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Asymptotic expansion for nonlinear eigenvalue problems

In this paper we consider generalized eigenvalue problems for a family of operators with a quadratic dependence on a complex parameter. Our model is

.

Introduction

Let us introduce the following family of differential operators, L(λ) = -△ x + (P (x)λ) 2 (1.1)

where △ x is the Laplace operator in R d x , λ is a complex parameter, P is a polynomial of degree m ≥ 2 such that the leading homogeneous part P m of P satisfies P m (x) > 0 for every x ∈ R d \{0} (in other words we say that P is a positive-elliptic polynomial). Such family of operators play an important role when studying analytic smoothness of solutions of differential operators with multiple characteristics (see [START_REF] Helffer | Semiclassical analysis of a nonlinear eigenvalue problem and analytic hypoellipticity[END_REF] and references there). They also appear in the theory of damped oscillations in mechanics [START_REF] Friedman | Nonlinear Eigenvalue Problems[END_REF][START_REF] Krein | On the mathematical principles in the linear theory of damped oscillations of continua I[END_REF]. The question we want to adress here is: "does there exist λ ∈ C and u in the Schwartz space S(R d ), u = 0, such that L(λ)u = 0?" In [START_REF] Chanillo | Nonlinear eigenvalues and analytic hypoellipticity[END_REF] the authors have proven existence of non trivial solutions for 1 ≤ d ≤ 3, assuming that m is large enough for d = 3. After, Helffer-Robert-Wang proved in [START_REF] Helffer | Semiclassical analysis of a nonlinear eigenvalue problem and analytic hypoellipticity[END_REF] the following result.

Theorem 1.1 Assume that d is even and that P is a positive-elliptic polynomial of degree m ≥ 2. Then there exist λ ∈ C and u ∈ S(R d ), u = 0, such that L(λ)u = 0.

The proof given in [START_REF] Helffer | Semiclassical analysis of a nonlinear eigenvalue problem and analytic hypoellipticity[END_REF] shows that there exist an infinite number of such eigenvalues [START_REF] Robert | Nonlinear Eigenvalues Problems[END_REF] located in the half-plane {λ ∈ C, ℜλ ≥ 0}. But it is not known if the generalized eigenfunctions span all the Hilbert space L 2 (R d ), excepted for d = 1 [START_REF] Pham The Lai | Sur un problème aux valeurs propres non linéaire[END_REF]. For d odd , d ≥ 3, m ≥ 2, the problem of existence of non zero solutions is still open and it was conjecture in [START_REF] Helffer | Semiclassical analysis of a nonlinear eigenvalue problem and analytic hypoellipticity[END_REF] that such solutions exist whatever the dimension d.

In this paper we prove that this is true for every elliptic polynomial if d = 3 and for large classes of elliptic polynomials for d = 5, 7. We also discuss a numerical approach to prove that some coefficient in a semi-classical trace formula is not zero. For d ≥ 9 we conjecture that this coefficient is not zero hence there exist an infinite number of nonlinear eigenvalues.
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nonlinear eigenvalue problems

In this section we recall some known properties concerning nonlinear eigenvalue problems. For more details we refer to [START_REF] Gohberg | Introduction à la théorie des opérateurs non nécessairement auto-adjoints[END_REF][START_REF] Markus | Introduction to the spectral theory of polynomial operator pencils[END_REF][START_REF] Robert | Nonlinear Eigenvalues Problems[END_REF]. Let us consider the quadratic family of operators L(λ) = L 0 + λL 1 + λ 2 where L 0 , L 1 are operators in an Hilbert space H. L 0 is assumed to be self-adjoint, positive, with a domain D(L 0 ) and L 1 is

√ L 0 -bounded. Moreover L -1/2 0
is in a Schatten class C p (H) for some real p > 0. The following results are well known.

Theorem 2.1 L(λ) is a family of closed operators in H. λ → L -1 (λ) is meromorphic in the complex plane. The poles λ j of L -1 (λ), with multiplicity m j , coïncide with the eigenvalues with the same multiplicities, of the matrix operator A L in the Hilbert space

H × D(L 1/2 0 ), with domain D(A L ) = D(L 0 ) × D(L 1/2 0 )
where

A P = 0 I -L 0 -L 1 . (2.2) 
Let us denote Sp[L] the eigenvalues of A L (which coïncide with the poles of L -1 (z)).

Remark 2.2 It may happens that Sp[L] is empty.

The following one dimensional example is interesting and was discussed in [START_REF] Pham The Lai | Sur un problème aux valeurs propres non linéaire[END_REF][START_REF] Christ | Analytic hypoellipticity, representation of nilpotent groups and non-linear eigenvalue problem[END_REF][START_REF] Christ | Examples of analytic non-hypoellipticity of ∂b[END_REF].

