of such a process, but it requires minimizing the smoothness of
the mapping ϕ−1

S under the constraint that it maps points of S to unit length vectors (point on
the sphere S2). The algorithm is explained in details in [31].

Spherical-tetraedron flattening: one flatten each quadrant (1/8) of the sphere in order to have a
mapping

ϕT : Octaedron→ S2.

One can use for instance a mapping between spherical barycentric coordinate on each quadrant
and Euclidean barycentric coordinates on each face of the octahedron.

51

4 Multiresolution Mesh Processing

Tetraedron unfolding: One maps each equilateral face of the octaedron on a rectangular triangle
that corresponds to 1/8th of the square [0, 1]2

ϕU : [0, 1]2 → Octaedron.

Regular sampling: the geometry image is obtained by regularly sampling the square on a uniform
grid

xℓ = ϕS ◦ ϕT ◦ ϕU (ℓ/n) for ℓi = 0, . . . , n− 1.

The mapping ℓ 7→ xℓ ∈ R3 is the geometry image, which can be stored as a 3-channel (color) image.

From such a geometry image xℓ, one can easily compute a semi-regular mesh by simply perform-
ing a regular 1:4 subdivision of the octaedron. Figure 3.4 shows the steps of the construction of a
geometry image, and the resulting semi-regular mesh.

! ! ! !
"#$%$&'(!!!!!!)*+,#$-'(!*'#'.,/#$0'/$"&! "-/'+,1#'(!*'#'.,/#$0'/$"&! %,".,/#2!$.'%,!3($/4! #,.,)+,1!%,".,/#2!!!

5$%6#,!78!9,."&)/#'/$"&!":!)*+,#$-'(!*'#'.,/#$0'/$"&!'&1!)6;),<6,&/!#,)'.*($&%!$&/"!'!%,".,/#2!$.'%,=!

xℓ

ϕUϕT
ϕS

.

tions.

Figure 4.4: Spherical geometry image construction, taken from [31].

4.2 Subdivision Curves

Before getting into the detail of subdivision surfaces, we describe the subdivision process in the
simpler setting of 1D signals. This leads to the construction of subdivision of 1D functions and
subdivision curves.

In this 1D setting, the grid point indexes are dyadic sub-grids of Z

∀ j > L, Vj =
{
ℓ2j−L \ 0 6 ℓ < s02

−j
}
,

where s0 = |V0| is the size of the initial vector f0 to be subdivided.

h0

h1h̃
−1

h̃1
h̃0

Vj

Hj
Vj−1

/2

/2 /8 /8

1 /4

gh ˜

ar

ic

+

f

Figure 4.5: 1D subdivision scheme with filters h and h̃. The red curve represent the original signal
f0.

Each subdivision steps computes, from a set fj(ℓ) ∈ ℓ2(Vj) of coarse values, a refined vector
fj−1 ∈ ℓ2(Vj−1) defined by

{
∀ k ∈ Hj , fj−1(k) =

∑
t fj((k − 1)/2 + t)h(t),

∀ ℓ ∈ Vj , fj−1(ℓ) =
∑
t fj(ℓ+ t)h̃(t).

where the set of weights h and h̃ acts as local averaging operators. This averaging should be
corrected at the boundary, and we use here cyclic boundary conditions which identifies 0 and
s02

−j in Vj . Figure 3.5 shows a graphical display of these averaging operators.

52

4.3 Subdivision Surfaces

One can write this subdivision steps as convolution by introducing the global set of weights

g = [. . . , h̃(−1), h(0), h̃(0), h(1), h̃(1), . . .]

since one has

fj−1 = (fj ↑ 2) ∗ g where a ↑ 2 = [. . . , 0, a(−1), 0, a(0), 0, a(1), 0, . . .].

This corresponds to the traditional description of the wavelet low-pass filtering [24].

Figure 4.6: 1D subdivision of a signal. Bottom row shows the subdivision from an impulse signal,
converging to the scaling function ϕ.

Figure 3.6 shows several steps of subdivision, starting from an initial vector of size |V0| = 10.

One can apply this subdivision of functions to a pair of signals

(X0, Y0) : V0 → R2

which is a control polygon composed of points located in the plane. The subdivision curve converges
to the limiting curve

(Xj , Yj)
j→−∞−→ (X(t), Y (t))1t=0 ⊂ R2.

An interesting property is that this curve is included in the convex hull of the control polygon

(X(t), Y (t))t ⊂ Conv(X0, Y0).

Figure 3.7 shows examples of subdivision curves.

