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Abstract

In this paper we consider generalized eigenvalue problems for a family
of operators with a quadratic dependence on a complex parameter. Our
model is L(A) = —A+ (P(z) —\)? in L*(R?) where P is a positive elliptic
polynomial in R? of degree m > 2. It is known that for d even, or d = 1,
or d = 3 and m > 6, there exist A € C and u € L*(R%), u # 0, such
that L(A)u = 0. In this paper, we give a method to prove existence of
non trivial solutions for the equation L(A\)u = 0, valid in every dimension.
This is a partial answer to a conjecture in .

1 Introduction
Let us introduce the following family of differential operators,
L(A) = =Dy + (P(z) — N)? (1.1)

where A, is the Laplace operator in R%, X is a complex parameter, P is a
polynomial of degree m > 2 such that the leading homogeneous part P, of P
satisfies P, (x) > 0 for every x € R¥\{0} (in other words we say that P is a
positive-elliptic polynomial).

Such family of operators play an important role when studying analytic smooth-
ness of solutions of differential operators with multiple characteristics (see [@]
and references there). They also appear in the theory of damped oscillations
in mechanics [E, @] The question we want to adress here is: “does there exist
A € C and u in the Schwartz space S(R?), u # 0, such that L(A\)u = 077 In
[@] the authors have proven existence of non trivial solutions for 1 < d < 3,
assuming that m is large enough for d = 3. After, Helffer-Robert-Wang proved
in 1J] the following result.



Theorem 1.1 Assume that d is even and that P is a positive-elliptic polyno-
mial of degree m > 2.
Then there exist A € C and u € S(RY), u # 0, such that L(\)u = 0.

The proof given in [@] shows that there exist an infinite number of such eigen-
values located in the half-plane {A € C, RA > 0}. But it is not known if
the generalized eigenfunctions span all the Hilbert space L?(R%), excepted for
d=1[d.
For d odd , d > 3, m > 2, the problem of existence of non zero solutions is
still open and it was conjecture in [1J] that such solutions exist whatever the
dimension d.
In this paper we prove that this is true for every elliptic polynomial if d = 3 and
for large classes of elliptic polynomials for d = 5,7. We also discuss a numerical
approach to prove that some coefficient in a semi-classical trace formula is not
zero. For d > 9 we conjecture that this coefficient is not zero hence there exist
an infinite number of nonlinear eigenvalues.

This work was supported by the program ANR 08-BLAN-0228, NONAa, Re-
search French Ministry.

2 nonlinear eigenvalue problems

In this section we recall some known properties concerning nonlinear eigenvalue
problems. For more details we refer to , , .

Let us consider the quadratic family of operators L(\) = Lo + AL + A\? where
Lo, Ly are operators in an Hilbert space H. L is assumed to be self-adjoint,
positive, with a domain D(Lg) and L is v/Lo-bounded. Moreover Lo_l/2 is in
a Schatten class CP(H) for some real p > 0.

The following results are well known.

Theorem 2.1 L()) is a family of closed operators in H.

A — L=Y(N) is meromorphic in the complex plane.

The poles \; of L™Y(\), with multiplicity m;, coincide with the eigenvalues
with the same multiplicities, of the matriz operator Ay in the Hilbert space
H x D(Léﬂ), with domain D(AL) = D(Lg) % D(Léﬂ) where

Ap = ( _9:0 _]21 ) (2.2)

Let us denote Sp[L] the eigenvalues of Az (which coincide with the poles of
L7(2)).

Remark 2.2 [t may happens that Sp[L] is empty. The following one dimen-
sional example s interesting and was discussed in /@, |

d2

0 + (@™ = \)? + g™ L (2.3)

Lm,g()‘) =



For every m > 2, m even, Ly, o has infinity many eigenvalues but L, ,, has no
eigenvalue. The last statement is a consequence of the factorization

Lonm(V) = (2™ — A+ %)(xm - %).
So, we can compute all solutions for the equation Ly, m(XN)u =0 and see that a
non-null solution u is never bounded on R.
But if m is odd, Ly, m(A)u = 0, has infinity many eigenvalues on the imaginary
azis [4/.
On the other side there exist sufficient general conditions to have Sp[L] # 0
[@, . Unfortunately these conditions are not fulfilled for our example L(\) =
—Ag + (P(z) — X\)? when d > 2.