L m,g (λ) = - d 2 dx 2 + (x m -λ) 2 + gx m-1 . (2.3)
For every m ≥ 2, m even, L m,0 has infinity many eigenvalues but L m,m has no eigenvalue. The last statement is a consequence of the factorization

L m,m (λ) = (x m -λ + d dx )(x m -λ - d dx ).
So, we can compute all solutions for the equation L m,m (λ)u = 0 and see that a non-null solution u is never bounded on R.

But if m is odd, L m,m (λ)u = 0, has infinity many eigenvalues on the imaginary axis [START_REF] Christ | Examples of analytic non-hypoellipticity of ∂b[END_REF].

On the other side there exist sufficient general conditions to have Sp[L] = ∅ [START_REF] Gohberg | Introduction à la théorie des opérateurs non nécessairement auto-adjoints[END_REF][START_REF] Markus | Introduction to the spectral theory of polynomial operator pencils[END_REF]. Unfortunately these conditions are not fulfilled for our example

L(λ) = -△ x + (P (x) -λ) 2 when d ≥ 2.
The following formula appears for the first time in [START_REF] Kh | Trace formula for polynomial operators and its applications[END_REF] and will be very useful for our purpose.

Theorem 2.3 For k large enough (k ∈ N, k > p) and for z ∈ C\Sp[L],
we have

Tr(A L -z) -k-1 = -1 k! Tr[ d k dz k (L(z) -1 L ′ (z)], (2.4) 
where each above operators are trace class.

Using Lidskii Theorem [START_REF] Gohberg | Introduction à la théorie des opérateurs non nécessairement auto-adjoints[END_REF] and (2.4), we get

λ∈Sp[L] m λ (λ -z) -k-1 = -1 k! Tr[ d k dz k L(z) -1 L ′ (z)) ]. (2.5) 
where m(λ) is the multiplicity of the eigenvalue λ.

As it was nicely remarked in the paper [START_REF] Chanillo | Nonlinear eigenvalues and analytic hypoellipticity[END_REF], a sufficient condition for Sp[L] = ∅ is that the r.h.s in (2.5) is not zero. To check this property a natural method is to introduce parameters and use semiclassical analysis. In [START_REF] Helffer | Semiclassical analysis of a nonlinear eigenvalue problem and analytic hypoellipticity[END_REF] the authors also use Lidskii theorem and semi-classical analysis on the matrix system A L . Here we consider more directly the scalar family of operators L(z) where computations are easier even if the dependence in z is nonlinear.

Semiclassical parametrix

For simplicity we assume here that P is homogeneous of degree m ≥ 2 and P (x) > 0 for x ∈ R d , x = 0. By the scaling transformation x = τ 1/m y with = τ -(m+1)/m and z = λ τ we can see that L(λ) is unitary equivalent to the semiclassical Hamiltonian τ 2 L(z) where

L(z) = -2 △ x + (P (x) -z) 2 . (3.6)
L(z) is the -Weyl operator with the symbol L(z, x, ξ) = ξ 2 + (P (x)z) 2 . For semiclassical analysis tools and -Weyl quantization we refer to [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]. Here we use the notation Ĥ for the -Weyl quantization of the symbol H or for convenience, Ĥ = Op w (H).

Using semiclassical operator calculus, we can construct a good parametrix for L(z) -1 for z ∈ Λ where Λ is the sector

Λ = {z ∈ C, |z| ≥ r 0 , π/2 + δ < arg(z) < 3π/2 -δ}; r 0 > 0, δ > 0. Theorem 3.1 There exists a semiclassical symbol K ( ) (z), z ∈ Λ, 0 < < 1, such that K ( ) (z; x, ξ) ≍ j≥0 2j K 2j (z; x, ξ), L(z) -1 = Op w (K (z)).
(3.7)

Moreover the asymptotic expansion has the following meaning: for every N ≥ 1 we have

L(z).Op w   0≤j≤N 2j K 2j (z)   = I + 2N +2 Op w R ( ) 2N (z)
where the symbol R ( ) 2N (z) satisfies the following estimates : for every α, β ∈ N d we have