4.3 Subdivision Surfaces

Subdivision schemes allows to compute a set of progressively refined vectors on a semi-regular
mesh. More precisely, from an initial vector f0 ∈ R|V0| defined on the coarse mesh M0, local
interpolation kernels computes iteratively vectors fj ∈ R|Vj | of finer resolution. When applied to 3
function (f i0)i=1,2,3 defining the geometrical position of points in R3, this hierarchical construction
defines a subdivision surface. These subdivisions surfaces are used extensively in computer aided
geometry and computer graphics. One can see [8] for a survey of subdivision surfaces and their
applications.

53

4 Multiresolution Mesh Processing

Figure 4.7: Two examples of subdivision curves. The red curve represent the original curve
(X0, Y 0).

4.3.1 Interpolation Operators

In order to refine a vector fj ∈ R|Vj | defined on the vertex Vj of the mesh Mj , one uses two
interpolators

Pj : ℓ2(Vj) −→ ℓ2(Hj) and P̃j : ℓ2(Vj) −→ ℓ2(Vj). (4.1)

A new refined function fj−1 ∈ R|Vj−1| defined on the vertices Vj−1 = Vj ∪Hj of Mj−1 is defined
by applying these two refinement operators:

∀ ℓ ∈ Vj−1, fj−1(ℓ) =

{
(Pjfj)(ℓ) if ℓ ∈ Vj ,
(P̃jfj)(ℓ) if ℓ ∈ Hj .

Since Vj ⊂ Vj−1, the operator P̃j only modify slightly the value at vertex in Vj . On the other hand,
the operator Pj creates new value at the vertices of Hj that are inserted between Vj and Vj−1.

In practical applications, these interpolating operators are local, meaning that the value of
(Pjfj)(ℓ) and (P̃jfj)(ℓ) depends only on values fj(ℓ

′) for ℓ′ ∈ Vj being close to ℓ ∈ Vj−1, typically
in the 1-ring or 2-ring vertex neighborhood.

A particularly important setting for subdivision scheme is when one apply the subdivision steps
in parallel to three vectors (Xj , Yj , Zj) starting from three initial vectors describing the position
in 3D space of a coarse mesh M0. This allows to defines finer and finer spacial localization for the
vertex of the refined meshes Mj . Figure 3.9 shows an example of such a subdivision surface. In
order for the resulting infinitely refined surface to have good properties such as being continuous
and even smooth, one needs to design carefully the interpolation operators. Next section gives
examples of such operators.

4.3.2 Some Classical Subdivision Stencils

In order to define the interpolation operators Pj and P̃j of equation (3.1), one needs to use a
naming convention for the neighborhoods of vertices.

For a vertex ℓ ∈ Vj , the one ring neighborhood Vℓ has already been defined in equation (1.1).
It is the set of vertices adjacent to ℓ. In a regular point (that does not belongs to V0 and not on
a boundary of the mesh), its size is |Vℓ| = 6 since a point has 6 neighbors. This 1-ring is used to
define P̃j .

54

4.3 Subdivision Surfaces

For a vertex k ∈ Hj ⊂ Vj−1, the butterfly neighborhood is a set of vertices in Vj close to k. This
neighborhood is used to define Pj . The two immediate neighbors are

(v1
k, v

2
k)

def.

= {v ∈ Vj \ (v, k) ∈ Ej−1} .

Two other vertices (w1
k, w

2
k) are defined using the two faces adjacent to edge (v2

k, v
2
k) ∈ Ej

f1
k = (v1

k, v
2
k, w

1
k) ∈ Fj and f2

k = (v1
k, v

2
k, w

2
k) ∈ Fj .

For edges Ej on the boundary of Mj , one one face is available, in which case we implicitly assume
that f1 = f2 (reflecting boundary conditions). The four last vertices are defined using faces adjacent
to f1 and f2:

∀ i, j = 1, 2, f i,jk
def.

= (zi,jk , vjk, w
j
k) ∈ Fj with f i,jk 6= fj .

Once again, reflecting boundary condition are applied for faces on the boundary of the mesh. The
butterfly neighborhood is depicted on figure 3.8.

k
v1

k v2

k

f2

k

f1

k

w1

k

w2

k

z
1,1

k

f
1,1

k

f
1,2

k
f
2,2

k

f
2,1

k

z
1,2

k
z
2,2

k

z
2,1

k

Figure 4.8: The butterfly neighborhood of a vertex k ∈ Hj.

Linear Interpolating Scheme The simplest subdivision rule compute values along edge mide point
using a simple linear interpolation as follow

{
∀ k ∈ Hj , (Pjfj)(k) = 1

2 (f(v1
k) + f(v2

k)),

∀ ℓ ∈ Vj , (P̃jfj)(ℓ) = fj(ℓ).
(4.2)

Since P̃j is the identity operator, this scheme is called interpolating. It means that value of f0 on
points of the coarse triangulation are kept during iteration of the subdivision.