The following formula appears for the first time in [f] and will be very useful
for our purpose.

Theorem 2.3 For k large enough (k € N, k > p) and for z € C\Sp[L], we

have . g
Tr(AL —2) F 1 = %Tr[ﬁ(/:(z)*ly(z)], (2.4)

where each above operators are trace class.
Using Lidskii Theorem [[[(] and (P-4), we get

_ k
> oma(A—2) = k—'lTr[% (L(2)7'L'(2)))]- (2.5)
\ESP[L] ’

where m(\) is the multiplicity of the eigenvalue .

As it was nicely remarked in the paper [ff], a sufficient condition for Sp[L] # 0
is that the r.h.s in (@) is not zero. To check this property a natural method is
to introduce parameters and use semiclassical analysis.

In [[19] the authors also use Lidskii theorem and semi-classical analysis on the
matrix system Ay. Here we consider more directly the scalar family of operators
L(z) where computations are easier even if the dependence in z is nonlinear.

3  Semiclassical parametrix

For simplicity we assume here that P is homogeneous of degree m > 2 and

P(z) > 0 for x € R? 2 # 0. By the scaling transformation z = 7/™y with
A

hi = 7= (m+D/m and 2z = = we can see that L(\) is unitary equivalent to the

-
semiclassical Hamiltonian 72 L(z) where

L(z) = —h*A, + (P(z) — 2)*. (3.6)

L(z) is the h-Weyl operator with the symbol L(z,z, ) = £2 + (P(z) — z)°. For
semiclassical analysis tools and i-Weyl quantization we refer to [B] Here we use



the notation H for the h-Weyl quantization of the symbol H or for convenience,
H = Opp (H).

Using semiclassical operator calculus, we can construct a good parametrix
for L(z)~! for z € A where A is the sector

A={z€C, |z| >ry, 7/2+ 3 < arg(z) <3n/2—0}; 9 >0, d>0.

Theorem 3.1 There ezists a semiclassical symbol K™ (2), z€ A, 0 < h < 1,
such that

KM (z26) = thjKZj(z§I’f)v
§>0
P = OpP(En(2)). (8:7)

Moreover the asymptotic expansion has the following meaning: for every N > 1
we have

L(z).0pp | S W¥EKy(2) | =1+ BNT20p8 (RY(2))
0<j<N

where the symbol Rg;\), (2) satisfies the following estimates :

for every o, 3 € N we have

agB (R (. p(x, €)™ + |2lp(z, O™ —2N—|a|—|]
awag (R2N(Z7:E7£))‘ S C(Nvaaﬁ) u(z,§)2m+|z|2 u(xué-) N

(3.8
for every a, 3 € N4, where C(N,a, 3) is uniform in z € A and where pu(z, )
(1 |z[>™ + €[ 1/2m.

sketch of proof. The method to get such result is standard and was used
many times to construct parametrix of elliptic pseudo-differential operators [@]
Usually the z-dependence is linear but here it is quadratic. Moreover here
we need accurate estimates for the remainder term in the product of pseudo-
differential operators depending on parameters. The necessary estimates for

[N

Rg;\), (z;x,&) are established using the technics coming from the papers [ﬂ, E]
An other difficulty here is that we shall need to compute the symbols Ky, for j
large enough. This computations are not easy, so we have to be explicite as far
as possible.

Using the product formula for A-pseudodifferential operators, we get at the
initial step:

1 1
Ko(z;2,€) = = 3.9
o508 = T e T T (P = 2 (39)
and the induction formula
Kyj=-Ko| Y > T(on #0207 L(2)00 05 Ko (3.10)

0<0<j—1 [al+|B|=2(i—4)



where T'(a, 8) = 2;%))‘2‘,@ Let us compute Ky and Ky.
 La(z)  Ls(z)
S chSzE)
Ly(z) = (P(x) —2)AP(z )+ [VP(z)[%,
Ly(2) = =2[(P(z) = 2)D*P(x)¢ - £+ (VP(x) - §)* + (P(x) — 2)*[VP(2)*],

where D?P(z) is the Hessian matrix of P in variable z.
Now using (B.1(]) we have

Ky = —Ko{zwz4 T(0, )92 L(2)00 Ko + 3oy T, 008 L(2) 02 K
+ Y522 D0, )L L(= )agKQ)}. (3.11)