∂ α x ∂ β ξ R ( ) 2N (z; x, ξ) ≤ C(N, α, β) µ(x, ξ) 2m + |z|µ(x, ξ) m µ(x, ξ) 2m + |z| 2 µ(x, ξ) -2N -|α|-|β|
(3.8) for every α, β ∈ N d , where C(N, α, β) is uniform in z ∈ Λ and where µ(x, ξ) = (1 + |x| 2m + |ξ| 2 ) 1/2m . sketch of proof. The method to get such result is standard and was used many times to construct parametrix of elliptic pseudo-differential operators [START_REF] Seeley | Complex powers of an elliptic operators, Singular Integrals[END_REF]. Usually the z-dependence is linear but here it is quadratic. Moreover here we need accurate estimates for the remainder term in the product of pseudodifferential operators depending on parameters. The necessary estimates for R ( ) 2N (z; x, ξ) are established using the technics coming from the papers [START_REF] Dauge | Weyl's formula for a class of pseudodifferential operators with negative order on L 2 (R n )[END_REF][START_REF] Bouzouina | Uniform semiclassical estimates for the propagation of quantum observables[END_REF]. An other difficulty here is that we shall need to compute the symbols K 2j for j large enough. This computations are not easy, so we have to be explicite as far as possible. Using the product formula for -pseudodifferential operators, we get at the initial step:

K 0 (z; x, ξ) = 1 L(z; x, ξ) = 1 |ξ| 2 + (P (x) -z) 2 (3.9)
and the induction formula

K 2j = -K 0   0≤ℓ≤j-1 |α|+|β|=2(j-ℓ) Γ(α, β)∂ α ξ ∂ β x L(z)∂ β ξ ∂ α x K 2ℓ   (3.10)
where Γ(α, β) = (-1) |β| 2 2(j-ℓ) α!β! . Let us compute K 2 and K 4 .

K 2 = L 2 (z) L 3 (z) + L 3 (z) L 4 (z) , L 2 (z) = (P (x) -z)△P (x) + |∇P (x)| 2 , L 3 (z) = -2[(P (x) -z)D 2 P (x)ξ • ξ + (∇P (x) • ξ) 2 + (P (x) -z) 2 |∇P (x)| 2 ],
where D 2 P (x) is the Hessian matrix of P in variable x. Now using (3.10) we have

K 4 = -K 0 |β|=4 Γ(0, β)∂ β x L(z)∂ β ξ K 0 + |α|=2 Γ(α, 0)∂ α ξ L(z)∂ α x K 2 + |β|=2 Γ(0, β)∂ β x L(z)∂ β ξ K 2 ) . (3.11) 
By induction on j, we easily get that

K 2j (z; x, ξ) = j+1≤k≤3j Q 2j k (x, P -z, ξ) L(z; x, ξ) k+1 , (3.12 
)

Q 2j k (x, P -z, ξ
) is a polynomial in ((Pz), ξ), with a total degree ≤ k -2, with coefficients depending on derivatives of P (x).

The following lemma will be useful later. Let us denote val [Q 2j k ], the valuation of Q 2j k as a polynomial in Pz, ξ. Let us recall the definition of valuation. Denote by I the ideal with generators

ξ 1 , • • • , ξ d , P -z, in the ring C ∞ (R ξ × R x ). If Q ∈ C ∞ (R ξ × R x ), val[Q] is the biggest integer p such that Q ∈ I p . Lemma 3.2 We have val[Q 2j k ] ≥ 2(k -1 -2j), for 2j + 2 ≤ k ≤ 3j, and j ≥ 1.
Proof. This is easily proved by induction on j, using (3.12) and the following formula. Let Q and L be smooth functions in R n , a multiindex α ∈ N n , then we have

∂ α Q L k+1 = C(µ j , γ k ) ∂ α-γ Q(∂ γ1 L) µ1 • • • (∂ γ ℓ L) µ ℓ L µ+k+1 (3.13)
where in the sum we have the conditions,

γ j ∈ N n , µ j ∈ N, γ ≤ α, µ 1 +• • • µ ℓ = µ, µ 1 |γ 1 | + • • • + µ ℓ |γ ℓ | = |γ|. ⊓ ⊔ Remark 3.3
The parametrix computed above is enough to get qualitative informations. Quantitative informations are much more difficult to get except for the first orders (j = 0, 1). When j is larger it is not so easy to compute explicitely the terms Q 2j k (x, Pz, ξ).

Remark 3.4 It is not difficult to extend the above results when the elliptic polynomial P (x) has lower terms: P = P m + P m-1 + • • • P 1 + P 0 where P j is homogeous with degree j and P m (x) > 0 for x ∈ R d \{0}. Then we have

P (τ 1/m y) = τ P (ε) (y)
with ε = τ -1/m = 1/(m+1) and P (ε) (y) = P m (y) + εP m-1 (y) + • • • + ε m P 0 (y). So P (ε) is a uniform elliptic family of polynomials and we can easily see that the constructions in (3.8) are uniform in the small parameter ε.

A trace formula

Recall that Sp[L] denote the generalized eigenvalues of the quadratic family L(z), m λ is the multiplicity of the eigenvalue λ.