Butterfly Interpolating Scheme The linear scheme creates function that are piecewise linear on
each face of the coarse triangulation F0. In order to create smooth surface, one needs to use more
points in the butterfly neighborhood as follow

{
∀ k ∈ Hj , (Pjfj)(k) = 1

2

∑2
i=1 f(vik) + 1

8

∑2
i=1 f(wik)− 1

16

∑2
i,j=1 f(zi,jk),

∀ ℓ ∈ Vj , (P̃jfj)(ℓ) = fj(ℓ).
(4.3)

55

4 Multiresolution Mesh Processing

Figure 4.9: Examples of iterative subdivision using Loop scheme. The points (X0, Y0, Z0) of the
initial coarse mesh M0 are shown in red.

Original Linear Butterfly Loop

Figure 4.10: Examples of subdivision schemes. The points (X0, Y0, Z0) of the initial coarse mesh
M0 are shown in red. Since the linear and butterfly scheme are interpolating, these points actually
belongs to the limiting surface.

Loop Approximating Scheme In order to gain flexibility in the subdivision design, one can also
modify points in Vj during the iterations. This means that P̃j is not any more the identity, and that
all the values will evolves during the iterations. The question of wether these iterated modification
actually converge to a limit value is studied in the next section.

The Loop subdivision rule is defined as

{
∀ k ∈ Hj , (Pjfj)(k) = 3

8

∑2
i=1 f(vik) + 1

8

∑2
i=1 f(wik),

∀ ℓ ∈ Vj , (P̃jfj)(ℓ) = (1− |Vℓ|β|Vℓ|)fj(ℓ) + β|Vℓ|

∑
ℓ′∈Vℓ

fj(ℓ
′).

where the weights depends on the number of neighbors and are defined as

βm
def.

=
1

m

(
5

8
−
(

3

8
+

1

4
cos(2π/m)

)2
)
.

Other schemes. It is possible to define subdivision schemes using rules that do not involve a
regular 1:4 splitting of each coarse face. For instance, in dual schemes such as the one depicted in
figure 3.11, the faces of Fj are not included in Fj−1 but only in Fj−2.

56

4.3 Subdivision Surfaces

Figure 4.11: Surface after 0, 1 and 3 step of
√

3 subdivision [20].

4.3.3 Invariant Neighborhoods

In order to study the convergence of subdivision schemes, one needs to consider independently
each vertex x ∈ Vj0(x), where j0(x) is the coarser scale at which x appears

j0(x) = max {j \ x ∈ Vj} .

Original vertices satisfy j0(x) = 0 and are the only one (except boundary vertices) that have a
non-regular connectivity.

The vertex x belongs to the mesh Mj0(x) which is going to be refined through scales j < j0(x).
In order to analyze this refinement, one needs to define an invariant neighborhood V xj ⊂ Vj of x for
each scale j 6 j0(x). These neighborhood are the set of points that are required to compute the
operators Pj and P̃j . More precisely, given a vector f ∈ ℓ2(Vj−1), the neighborhoods are required
to satisfy

{
∀ ℓ ∈ V xj−1 ∩ Vj , (P̃jf)(ℓ) depends only on V xj
∀ k ∈ V xj−1 ∩Hj , (Pjf)(k) depends only on V xj .

We further impose that all the invariant neighborhoods have the same size

∀ j 6 j0(x), #V xj = mx.

Figure 3.12 shows an example of invariant neighborhood which corresponds to the 2-ring V
(2)
ℓ , as

defined in (1.2).

Thanks to the invariance of these neighborhood systems, one can restrict the predictors around
x and define

P xj : V xj −→ V xj−1 ∩ Vj and P̃ xj : V xj −→ V xj−1 ∩Hj .

The subdivision matrix Sxj ∈ Rmx×mx is then defined as matrix of the following mapping

(P̃ xj , P
x
j) : V jx −→ V j−1

x .

All the subdivision schemes studied in this chapter are invariant, meaning that the subdivision
rule does not change through the scales j. This impose that the subdivision matrices are constant
Sxj = Sx. In fact, in all the examples given in the previous section, they only depends on the
number |Vx| of neighbors in the one ring of x.

57

4 Multiresolution Mesh Processing

1

23

4

5

6

7

8

9

0

1

0

2

3

7

4

8

5

9

6

Figure 4.12: Invariant neighborhood V xj and V xj−1 (indexing with red circles) of the Loop subdivi-
sion scheme for a vertex of valence |Vℓ| = 0. The number in {0, . . . , 9} refers to the numbering of
the vertices in V xj and V xj−1

4.3.4 Convergence of Subdivisions

The value at x ∈ Vj0(x) of a function fj ∈ ℓ2(Vj) obtained by subdividing at scale j 6 j0(x) an
initial vector f0 ∈ ℓ2(V0) can be computed as

fj(x) =
(
Sxfxj+1

)
(x) =

(
(Sx)j0(x)−jfxj0(x)

)
(x),

where the vector fxi ∈ Rmx is the restriction of fi to the set V xj .