By induction on j, we easily get that

Koj(z,8) = Y Qz( ’5), (3.12)

E+1
JH1<k<3j (52 é)

2z, P — 2,€) is a polynomial in ((P — 2), &), with a total degree < k —2, with
coefficients depending on derivatives of P( ). _
The following lemma will be useful later. Let us denote val[Qij ], the valuation of

Qij as a polynomial in P —z, . Let us recall the definition of valuation. Denote
by Z the ideal with generators &, -+ ,&q, P — 2, in the ring C° (R x R,). If
Q € C®(Re x R,), val[Q)] is the biggest integer p such that @ € Z?.

Lemma 3.2 We have
val[Q}] > 2(k — 1 — 2j), for 2j+2 <k <3j, and j > 1.

Proof. This is easily proved by induction on j, using (B.19) and the following
formula. Let @ and L be smooth functions in R™, a multiindex o € N”, then

we have
50¢—7Q(371 L)“l o (aw L)ue
(LkJrl) Z C s k) ! (3.13)

where in the sum we have the conditions, v; € N, u; € N, v < o, pp 4+ - g = p,
pilya| =+ -+ pelvel = |yl O

Remark 3.3 The parametriz computed above is enough to get qualitative infor-
mations. Quantitative informations are much more difficult to get except for the
first orders (] =0,1). When j is larger it is not so easy to compute explicitely
the terms Qk (x, P — z,).



Remark 3.4 [t is not difficult to extend the above results when the elliptic
polynomial P(x) has lower terms: P = Py, + Py_1+ - P1 + Py where P; is
homogeous with degree j and P, (z) > 0 for x € RN\{0}. Then we have

P(rt/my) = 7P (y)

with ¢ = 7= Y™ = R/ MY and PE) (y) = P (y) + ePm_1(y) + - - + ™ Po(y).
So P©) is a uniform elliptic family of polynomials and we can easily see that
the constructions in are uniform in the small parameter e.

4 A trace formula

Recall that Sp[L] denote the generalized eigenvalues of the quadratic family
L(z), my is the multiplicity of the eigenvalue A. Let f an holomorphic function
in A such that

[f(2)| <CA+|z])7H, VzeA. (4.14)

For our applications we shall choose f(z) = (2 4+ A)™#, for a suitable parameter
A € C. Let be ' a complex contour in A defined as follows.

T = {reT% > 1o} U{ree?, 6y <0 <21 — 6},

where 79 > 0 and § < fp < .
Proposition 4.1 Assume that > %. Then f(AL) is a trace class oper-
ator and we have

Tr(f(AL) = Y maf(\) = Tr] f{ L(z) 'L/ (2)f(2)dz], (4.15)
X€eSP[L] r
where § F(2)dz = 5= [ F(2)dz (contour integral in the complex plane).

Proof. This a direct consequence of the Cauchy integral formula and Theorem

B4 o

Theorem 4.2 For f as above, for every d > 1 we have in the semiclassic regime
R\, 0, modulo O(h+*°),

S maf) = Yo (Hr e (4.16)

A€ESpIL] 720

If d is odd,
s (f)=0 (4.17)

and for d even,

e (p) =212 em = [ [ pPe) +dsan @



For the other terms (j > 1) we have the following qualitative information
= Y [ @O e@)s (119)

where Aaj i (x) are polynomials in ) P(x), |v| < 2§ and n; depends on j.
Moreover if d is odd, then Cé;l)(f) =0 ford>45+1]|

Proof. The asymptotic expansion ) is a direct consequence of (@) and
usual properties of trace operation for Weyl quantization.