Let f an holomorphic function in Λ such that |f (z)| ≤ C(1 + |z|) -µ , ∀z ∈ Λ. (4.14)
For our applications we shall choose f (z) = (z + λ) -µ , for a suitable parameter λ ∈ C. Let be Γ a complex contour in Λ defined as follows.

Γ = {re ±iθ0 , r ≥ r 0 } ∪ {r 0 e iθ , θ 0 ≤ θ ≤ 2π -θ 0 },
where r 0 > 0 and π 2 < θ 0 < π.

Proposition 4.1 Assume that µ > d(m+1) m . Then f (A L ) is a

trace class operator and we have

Tr(f(A L ) = λ∈Sp[L] m λ f(λ) = Tr[ Γ L(z) -1 L′ (z)f(z)dz], (4.15) 
where Γ F (z)dz = 1 2iπ Γ F (z)dz (contour integral in the complex plane). Proof. This a direct consequence of the Cauchy integral formula and Theorem 2.4. ⊓ ⊔ Theorem 4.2 For f as above, for every d ≥ 1 we have in the semiclassic regime ց 0, modulo O( +∞ ),

λ∈Sp[L] m λ f (λ) ≍ j≥0 C (d) 2j (f ) 2j-d . (4.16) If d is odd, C (d) 0 (f ) = 0 (4.17)
and for d even,

C (d) 0 (f ) = 2(-1) d/2 (2π) -d R 2d f (P (x) + |η|)dxdη. (4.18)
For the other terms (j ≥ 1) we have the following qualitative information

C (d) 2j (f ) = 0≤k≤nj R d A 2j,k (x)f (k) (P (x))dx, (4.19) 
where A 2j,k (x) are polynomials in ∂ γ x P (x), |γ| ≤ 2j and n j depends on j.

Moreover if d is odd, then C (d) 2j (f ) = 0 for d ≥ 4j + 1 .
Proof. The asymptotic expansion (4.16) is a direct consequence of (3.8) and usual properties of trace operation for Weyl quantization. Let us compute C (d) 0 (f ). We have the integral formula:

C (d) 0 (f ) = - Γ 2(P (x) -z) |ξ| 2 + (P (x) -z) 2 f (z)dzdξ dx,
where dx = (2π) -d dx. By the residue theorem we get

C (d) 0 (f ) = R d ×R d [f (P (x) + i|ξ|) + f (P (x) -i|ξ|)]dξ dx.
For a > 0 we have

R d ×R d (f (P (x) + a|ξ|)dξ dx = a -d R d ×R d (f (P (x) + |ξ|)dξ dx.
So by analytic extension and evalution at a = i we get formula (4.17) and (4.18). In particular we see that for d even, there exists f satisfying (4.14) such that C (d) 0 (f ) = 0.

For j ≥ 1, using (3.12), we have

C (d) 2j (f ) = Γ j+1≤k≤3j 2(P (x) -z)Q 2j k (x, P (x) -z, ξ) L(z; x, ξ) k+1 f (z)dzdξ dx. (4.20)
Let us now prove that C (d) 2j (f ) = 0, for 4j + 1 ≤ d. To do that it is convenient to introduce the following integral, for u > 0, v > 0,

J k,ν f (u, v) = Γ (v -z) ν (u + (v -z) 2 ) k+1 f (z)dz. (4.21)
We have easily

J k,ν f (u, v) = (-1) k k! ∂ k ∂u k J 0,ν f (u, v). (4.22)
And using the residue theorem, we get (f ) = 0 for d ≥ 4j + 1, we shall prove that each term in the sum (4.20) vanishes, after integration in z and ξ. Suppose first that j + 1 ≤ k ≤ 2j + 1. We have

J 0,ν f (u, v) = i ν-1 u (ν-1)/2 2 (-1) ν+1 f (v + i √ u) + f (v -i √ u) . ( 4 
Q 2j k (x, P (x) -z, ξ) = ν,γ R ν,γ (x)(P (x) -z) ν ξ γ . Hence Γ 2(P (x) -z)Q 2j k (x, P (x) -z, ξ) L(z; x, ξ) k+1 f (z)dzdξ
is a sum of integrals like

I k ν (f )(x, ξ) = Γ (P (x) -z) ν L(z; x, ξ) k+1 f (z)dz.
By integration by parts in z we have

I k ν+1 (f ) = ν 2k I k-1 ν-1 (f ) - 1 2k I k-1 ν (f ′ ). (4.24)
So, we can assume that ν = 0. But we have