In order to analyze the limiting function resulting from an infinite number of subdivision, one
can use the eigen vector decomposition of the matrix Sx

Sx = Φ̃V ΛΦT where

{
ΦT = Φ̃−1,
Λ = diag(λi), λ1 6 λ2 6 . . . 6 λmx

.

Since the subdivision matrix Sx is not symmetric, some of the eigenvalues might be complex,
and we shall ignore this difficulty here. The fact that Pj and P̃j are predictor implies that the
subdivision matrix has to satisfy Sx1 = 1, meaning that ϕ̃1 = 1 is an eigenvector associated to the
eigenvalue 1. In the following we further makes the following assumption

1 = λ1 < λ
def.

= λ2 = λ3 < λ4. (4.4)

This hypothesis is satisfied by all the subdivision rules introduced in the previous section.

If one write Φ = (ϕi)
m
i=1 and Φ = (ϕi)

m
i=1, one has the following decomposition of a vector

f ∈ Rmx

f =

mx∑

i=1

〈f, ϕi〉ϕ̃i and (Sx)k(x) =

mx∑

i=1

λki 〈f, ϕi〉ϕ̃i.

One thus has the following asymptotic expansion

1

λk
(f − 〈f, ϕ1〉1) = 〈f, ϕ2〉ϕ̃2 + 〈f, ϕ3〉ϕ̃3 + o(1). (4.5)

This expression describes the asymptotic behavior of the subdivision scheme at zero order (position)
and first order (tangents).

Theorem 42 (Convergence of the subdivision scheme). If the subdivision matrix Sx of a point x
satisfies (3.4) then the subdivision process converges at x to the value

f j(x)
j→−∞−→ 〈fxj0(x), ϕ1〉.

58

4.4 Wavelets on Meshes

The smoothness of the resulting function is more difficult to analyze. A particularly important
setting is when one computes the subdivision of 3 function p0 = (X0, Y0, Z0) ∈ ℓ2(V0)

3 correspond-
ing to the position in R3 (geometrical realization) of a coarse mesh M0. In this case, the subdivided
functions pj = (Xj , Yj , Zj) gives refined 3D meshes that converge uniforlmy to a continuous surfaces

p(x) = (X(x), Y (x), Z(x)) = (〈Xx
j0 , ϕ1〉, 〈Y xj0 , ϕ1〉, 〈Zxj0 , ϕ1〉).

Condition (3.4) nearly implies that the resulting surface is smooth. Indeed, the asymptotic expan-
sion (3.5) shows that for a point x′ near x in the subdivision domain, the differential vector can
be well approximated as a projection on a 2D plane

p(x)− p(x′) + o(1) ∈ Span(τx2 , τ
x
3) where τ i(x)

def.

= (〈Xx
j0 , ϕi〉, 〈Y

x
j0 , ϕi〉, 〈Z

x
j0 , ϕi〉).

If the vectors τx2 and τx3 are linearly independent, they form a basis of the tangent plane at p(x).

Example of the Loop subdivision. For the Loop interpolation operators defined in equation
(3.3.2), the invariant neighborhood V xj correspond to the 2-ring of x in the triangulation Gj ,
as shown in figure 3.12. For a vertex with k neighbors, |Vx| = k, the size of these invariant
neighborhood is mx = 3k + 1. A particular neighboring for k = 3 is depicted in figure 3.12,
together with an indexing in {0, . . . , 3k = 9} of the points in V xj and V xj−1. For this indexing, the
subdivision matrix reads




7 3 3 3
1 1 1 1 10 1 1
1 1 1 1 1 10 1
1 1 1 1 1 1 10
1 1 3 3
1 1 3 3
1 1 3 3
1 3 1 1
1 1 3 1
1 2 1 3




where the 0’s have been omitted and where the rows should be rescaled to sum to 1. The eigenvalues
of this matrix satisfy λ1 = 1 and λ2 = λ3 = 1/3 > λ4.

4.4 Wavelets on Meshes

4.4.1 Multiscale Biorthogonal Bases on Meshes

The transforms considered in this section are multiscale and indexed by the set of nested grids
(Vj)L<j6J . This corresponds to computing a set of coefficients (dj)L<j6J ∪fJ from an initial input
signal f . These coefficients corresponds to inner products with basis vectors

{
dj ∈ ℓ2(Hj) where ∀ k ∈ Hj , dj(k) = 〈f, ψj,k〉,
fJ ∈ ℓ2(VJ) where ∀ ℓ ∈ VJ , fJ(ℓ) = 〈f, ϕJ,ℓ〉.