Let us compute C’éd)( f). We have the integral formula:

f €2 + (If 2 )2f( z)dzdéd,

where dz = (2r)~?dz. By the residue theorem we get

// x) +il¢]) + f(P(x) — il¢])]déd.
Rded

For a > 0 we have

], o ez =t [[ (1P + s

So by analytic extension and evalution at a = i we get formula (£.17) and (.19).
In particular we see that for d even, there exists f satisfying (it.14]) such that

d
Cy"(f) # 0.
For j > 1, using (B.19), we have

c5(f) / / ]{ > A P(z) _;()Z;’; %’,ﬂgj)_z’@ f(z)dzd¢dz. (4.20)

]+1<k<3]

Let us now prove that Cé;l)(f) =0,for4j+1<d.
To do that it is convenient to introduce the following integral, for v > 0,v > 0,

T fw0) = B ey (a.21)

We have easily
8k
Jk,l/f(u?v) = ( k') au

And using the residue theorem, we get

(u,v). (4.22)

Z'uflu(ufl)/2

JO,Uf(uv’U) = 2

(0" e+ iva) + flo—iv).  (4.23)



From ([.29) and ([:23) we can compute Jj, f(u, v).

To prove that C’é;l)(f) =0 for d > 45 + 1, we shall prove that each term in the
sum () vanishes, after integration in z and &.

Suppose first that j +1 < k <25+ 1. We have

Y (@, P(a) —z,6) = ZRM — 2,

Hence

is a sum of integrals l1ke

ep e f P@ =2
(D6 = § Fo o e

By integration by parts in z we have

V ook—

ST — ) (424)

Iz]f+1(f) =

So, we can assume that v = 0. But we have

1\ ae
10,8 = ST g g, ) e

So we have I{(g)(x,&) = O(|¢]>~%) near ¢ = 0. Now we remark that for
£ <2j+1and d > 45 + 1 we have { < %—i— 1, hence ¢ — I§(g)(x,&) is
integrable and, using the analytic dilation argument already used for j = 0, we
get 15(g)(x, &) = 0, hence

/]{ 2(P(z) — 2)Q¢ (z, P(x) — Z’Qf(z)dzdg =0.
T

L(z; @, M

Now, assume that 2j + 2 < k < 3j5. Using Lemma.@, we have

ij(x, P(z) — 2,¢) = Z R, ,(z)(P(x) — 2)"¢.

vty [>2(2k—1-27)

As above, we integrate by parts in z to have the possibility to put v at 0 and
then we use &7 to decrease the or(Qier of the singularity in & as far as possible
(integrability near £ = 0) of fr LQk—’f:ldz. We conclude by the analytic dilation
argument. O
So, we have proven that in odd dimension d, Cé?)(f) =0if 25 < %.

We conjecture that the next following terms are not 0; more precisely we claim:
Conjecture: For every j € N, j > 1, there exists f satisfying () such that
we have we have

Ci7 () #0, and C{P7(f) #£0 (4.25)



In the following sections we shall check this conjecture for d = 1,3 and we

shall compute analytic formula for Cf)( f) and C’f)( f). Unfortunately, these

analytic expressions have many terms and it is not obvious that Cid) (f) #0 for
d = 5,7, for every elliptic polynomial P. We shall see that this is true for convex
polynomials for d = 7 and satisfying a technical condition if d = 5. Moreover
we get, using numerical computations for particular non-convex polynomials P,

that C{V(f) #0.

As we shall see in the next section, the property Cé‘;) (f) # 0 gives easily a lower
bounds on the density of eigenvalues.

Remark 4.3 Following Remark we can extend our results to polyhomoge-
neous polynomials P = Py, + P11+ --- P1 + Py. To follow the dependence in
the coefficients, we note Coj(f, P) the coefficient Ca;(f) with polynomial P.

In particular we have Cé?)(f,P(a)) =0, ford > 45 + 1 and for every € small
enough. Assume now that d = 4jo — 3 or d = 459 — 1, jo > 1. Then using a
Taylor expansion in e, computed for ¢ = KM+ we get

Coy(f, PRy < 3 i/ ), (4.26)
k>0

in particular vy = C’é?g(f, P,,) which is supposed to be not 0, as we have ex-

plained before.

5 Estimate the density of eigenvalues

First of all let us remark that the nonlinear spectrum Sp[L] of L is included in
the two quarters {z € C, (z) >0, £3(z) > 0}.
On one side, it is easy to see that if A € R and L(A\)u = 0 then u = 0. On the
other side, if R(A) < 0 and L(A)u = 0, computing S((L(N)u,u)) we conclude
that u = 0.