I ℓ 0 (g)(x, ξ) = (-1) ℓ ℓ! ∂ ℓ ∂u ℓ J 0,ν g(u, P (x))| u=|ξ| 2 .
So we have

I ℓ 0 (g)(x, ξ) = O(|ξ| 2-2ℓ
) near ξ = 0. Now we remark that for ℓ ≤ 2j + 1 and d ≥ 4j + 1 we have ℓ < d 2 + 1, hence ξ → I ℓ 0 (g)(x, ξ) is integrable and, using the analytic dilation argument already used for j = 0, we get I ℓ 0 (g)(x, ξ) = 0, hence Γ 2(P (x)z)Q 2j k (x, P (x)z, ξ) L(z; x, ξ) k+1 f (z)dzdξ = 0. Now, assume that 2j + 2 ≤ k ≤ 3j. Using Lemma.3.2, we have

Q 2j k (x, P (x) -z, ξ) = ν+|γ|≥2(2k-1-2j) R ν,γ (x)(P (x) -z) ν ξ γ .
As above, we integrate by parts in z to have the possibility to put ν at 0 and then we use ξ γ to decrease the order of the singularity in ξ as far as possible

(integrability near ξ = 0) of Γ Q 2j k L k+1 dz.
We conclude by the analytic dilation argument. ⊓ ⊔ So, we have proven that in odd dimension d, C

(d) 2j (f ) = 0 if 2j ≤ d-1
2 . We conjecture that the next following terms are not 0; more precisely we claim: Conjecture: For every j ∈ N, j ≥ 1, there exists f satisfying (4.14) such that we have we have

C (4j-1) 2j (f ) = 0, and C (4j-3) 2j (f ) = 0 (4.25)
In the following sections we shall check this conjecture for d = 1, 3 and we shall compute analytic formula for C

(5) 4 (f ) and C

4 (f ). Unfortunately, these analytic expressions have many terms and it is not obvious that C (d) 4 (f ) = 0 for d = 5, 7, for every elliptic polynomial P . We shall see that this is true for convex polynomials for d = 7 and satisfying a technical condition if d = 5. Moreover we get, using numerical computations for particular non-convex polynomials P , that C (f, P (ε) ) = 0, for d ≥ 4j + 1 and for every ε small enough. Assume now that d = 4j 0 -3 or d = 4j 0 -1, j 0 ≥ 1. Then using a Taylor expansion in ε, computed for ε = 1/(m+1) , we get

C 2j (f, P ( 1/(m+1) ) ) ≍ k≥0 γ k k/(m+1) , (4.26) in particular γ 0 = C (d)
2j0 (f, P m ) which is supposed to be not 0, as we have explained before.

Estimate the density of eigenvalues

First of all let us remark that the nonlinear spectrum Sp[ L] of L is included in the two quarters {z ∈ C, ℜ(z) ≥ 0, ±ℑ(z) > 0}. On one side, it is easy to see that if λ ∈ R and L(λ)u = 0 then u = 0. On the other side, if ℜ(λ) < 0 and L(λ)u = 0, computing ℑ( L(λ)u, u ) we conclude that u = 0.

Let us denote by

N (R) = #{z ∈ Sp[ L]; |z| ≤ R} and N (R) = N =1 (R).
Proposition 5.1 For every real µ, µ > d(m + 1)/m, there exists

C k > 0 such that N (R) ≤ C k R µ -d , ∀R ≥ 1, ∀ ∈]0, 1]. (5.27) If C (d) 2j (f ) = 0 with d > 2j, then for every r > 0, ε > 0 there exists c ε,r > 0 such that N (r -ε ) ≥ c ε,r -δ , ∀ ∈]0, 1],
(5.28)

where δ = d -2j. Moreover if j = 0 (d even) then the estimates is valid with ε = 0. So that, in even dimension, for every R > 0, N (R) behaves like -d .

Proof. The proof of (5.27) is a direct consequence of Weyl-Ky-Fan inequality [START_REF] Robert | Nonlinear Eigenvalues Problems[END_REF]. We first remark that for every ε > 0 there exists R ε > 0 such that if

-π/2 -ε ≤ arg z ≤ π/2 + ε, |µ| ≥ R ε then we have |t + z| 2 ≥ (1 -ε)(t 2 + |z| 2 ).
Let us choose f (λ) = (λ + t) -µ with k large enough (µ > d(m + 1)/m) and t > 0. We apply (4.16) to get the following inequalities

C 1 -δ ≤ z∈Sp[ L] (t + z) -µ ≤ z∈Sp[ L] |t + z| -µ ≤ C 2 z∈Sp[ L] (t + |z|) -µ
But for every µ, µ 1 , large enough, such that µµ 1 is large enough, we have

z∈Sp[ L] |z|≥R (t + |z|) -µ ≤ R -µ1 z∈Sp[ L] (t + |z|) µ1-µ
We choose now R = r -ε to get

N (r -ε ) ≥ |µ|≤R (1 + |µ|) -k ≥ c ε,r -δ

⊓ ⊔

The above results concern the semi-classical regime. Now we give estimates for = 1 and high energy regime Corollary 5.2 For R ր +∞ we have

N (R) = O(R d(m+1)/m ). If C (d) 2j (f ) = 0 with d -2j > 0, then for every ε > 0 there exits c ε > 0 such that c ε R δ(m+1)/m-ε ≤ N (R)
If j = 0, the estimate is true with ε = 0 and c 0 > 0.