By analogy with the wavelet setting, the vectors ψj,k ∈ Rn corresponds to primal wavelets and
are intended to capture the details present in the signal f at a scale j, whereas the scaling vectors
ϕJ,k ∈ Rn capture the missing coarse approximation of f at scale J . This decomposition is stopped
at any coarse scale L < J 6 0.

In order to reconstruct the function f from this set of transformed coefficients, one needs to use
a set of bi-orthogonal basis vectors

f =
∑

L<j6J,k∈Hj

dj(k)ψ̃j,k +
∑

ℓ∈VJ

fJ(ℓ)ϕ̃J,ℓ.

59

4 Multiresolution Mesh Processing

If this reconstruction formula holds for any scale L < J 6 0, the set of vectors

(ψj,k, ϕj,ℓ)
L<j60
k∈Hj ,ℓ∈Vj

and (ψ̃j,k, ϕ̃j,ℓ)
L<j60
k∈Hj ,ℓ∈Vj

, (4.6)

is said to be a pair of primal and dual multiscale bases (together with their scaling functions).

The following paragraph shows how one can modify such a pair of multiscale bases while still
maintaining the biorthogonality property. This lifting process is useful to design multiscale bases
with various properties on complicated domains.

4.4.2 The Lifting Scheme

The lifting scheme is a construction of multiscale biorthogonal bases introduced by Sweldens
[36, 37]. It extends the traditional construction of wavelets in two main directions:

As explained in [9], it allows to implement already existing filter banks more efficiency by splitting
the computation into elementary blocks. This computational gain is described at the end of the
section together with the factorization of wavelets into lifting steps.

It allows to define multiscale transforms over domains that are not translation invariant. This
section gives two examples of such transforms: a non-separable 2D wavelet transform and wavelets
on triangulated meshes.

In order to build wavelets on triangulation, one can specialize the lifting scheme to a particular
setting where only two lifting steps are applied.

Forward lifting scheme. The forward algorithm performs the transform

(fj−1(ℓ))ℓ∈Vj−1
−→ (dj(k))k∈Hj

∪ (fj(ℓ))ℓ∈Vj

by applying the following steps

Splitting: this corresponds selecting the coefficient of fj−1(ℓ) that are in Vj or in Hj

(fj−1(ℓ))ℓ∈Vj−1
= (fj(ℓ))ℓ∈Vj

∪ (fj(ℓ))ℓ∈Hj
.

These two sets of coefficients are treated differently in the two remaining steps of the transform.

Predict step: creates wavelets coefficients dj by computing local differences between each coeffi-
cient in Vj and its neighbors in Hj

∀ k ∈ Hj , dj(k) = fj−1(k)−
∑

ℓ∈Vj

pj(k, ℓ)fj−1(ℓ).

The coefficients pj(k, ℓ) are weights that determine the predict operator

Pj :

{
ℓ2(Vj) −→ ℓ2(Hj)
g 7−→ h = Pjg

where h(k) =
∑

k∈Hj

pj(k, ℓ)g(ℓ).

Update step: enhance the properties of each remaining low pass coefficients fj−1(ℓ) for ℓ ∈ Vj by
pooling locally the wavelets coefficients dj(k) for k around ℓ

∀ ℓ ∈ Vj , fj(ℓ) = fj−1(ℓ) +
∑

k∈Hj

uj(ℓ, k)dj(k).

The coefficients uj(ℓ, k) are weights that determine the update operator

Uj :

{
ℓ2(Hj) −→ ℓ2(Vj)
h 7−→ g = Ujh

where g(ℓ) =
∑

k∈Hj

uj(ℓ, k)h(k).

60

4.4 Wavelets on Meshes

Figure 3.13, top row, shows the block diagram associated to this forward lifting wavelet transform.

The iterations of the forward lifting transform can also be written in vector and operator format

{
dj = f

Hj

j−1 − Pjf
Vj

j−1,

fj = f
Vj

j−1 + Ujdj = (IdVj
− UjPj)fVj

j−1 + Ujf
Hj

j−1,

where gA is the restriction of some vector g to the set A.

split Pj Uj

fj−1

Vj

Vj−1

Hj −

+ fj

dj

. . .

fj

dj

Vj

Hj

Uj

−

Pj

+

merge
fj−1

Vj−1
. . .

. . .

. . .

)

Figure 4.13: Block diagrams for the forward and backward lifting scheme.

Backward lifting scheme. The backward transform algorithm does the reverse computation

(dj(k))k∈Hj
∪ (fj(ℓ))ℓ∈Vj

−→ (fj−1(ℓ))ℓ∈Vj−1

One of the main feature of the lifting scheme is that this is achieved by simply reversing the order
of the lifting steps and interchanging +/- signs.

Inverse update step:

∀ ℓ ∈ Vj , fj−1(ℓ) = fj(ℓ)−
∑

k∈Hj

uj(ℓ, k)dj(k).