Let us denote by Nj(R) = #{z € Sp[L]; |2| < R} and N(R) = Nj—1(R).

Proposition 5.1 For every real p, > d(m + 1)/m, there exists C > 0 such
that
Ni(R) < CLR*h™4, VR > 1, Vh €]0,1]. (5.27)

If C'é;l)(f) # 0 with d > 2j, then for every r > 0, ¢ > 0 there exists ce, > 0
such that
Np(rh™%) > c..h%, Vh€0,1], (5.28)

where § = d — 2j. Moreover if j = 0 (d even) then the estimates is valid with
e =0. So that, in even dimension, for every R > 0, Nu(R) behaves like h=?.

Proof. The proof of () is a direct consequence of Weyl-Ky-Fan inequality

||

We first remark that for every € > 0 there exists R. > 0 such that if

—x/2—e<agz<m/2+e |ul> R
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then we have
[t+21* > (1 —e)(#* +|2).

Let us choose f(A) = (A +t)~# with k large enough (¢ > d(m + 1)/m) and
t > 0. We apply (f.16) to get the following inequalities

Cth? < | > (t+2)7H< D ft+z™<C > (t+]z)7"
2eSp[i] z€Sp[L)] z€Sp[L]

But for every u, u1, large enough, such that u — p is large enough, we have

Do) <RI (A [y
z‘ifgg] zESp[f/]

We choose now R = 1rh™° to get

Na(rh™®) > Y (14 [ul) ™ > ccrh™®
[u|<R

O
The above results concern the semi-classical regime. Now we give estimates
for h =1 and high energy regime

Corollary 5.2 For R /' 400 we have
N(R) = O(RIm+1)/m),

If Cé?)(f) # 0 with d — 2§ > 0, then for every € > 0 there exits c. > 0 such that
e RO/ m=c < N(R)

If 7 = 0, the estimate is true with € = 0 and ¢y > 0.

6 1-d and 3-d cases

In this section we prove the following result.

Theorem 6.1 For d = 1,3, there exits f satisfying ) such that for every
m > 2, we have C’éd)(f) # 0. More precisely, we have

() = =35 [ IOP@P @ (6:29)
) = g5 [ I P@IVPEs (6.30)

We can choose f(A) = (A+1t)™# with > d(m+1)/m and t > 0.
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Proof. We compute with the explicite form we got before for K. We have, for
d=1,3,

C'Qd(f, x) = —Qﬁ(P — 2)Hadz,

where Hoy = Kod€. But we have
R4

Hy=(P— z)d’5AP(b3 - 2b471) + (P —2)4 v PP (b3 — 2, — 2b471),

hence
V() = %(gbu - %bg,o + §b4) /R FO(P(2) P (x)2dz. (6.31)
s (f) = —E—G/Rf(S)(P(x))P’(x)%x (6.32)
()= 5 )(4b41—2b4—2b3 / [ (P@)IVPR@de  (633)
and
(
() =35z | £ P@)IVPE @) (6.31)
O

We have seen that for d odd, d > 5, Cz(d)(f) = 0. So we have to compute
c\V(f) for d = 5,7.

7 5-d and 7-d cases

We have to compute in more details the term K4 from () Recall that we
have

i’ (=2 $(P-2) ( | K4(z;:c,§)d§> f(2)dzdv.  (735)

We have to compute the following three integrals, depending on z € R? and
z e C.

O _ . 1 3 1 Al —

1 = 109 [ e (Frem ) €0 =
19 = N0 [ o (R Kl ol =2 (730
19 = 108 [ teds 16=2 (7.37)

(7.38)
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Using the new variable n such that £ = (P — z)n (plus an analytic extension),
we get

w____af) 1 1 1
Iy~ = (P(z) — 254’ a(f) = 671 /Rd 1+|n|285 (1+ |77|2) dn.  (7.39)

a(B) # 0 only when 8 = (081, -, fq) is such that 5; =4 and 8, = 0 for k # j
orBi=0,=2,jFkand B, =0if £ # j, L # k.
In the first case a(3) = a1 and in the second case a(3) = az where

L[ (g — (14 nP?)?