1-d and 3-d cases

In this section we prove the following result. Theorem 6.1 For d = 1, 3, there exits f satisfying (4.14) such that for every m ≥ 2, we have

C (d) 2 (f ) = 0. More precisely, we have C (1) 2 (f ) = - 1 16 R f (3) (P (x))P ′ (x) 2 dx (6.29) C (3) 2 (f ) = - 1 48π R 3 f ′ (P (x))|∇P (x)| 2 dx (6.30)
We can choose f (λ) = (λ + t) -µ with µ > d(m + 1)/m and t > 0.

Proof. We compute with the explicite form we got before for K 2 . We have, for d = 1, 3,

C d 2 (f, x) = -2 Γ (P -z)H 2 dz,
where

H 2 = R d K 2 dξ. But we have H 2 = (P -z) d-5 △P b 3 -2b 4,1 + (P -z) d-6 |∇P | 2 b 3 -2b 4 -2b 4,1 , hence C (1) 2 
(f ) = 1 2π 8 3 b 4,1 - 4 3 b 3,0 + 2 3 b 4 R f (3) (P (x))P ′ (x) 2 dx. (6.31) 
C (1) 2 (f ) = - 1 16 R f (3) (P (x))P ′ (x) 2 dx (6.32) C (3) 2 (f ) = 2 (2π) 3 4b 4,1 -2b 4 -2b 3 R 3 f ′ (P (x))|∇P | 2 (x)dx (6.33) and C (3) 2 (f ) 
= -

1 48π R 3 f ′ (P (x))|∇P | 2 (x)dx (6.34) 

⊓ ⊔

We have seen that for d odd, d ≥ 5, C 

5-d and 7-d cases

We have to compute in more details the term K 4 from (3.11). Recall that we have

C (d) 4 (f ) = -2 R d x Γ (P -z) R d ξ K 4 (z; x, ξ)dξ f (z)dz dx. (7.35) 
We have to compute the following three integrals, depending on x ∈ R d and z ∈ C.

I (1) β = Γ(0; β) R d 1 |ξ| 2 + (P (x) -z) 2 ∂ β ξ 1 |ξ| 2 + (P (x) -z) 2 dξ; |β| = 4, I (2) α = Γ(α, 0) R d 1 |ξ| 2 + (P (x) -z) 2 ∂ α ξ (|ξ| 2 )∂ α x K 2 dξ; |α| = 2, (7.36) 
I (3) β = Γ(0; β) R d 1 |ξ| 2 + (P (x) -z) 2 ∂ β ξ K 2 dξ; |β| = 2. (7.37) (7.38)
Using the new variable η such that ξ = (Pz)η (plus an analytic extension), we get

I (1) β = a(β) (P (x) -z) 8-d , a(β) = 1 16β! R d 1 1 + |η| 2 ∂ β η 1 1 + |η| 2 dη. (7.39) a(β) = 0 only when β = (β 1 , • • • , β d ) is such that β j = 4 and β k = 0 for k = j or β j = β k = 2, j = k and β ℓ = 0 if ℓ = j, ℓ = k.
In the first case a(β) = a 1 and in the second case a(β) = a 2 where

a 1 = 1 96 R d (4η 2 1 -(1 + |η| 2 )) 2 (1 + |η| 2 ) 6 dη, (7.40 
)

a 2 = R d η 2 1 η 2 2 (1 + |η| 2 ) 6 dη. (7.41)
It is convenient to introduce the following notations.

b j = R d dη (1 + |η| 2 ) j , b j,k = R d η 2k 1 dη (1 + |η| 2 ) j , b j,k,ℓ = R d η 2k 1 η 2ℓ 2 dη (1 + |η| 2 ) j . (7.42)
where j, k, ℓ ∈ N are such that the integrals are finite. Of course these integrals can be computed with the Euler beta and gamma special functions (see appendix for more explicite expressions). So we have a 1 = 1 6 b 6,2 -1 3 b 5,1 + 1 96 b 4 and a 2 = b 6,1,1 . Using integration by parts, in x or in ξ, we get the following formulas 