Inverse predict step:

∀ k ∈ Hj , fj−1(k) = dj(k) +
∑

ℓ∈Vj

pj(k, ℓ)fj−1(ℓ).

Merging: makes the union of the coefficients computed in the two previous steps

(fj−1(ℓ))ℓ∈Vj−1
= (fj(ℓ))ℓ∈Vj

∪ (fj(ℓ))ℓ∈Hj
.

Figure 3.13, top row, shows the block diagram associated to this backward lifting wavelet transform.

The lifting scheme is more general than the algorithm described in this section since several
passes of predict/update steps can be applied to further enhance the properties of the resulting
transform. However, the steps beyond the two initial ones are difficult to analyze, except in the
notable exception of points sampled evenly on a 1D axes, where a factorization algorithm [9] allows
to recover traditional wavelet filters.

61

4 Multiresolution Mesh Processing

4.4.3 Imposing vanishing moments.

The operator Pj is called a predictor since the values of Pjf
Vj

j−1 should typically be close to

f
Hj

j−1 for the wavelet coefficients dj to be small. Such predictors have already been constructed in
equations (3.2), (3.3) and (3.3.2).

The operator Uj is called an update operator since the additional term Ujdj should enhance the

properties of f
Vj

j−1. This update steps does not appears in the theory of subdivision surface and
this section considers a local update operator which guaranty the conservation of the mean value
when switching from fj−1 to fj .

Polynomial vectors. In order to select predict and update operator that have good properties, one
follow the insight gained from the analysis of the wavelet approximation of signal on the real line.
In order to do so, one need analyze the effect of a lifting wavelet transform on polynomials. The
most basic constraint enforces one vanishing moment by imposing orthogonality with the constant
vector Φ0 = 1. This constraint does not require to known the spacial location xℓ of each index
ℓ ∈ VL. In order to impose higher order vanishing moments, one needs to assume some sampling
pattern, for instance

∀ ℓ ∈ VL, f(ℓ) = f̄(xℓ) where xℓ ∈ Rq

and where f̄ is a function defined on Rq. For instance, the points xℓ might corresponds to a regular
sampling of the line (this is the traditional wavelet setting) or to an irregular sampling of a 2D
surface embedded in R3. The next paragraphs describe several situations with different sampling
grids. Once the precise locations of the samples are known, one can for instance select Φs as some
monomials of degree (s1, . . . , sq) over Rq.

Vanishing moment and polynomials reproduction. Having defined these polynomial vectors, one
requires that the following constraints are fulfilled.

Vanishing moments: the wavelet coefficients of a low order polynomial should be 0, which implies
that

∀ k ∈ Hj , 〈Φs, ψj,ℓ〉 = 0. (4.7)

Polynomial reproduction: coarse coefficients fj computed from a polynomial ff−1 should also be
polynomials, which implies that

∀ ℓ ∈ Vj , 〈Φs, ϕj,ℓ〉 = Φs(ℓ) (4.8)

In order for the wavelets and scaling function to satisfy conditions (3.7) and (3.8), the predict
operator Pj and update operator Uj should be designed carefully. One can impose these constraint
from the fine scale j = L until the coarse scale j = 0. Indeed, if (ϕj−1,ℓ, ψj−1,ℓ)k,ℓ satisfy conditions
(3.7) and (3.8), then, for the scale j

∀ s ∈ S,
{

(3.7) ⇐⇒ PjΦ
Vj
s = Φ

Hj
s ,

(3.8) ⇐⇒ Uj
T
(
Φ
Vj
s + Pj

TΦ
Hj
s

)
= Φ

Hj
s .

where ΦAs ∈ ℓ2(A) is the restriction of Φs to A.

In contrast, the constraint (3.8) on the update operator Pj is more involved and the next section
shows how to handle it on a triangulation situations for only one vanishing moment |S| = 1.

4.4.4 Lifted Wavelets on Meshes

The lifted wavelet bases can be used to process signals f ∈ ℓ2(VL) where ℓ ∈ VL index a sampling
xℓ of an arbitrary surface. The construction of biorthogonal wavelets on triangulated mesh has
been first proposed by Lounsbery et al. [23] and re-casted into the lifting scheme framework by
Schroeder and Sweldens [32, 33].

62

4.4 Wavelets on Meshes

Designing predict operators. The constraints (3.7) on the predictor Pj is easily solved. For
instance, for each k, one selects only |S| non vanishing weights (pj(k, ℓ))ℓ and solves a small
|S| × |S| linear system. Furthermore, in the case of a regular triangulation with edges of constant
length, predictors with several vanishing moments have been already defined in (3.2), (3.3) and
(3.3.2). Figure 3.14 shows the weights for these predictors.Examples of Update Operators

])

erators:

λ.

24.