- 1 dn, 7.40
W= 56 S APy (7.40)

2.2
mna
= — =2 __dn. 7.41
2 / 1+ 2" (741)

It is convenient to introduce the following notations.

dn / nkdn / nkngtdn
= oy bk = s bk = o (7.42
/Rd TPy 4= e T mEe 5= fa i 742

where j, k, ¢ € N are such that the integrals are finite. Of course these integrals
can be computed with the Euler beta and gamma special functions (see appendix
for more explicite expressions).

So we have a; = %b672 — %b571 + 91_6b4 and a2 = b61171.

Using integration by parts, in x or in £, we get the following formulas

Cu(f) = /Rd Ca(f;x)da (7.43)
where
Cu(fix) = Can(fix) + Caa(fi) + Caa(fix) (7.44)
and
Culfin) = 24P-2) ¥ (2P -271) f(a)i (7.45)
r |B]=4

Ciati) = 2 X 1) f ([ aedepor (5 ) ade) riepieas)

|| =2
Coslfiz) = 2 ﬁ (P — )00 L) f(2)dz. (7.47)

Now we compute each term. After elementary but tedious computations we get
the following results, using the notations:

0 5 9? 5 0?
9; = E 9; = 92’ Ok = 22 (7.48)
Tj Zj Tj, Tk
1 1 1
= Zbgo—=b —b 4
ay g2~ 3 5,1 1 964 (7.49)

ag = b6_’171 (750)
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For , we have
Cur(fiz) = —20f(P [al Y 0P+ ay 327 ] (7.51)
1<5<5 i<k
+8f/(P) [al 3 (2P +a Z(afykpﬁ],
1<5<5 j<k
E Es
Caalfir) = ZLP(P) =22 (P) + 225 (p), (752)
G G
Caa(fr2) = 7f’( )= "R+ IO P). (7.53)
where
E. = (AP)? (b4 b5 — 2b5.1 + 4b6,1), (7.54)
By = |VP|2AP(b4 + 126 — 10b5 — 2b5.1 + 16b.1 — 16b7,2), (7.55)
By = |VP|4(20b6 — 6bs — 16by + 16by; — 12b671), (7.56)
Gi = (AP)*(12bgy — 2bs) — 16b72 Y (97 P)? (7.57)
J
—32b711 Y (97 P)(OFP) —16b711 » (97, P)?,
Jj#k J#k
Gy = AP|VP|2‘(241)&1 — 16by.y — 4bs + 4b6) — 32by, Z(ajpz)(ajp)z
—32b711 Y (97 P)(0kP)* — 64br.11 Y (07,)(9;P)(0xP),  (7.58)
J#k J#k
Gy = |VP|4(12b611 — 16byy — 2bs + 4b6) —16b7.2 > (9, P)*
J
—48b711 Y (9;P)* (9 P)*. (7.59)
ik

Finally, we get

Ci(f;2) = Ao(2)f(P(2)) + A1 () f' (P(2)) + Az(2) £ (P(x)) + As(2) f @ (P(2)),
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Ao(z) = —2Oa1284P 20az Y | 20RP, (7.61)
J<k
Ai(z) = 8(ay —bm)Z(af )2+ 4(az — 2b71) Y (07, P)? (7.62)
J J#k
AP)?
+( 5 ) (b4 — 4bs — 2b5,1 + 16b671) — 161)771)1 Z(afP)(a,fP),
#k
PI2AP
AQ(I) = % (14b5 — 16bg — bs + 2b5,1 — 40bs 1 + 321)771) (763)
+8b72 Y (07P)(0;P)* + 8br.11 Y (97 P)(0P)>
j ik
+16b7.1.1 > (97, P)(9;P)(0kP),
ik
VP! 4
As(z) = | - | (24b6—8b5—16b7) —§b7,2;(ajp)4
—4br11 ) (0;P)*(0P)*. (7.64)
#k
Using explicit computations (see Appendix), we get
_ 4 2
Ao@) = o Za p-T = Za P, (7.65)
i<k
M) = —11—” @2PY + (02, P’ (7.66)
! TR0 & 480 Pk '
J j#k
—W—B(AP)Q T > (@3P) (83 P)
160 240 £="7 k27
Jj#k
3
_ o 2 D2
Ay(z) = 96VP| AP+ 2o (aJ P)(8; P) (7.67)
2 2 2 2 2
P P)(0,P)(8x P
+780 > (@2P) (0 P)* + 210 > (@2, P)(0;P)(0kP),
Jj#k J#k
Ase) = VP = ST 0,P) - D S0, PR(0 PR, (7.69)
W= Thre 960 &/ 960 2= RED AL
For we have