C 4 (f ) =
C 4,2 (f ; x) = 2 |α|=2 Γ(α, 0) Γ R d ∂ α ξ (|ξ| 2 )∂ α x P -z L(z) K 2 dξ f (z)dz, (7.46) C 4,3 (f ; x) = 2 Γ (P -z)∂ β x L(z)I (3) 
β f (z)dz. (7.47)

Now we compute each term. After elementary but tedious computations we get the following results, using the notations:

∂ j = ∂ ∂ xj , ∂ 2 j = ∂ 2 ∂ 2 xj , ∂ 2 j,k = ∂ 2 ∂ 2 xj ,x k (7.48) a 1 = 1 6 b 6,2 - 1 3 b 5,1 + 1 96 b 4 (7.49) a 2 = b 6,1,1 (7.50) 
For d=5 , we have 3) (P ), (7.52)

C 4,1 (f ; x) = -20f (P ) a 1 1≤j≤5 ∂ 4 j P + a 2 j<k ∂ 2 j ∂ 2 k P , (7.51) +8f ′ (P ) a 1 1≤j≤5 (∂ 2 j P ) 2 + a 2 j<k (∂ 2 j,k P ) 2 , C 4,2 (f ; x) = E 1 2 f ′ (P ) - E 2 4 f ′′ (P ) + E 3 12 f ( 
C 4,3 (f ; x) = G 1 2 f ′ (P ) - G 2 4 f ′′ (P ) + G 3 12 f (3) (P ). (7.53)
where

E 1 = (△P ) 2 b 4 -2b 5 -2b 5,1 + 4b 6,1 , (7.54) 
E 2 = |∇P | 2 △P b 4 + 12b 6 -10b 5 -2b 5,1 + 16b 6,1 -16b 7,2 , (7.55) 
E 3 = |∇P | 4 20b 6 -6b 5 -16b 7 + 16b 7,1 -12b 6,1 , (7.56 
)

G 1 = (△P ) 2 12b 6,1 -2b 5 -16b 7,2 j (∂ 2 j P ) 2 (7.57) -32b 7,1,1 j =k (∂ 2 j P )(∂ 2 k P ) -16b 7,1,1 j =k (∂ 2 j,k P ) 2 , G 2 = △P |∇P | 2 24b 6,1 -16b 7,1 -4b 5 + 4b 6 -32b 7,2 j (∂ j P 2 )(∂ j P ) 2 -32b 7,1,1 j =k (∂ 2 j P )(∂ k P ) 2 -64b 7,1,1 j =k (∂ 2 j,k )(∂ j P )(∂ k P ), (7.58) 
G 3 = |∇P | 4 12b 6,1 -16b 7,1 -2b 5 + 4b 6 -16b 7,2 j (∂ j P ) 4 -48b 7,1,1 j =k (∂ j P ) 2 (∂ k P ) 2 . (7.59)
Finally, we get

C 4 (f ; x) = A 0 (x)f (P (x)) + A 1 (x)f ′ (P (x)) + A 2 (x)f ′′ (P (x)) + A 3 (x)f (3) (P (x)), (7.60) A 0 (x) = -20a 1 j ∂ 4 j P -20a 2 j<k ∂ 2 j ∂ 2 k P, (7.61) A 1 (x) = 8(a 1 -b 7,2 ) j (∂ 2 j P ) 2 + 4(a 2 -2b 7,1 ) j =k (∂ 2 j,k P ) 2 (7.62) + (△P ) 2 2 b 4 -4b 5 -2b 5,1 + 16b 6,1 -16b 7,1,1 j =k (∂ 2 j P )(∂ 2 k P ), A 2 (x) = |∇P | 2 △P 4 14b 5 -16b 6 -b 4 + 2b 5,1 -40b 6,1 + 32b 7,1 (7.63) +8b 7,2 j (∂ 2 j P )(∂ j P ) 2 + 8b 7,1,1 j =k (∂ 2 j P )(∂ k P ) 2 +16b 7,1,1 j =k (∂ 2 j,k P )(∂ j P )(∂ k P ), A 3 (x) = |∇P | 4 12 24b 6 -8b 5 -16b 7 - 4 3 b 7,2 j (∂ j P ) 4 -4b 7,1,1 j =k (∂ j P ) 2 (∂ k P ) 2 . (7.64)
Using explicit computations (see Appendix), we get