Pj1 = 1.1/2 1/2 1/2 1/2

−1/16 −1/16

−1/16−1/16

3/8 3/8

1/8

1/8

Linear Loop Butterfly

Figure 4.14: Predict operators on a triangulation.

One can choose any of these operators, and creates respectively linear, butterfly and Loop
wavelets bases. All these predictors have one vanishing moment since they satisfy Pj1

Hj = 1Vj . In
fact they have more vanishing moments if one consider polynomials Φs sampled at points xℓ ∈ R2 of
an hexagonal tiling with constant edge length. In practice, if the triangulation under consideration
have edges with smoothly varying length, the resulting predictor are efficient to predict the value
of smooth functions on the triangulation.

Designing update operators. In order to ensure the reproduction of constant polynomials, we
design the update operator so that it depends only on the direct neighbors in Hj of each point in
Vj

∀ ℓ ∈ Vj , Vℓ = {γ(ℓ, ℓ′) \ (ℓ, ℓ′) ∈ Ej} .

One then looks for a valid update operator in the following form

∀h ∈ ℓ2(Hj), ∀ ℓ ∈ Vj , (Ujh)(ℓ) = λℓ
∑

k∈Vℓ

h(k), (4.9)

where each λℓ should be fixed in order for condition (3.8) to be satisfied.

In an semi-regular triangulation, |Vℓ| = 6 excepted maybe for some points in the coarse grid
ℓ ∈ V0. In this setting, the values of λℓ can be computed by a recursion through the scales. In an
ideal triangulation where |Vℓ| = 6 for all ℓ, one can use a constant weight λℓ = λ.

For the predictors defined in (3.2), (3.3) and (3.3.2), one has

Pj
T1Hj = 3× 1Vj and Uj

T1Vj = 6λ1Hj

so setting λℓ = 1/24 solves equation (3.8). Figure 3.15 shows examples of butterfly wavelets on a
planar semi-regular triangulation.

4.4.5 Non-linear Mesh Compression

These wavelets can be used to perform an approximation of a function f ∈ ℓ2(VL) defined on
the fine triangulation. For instance a wavelet approximation can be applied to each coordinate
fi, i = 1, 2, 3 of the actual position xℓ = (f1(ℓ), f2(ℓ), f3(ℓ)) ∈ R3 of the surface points, as done
in [14, 16]. This leads to a scheme to approximate and compress a 3D surface using the lifted
biorthogonal wavelets associated to the semi-regular triangulation. This is possible because these
wavelets depend only on the combinatorial grids Vj and not on the precise position of the samples
xℓ in 3D.

63

4 Multiresolution Mesh Processing

j = −2 j = −3 j = −4

Figure 4.15: Example of wavelets ψj,k on a semi-regular triangulation. The height over the triangle
(together with the color) indicates the value of the wavelet vector.

In order to perform a wavelet approximation in this biorthogonal basis, one uses a non-linear
thresholding at T > 0

f =
∑

(j,k)∈IT

〈f, ψj,k〉ψ̃j,k

where IT =
{

(j, k) \ k ∈ Hj and |〈f, ψj,k〉| > T | supp(ψj,k)|−1/2
}
.

Note that for each coefficient the threshold T is scaled according to the size of the support of the
wavelet in order to approximately normalize the wavelets in ℓ2(VL) norm.

Figure 3.16 shows an example of compression of the position of a vertex in 3D spaces as 3
functions defined on a semi-regular mesh. Figure 3.17 shows an example of compression of a
spherical texture map which is a single function defined at each vertex of a semi-regular mesh
obtained by subdividing an icosaedron.

100% 10% 5% 2%

Figure 4.16: Non-linear wavelet mesh compression with a decreasing number of coefficients.

64

4.4 Wavelets on Meshes

100% 10% 5% 2%

Figure 4.17: Non-linear spherical wavelet compression with a decreasing number of coefficients.

65

4 Multiresolution Mesh Processing

66

Bibliography

[1] P. Alliez and C. Gotsman. Recent advances in compression of 3d meshes. In N. A. Dodgson,
M. S. Floater, and M. A. Sabin, editors, Advances in multiresolution for geometric modelling,
pages 3–26. Springer Verlag, 2005.

[2] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene. Recent advances in remeshing of surfaces.
In AIM@SHAPE repport. 2005.

[3] A. Bronstein, M. Bronstein, and R. Kimmel. Numerical Geometry of Non-Rigid Shapes.
Springer, 2007.

[4] F. R. K. Chung. Spectral graph theory. Regional Conference Series in Mathematics, American
Mathematical Society, 92:1–212, 1997.

[5] K. L. Clarkson. Building triangulations using epsilon-nets. In Jon M. Kleinberg, editor, STOC,
pages 326–335. ACM, 2006.

[6] T. H. Cormen, C. E. Leiserson, and R. R. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, Massachusetts, 1990.