Ca(f;z) =

Ao () f(P(x)) + A f'(P(2)),

(7.69)



15

P2PAP
Ao(I) = % (14b5 — 16bg — bs + 2b5,1 — 40bs 1 + 32()711) (770)
+16b72 > (07P)(9;P)* + 16b711 Y (07 P)(0kP)?
J J#k
+32b71.1 > (97, P)(9;P) (0 P),
i#k
VP!
Al (x) = % (24b6 - 8b5 - 16b7) - 8()7)2 Z(@P)‘*
J
—24b711 Y (9;P)* (0 P)*. (7.71)
Jj#k

Using explicit computations as for d =5 (see Appendix), we get

7 3
Ao(w) = 155 D OIP) PP + 55> (97P)(OkP)?
j ik
3
T
180 Z(af,kp)(ajp)(akP% (7.72)
J#k
M) = VP - TS 0P 2 S P PP (1)
W= o0 210 £ 210 2 WO AT

We should like to use these formulas with f(A) = (A +¢)7#, p > d(m +1)/m
and ¢ > 0, to prove that Cid)(f) = Jga Cu(fix)dz #0 (d=5,7).
With f like above, we can see easily that C’id)( f) # 0 for the following polyno-
mials:
[ P@)= Y aual,a;>01<j<d d=5T.
1<5<d
P(z) = Z 0 k% jTk, is a positive-definite quadratic form, d = 5,7
1<j,k<d
d =7 and P is convex.
d =5, P is convex and satisfies the inequalities

Y Fopp < 2> 9P (7.74)
1<j<k<5 1<5<5

Z(aﬁkp)z < 1ur Yy (afp)2 (7.75)

ik 1<j<5

For non-convex polynomials, we can check that Cid)( f)#0,d=05,7, for many
examples with numerical computations, supporting our conjecture that for every

elliptic polynomial P, Cid)(f) # 0, if d = 5, 7(see Appendix).
For d = 9,11, it seems difficult to compute Céd)( f) by hand. We need more
help from symbolic and numerical computations to check our conjecture.



8 appendix

8.1 Formulas for b;;

We assume d > 3 and 25 — ¢ > 1. We have

teo g 1_qg+1 qg+1
" gr=-pl 1T
‘/0 (1+7,2)J r 2 ( 9 )] )

where

1
B(z,y) :/O "1 —t)vldt = T

So computing in polar coordinates,

(z+y)

(g TG = d/2)
o I'()

Now, by elementary computations we get easily

bald) = 3(by1(d) ~ b;(d))
ba(d) = BG/2.5— - 1)
biia(d) = éB(?),j_ﬂ)bj(d_Q).

8.2 Numerical computations for C,(f)

['(z)l'(y)

16

(8.76)

(8.77)
(8.78)

(8.79)

The following computations has been performed by Guy Moebs, Research En-

gineer, Laboratoire Jean-Leray, CNRS-University of Nantes.

The method used to compute multi-dimensional integrals is Monte-Carlo,
with a cut-off of the domain to reduce it in a bounded domain fitting with the

behaviour of the polynomial P.

In each example, 100 simulations are computed with at least 10° events.

d
Example.1 d = 5, polynéme P(x) = fol + ax12x52

j=1

a| Cu(f)

7 1428

10 1515

100 9 237

1000 | 235 115
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d
Example.2 d = 7, polynéme P(x) = fol + ax12x22 + x32x42
j=1
2 Bl Calf)
7 7 409
7 10 423
71 100 | 1 806

71 1000 | 39 646

10 10 434
10| 100 | 1705
10 | 1000 | 36 724
100 | 100 | 1735
100 | 1000 | 19 587
1000 | 1000 | 18 270

d

Example.3 d = 5, polynéme P(x) = ZXJ-B + ax12x2% + Ox3?x,?

j=1

(a,8) | Cu(f)
(100, 10) | 11 732
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