A 0 (x) = π 3 24 j ∂ 4 j P - π 3 48 j<k ∂ 2 j ∂ 2 k P, (7.65) 
A 1 (x) = - 11π 3 480 j (∂ 2 j P ) 2 + π 2 480 j =k (∂ 2 j,k P ) 2 (7.66) - π 3 160 (△P ) 2 - π 2 240 j =k (∂ 2 j P )(∂ 2 k P ), A 2 (x) = π 3 96 ∇P | 2 △P + π 3 160 j (∂ 2 j P )(∂ j P ) 2 (7.67) + π 2 480 j =k (∂ 2 j P )(∂ k P ) 2 + π 2 240 j =k (∂ 2 j,k P )(∂ j P )(∂ k P ), A 3 (x) = - π 3 576 |∇P | 4 - π 3 960 j (∂ j P ) 4 - π 3 960 j =k (∂ j P ) 2 (∂ k P ) 2 . (7.68)
For d=7 we have

C 4 (f ; x) = A 0 (x)f (P (x)) + A 1 f ′ (P (x)), (7.69) A 0 (x) = |∇P | 2 △P 2 14b 5 -16b 6 -b 4 + 2b 5,1 -40b 6,1 + 32b 7,1 (7.70) +16b 7,2 j (∂ 2 j P )(∂ j P ) 2 + 16b 7,1,1 j =k (∂ 2 j P )(∂ k P ) 2 +32b 7,1,1 j =k (∂ 2 j,k P )(∂ j P )(∂ k P ), A 1 (x) = |∇P | 4 2 24b 6 -8b 5 -16b 7 -8b 7,2 j (∂ j P ) 4 -24b 7,1,1 j =k (∂ j P ) 2 (∂ k P ) 2 . (7.71)
Using explicit computations as for d = 5 (see Appendix), we get

A 0 (x) = π 4 120 j (∂ 2 j P )(∂ j P ) 2 + π 3 360 j =k (∂ 2 j P )(∂ k P ) 2 + π 3 180 j =k (∂ 2 j,k P )(∂ j P )(∂ k P ), (7.72) A 1 (x) = - π 4 240 |∇P | 4 - π 4 240 j (∂ j P ) 4 - π 3 240 j =k (∂ j P ) 2 (∂ k P ) 2 . (7.73)
We should like to use these formulas with f (λ) = (λ + t) -µ , µ > d(m + 1)/m and t > 0, to prove that C We assume d ≥ 3 and 2jq > 1. We have The following computations has been performed by Guy Moebs, Research Engineer, Laboratoire Jean-Leray, CNRS-University of Nantes.

The method used to compute multi-dimensional integrals is Monte-Carlo, with a cut-off of the domain to reduce it in a bounded domain fitting with the behaviour of the polynomial P . In each example, 100 simulations are computed with at least 10 9 events. 

  As we shall see in the next section, the property C (d) 2j (f ) = 0 gives easily a lower bounds on the density of eigenvalues. Remark 4.3 Following Remark 3.4 we can extend our results to polyhomogeneous polynomials P = P m + P m-1 + • • • P 1 + P 0 . To follow the dependence in the coefficients, we note C 2j (f, P ) the coefficient C 2j (f ) with polynomial P . In particular we have C (d) 2j

  = 0. So we have to compute C (d) 4 (f ) for d = 5, 7.

C 4

 4 (f ; x) = C 4,1 (f ; x) + C 4,2 (f ; x) + C 4,3 (f ; x)

7 . 2 P

 72 ) = R d C 4 (f ; x) dx = 0 (d = 5, 7). With f like above, we can see easily that C (d) 4 (f ) = 0 for the following polynomials: 1 P (x) = 1≤j≤d α j x m j , α j > 0, 1 ≤ j ≤ d, d = 5, (x) = 1≤j,k≤d α j,k x j x k , is a positive-definite quadratic form, d = 5, 7 3 d = 7 and P is convex. 4 d = 5, P is convex and satisfies the inequalities 1≤j<k≤5 convex polynomials, we can check that C (d) 4 (f ) = 0, d = 5, 7, for many examples with numerical computations, supporting our conjecture that for every elliptic polynomial P , C (d) 4 (f ) = 0, if d = 5, 7(see Appendix). For d = 9, 11, it seems difficult to compute C (d)6 (f ) by hand. We need more help from symbolic and numerical computations to check our conjecture.

8 appendix 8 . 1

 881 Formulas for b j,k,ℓ

1 ( 1 - 8 . 2

 1182 t) y-1 dt = Γ(x)Γ(y) Γ(x + y) So computing in polar coordinates, b j (d) = π d/2 Γ(jd/2) Γ(j)Now, by elementary computations we get easilyb j,1 (d) = 1 d (b j-1 (d)b j (d)) (8.77) b j,2 (d) = B(5/2, j -Numerical computations for C 4 (f )

Example. 1 d

 1 = 5, polynôme P (x) =

  .23) From (4.22) and (4.23) we can compute J k,ν f (u, v).

	(d) 2j To prove that C

Example.2 d = 7, polynôme P (x) =