[7] M. G. Crandall, H. Ishii, and P-L. Lions. User’s guide to viscosity solutions of second order
partial differential equations. BULL.AMER.MATH.SOC, 27:1, 1992.

[8] P. Schroeder et al. D. Zorin. Subdivision surfaces in character animation. In Course notes at
SIGGRAPH 2000, July 2000.

[9] I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps. J. Fourier
Anal. Appl., 4(3):245–267, 1998.

[10] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tessellations: Applications and
algorithms. SIAM Review, 41:637–676, 1999.

[11] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The farthest point strategy for pro-
gressive image sampling. IEEE Trans. Image Processing, 6(9):1305–1315, September 1997.

[12] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In N. A.
Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in multiresolution for geometric
modelling, pages 157–186. Springer Verlag, 2005.

[13] A. V. Goldberg and C. Harrelson. Computing the shortest path: A* search meets graph
theory. Technical Report MSR-TR-2004-24, 2004.

[14] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal processing for meshes. In
Alyn Rockwood, editor, Proceedings of the Conference on Computer Graphics (Siggraph99),
pages 325–334. ACM Press, August8–13 1999.

[15] A. Ion, G. Peyré, Y. Haxhimusa, S. Peltier, W. G. Kropatsch, and L. Cohen. Shape matching
using the geodesic eccentricity transform. In Proceedings of OAGM’07, 2007.

[16] A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry compression. In Pro-
ceedings of the Computer Graphics Conference 2000 (SIGGRAPH-00), pages 271–278, New
York, July 23–28 2000. ACMPress.

[17] R. Kimmel. Numerical Geometry of Images: Theory, Algorithms, and Applications. Springer,
2004.

67

Bibliography

[18] R. Kimmel, A. Amir, and A. M. Bruckstein. Finding shortest paths on surfaces using level
sets propagation. IEEE Trans. on PAMI, 17(6):635–640, 1995.

[19] R. Kimmel and J.A. Sethian. Computing Geodesic Paths on Manifolds. Proc. Natl. Acad.
Sci., 95(15):8431–8435, 1998.

[20] L. Kobbelt.
√

3 subdivision. In Sheila Hoffmeyer, editor, Proc. of SIGGRAPH’00, pages
103–112, New York, July 23–28 2000. ACMPress.

[21] G. Leibon and D. Letscher. Delaunay triangulations and voronoi diagrams for riemannian
manifolds. In SCG ’00: Proceedings of the sixteenth annual symposium on Computational
geometry, pages 341–349, New York, NY, USA, 2000. ACM.

[22] H. Ling and D. W. Jacobs. Using the inner-distance for classification of articulated shapes.
In CVPR 2005, 20-26 June 2005, San Diego, CA, USA, pages 719–726, 2005.

[23] M. Lounsbery, T. D. DeRose, and J. Warren. Multiresolution analysis for surfaces of arbitrary
topological type. ACM Trans. Graph., 16(1):34–73, 1997.

[24] S. G. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1998.

[25] N.J. Nilsson. Problem-solving Methods in Artificial Intelligence. McGraw-Hill, New York,
1971.

[26] S. J. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer, 2002.

[27] S. J. Osher and N. Paragios. Geometric Level Set Methods in Imaging, Vision, and Graphics.
Springer-Verlag, July 2003.

[28] N. Paragios, Y. Chen, and O. D. Faugeras. Handbook of Mathematical Models in Computer
Vision. Springer, 2005.

[29] G. Peyré and L. Cohen. Heuristically driven front propagation for fast geodesic extraction.
International Journal for Computational Vision and Biomechanics, 1(1), 2007.

[30] G. Peyré and L. D. Cohen. Geodesic remeshing using front propagation. Int. J. Comput.
Vision, 69(1):145–156, 2006.

[31] E. Praun and H. Hoppe. Spherical parametrization and remeshing. ACM Transactions on
Graphics, 22(3):340–349, July 2003.

[32] P. Schröder and W. Sweldens. Spherical Wavelets: Efficiently Representing Functions on the
Sphere. In Proc. of SIGGRAPH 95, pages 161–172, 1995.

[33] P. Schröder and W. Sweldens. Spherical wavelets: Texture processing. In P. Hanrahan and
W. Purgathofer, editors, Rendering Techniques ’95. Springer Verlag, Wien, New York, August
1995.

[34] J.A. Sethian. Level Sets Methods and Fast Marching Methods. Cambridge University Press,
2nd edition, 1999.

[35] A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and their applications.
Found. Trends. Comput. Graph. Vis., 2(2):105–171, 2006.

[36] W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets.
Applied and Computation Harmonic Analysis, 3(2):186–200, 1996.

[37] W. Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM J.
Math. Anal., 29(2):511–546, 1997.

68

