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Magnetic monopoles have eluded experimental detection since their pre-

diction nearly a century ago by Dirac [1]. Recently it has been shown that

classical analogues of these enigmatic particles occur as excitations out of

the topological ground state of a model magnetic system, dipolar spin ice [2].

These quasi-particle excitations do not require a modification of Maxwell’s

equations, but they do interact via Coulombs law and are of magnetic

origin. In this paper we present an experimentally measurable signature of

monopole dynamics and show that magnetic relaxation measurements in

the spin ice material Dy2T i2O7 [3] can be interpreted entirely in terms of the

diffusive motion of monopoles in the grand canonical ensemble, constrained

by a network of “Dirac strings” filling the quasi-particle vacuum. In a

magnetic field the topology of the network prevents charge flow in the

steady state, but there is a monopole density gradient near the surface of

an open system.

Spin ice systems [4–6] such as Dy2T i2O7 and Ho2T i2O7, can be described by a corner

sharing network of tetrahedra forming a pyrochlore lattice of localized magnetic mo-

ments, as shown in figure 1a. The pairwise interaction is made up of both exchange and

dipolar terms

H = Jm2
∑

〈i,j〉

Si · Sj + Dm2
∑

〈i,j〉

[

Si · Sj

|rij|
3

−
3 (Si · rij) (Sj · rij)

|rij|
5

]

(1)

where the rare earth ions carry a moment of ten Bohr magnetons, m ≈ 10µB and

where Si is a spin of unit length. The coupling constants are on the 1K energy scale ;

for example for Dy2T i207 |J |m2 ≈ 3.72K and Dm2 ≈ 1.41K [7]. These energy scales
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are 100 times smaller than the crystal field terms [8] that confine the spins along the

axis joining the centres of two adjoining tetrahedra. As a result, on the 1K energy

scale the moments behave as Ising spins along this axis. Remarkably, within this Ising

description the long ranged dipolar interactions are almost perfectly screened [7, 9] at

low temperature, with the result that the low energy properties are almost identical

to those of an effective frustrated nearest neighbour model with antiferromagnetic

interactions [10] of strength Jeff = (5D−J)m2/3 . This is equivalent to Pauling’s model

for proton disorder in the cubic phase of ice [11], which has extensive ground state

entropy and violates the third law of thermodynamics [6]. It successfully reproduces

the thermodynamic behaviour of both ice [12] and spin ice [13] and describes the

microscopic properties of the latter to a good approximation. The extensive set of

spin ice states satisfy the Bernal - Fowler ice rules [14] ; a 3d analogue of the 6 vertex

model with topological constraint consisting of two spins pointing into and two out of

each tetrahedron (2 in - 2 out), as shown in figure 1a. Flipping one spin breaks the

constraint leaving neighbouring tetrahedra with 3 in - 1 out and with 3 out - 1 in,

which constitute a pair of topological defects. Within the nearest neighbour model,

creation of the defect pair costs energy 4 Jeff , while further spin flips can move the

defects at zero energy cost. It has recently been shown [2] that including the full dipolar

Hamiltonian of equation (1) leads to an effective Coulombic interaction between the

topological defects separated by distance r , µ0qiqj/4πr, where µ0 is the permeability

of free space, qi = ±q = ±2m/a, and a is the distance between two vertices of the

diamond lattice (see figure 1) ; that is, to a Coulomb gas of magnetic monopoles.

Standard electromagnetic theory does allow for such excitations [15], which correspond

to divergences in the magnetic intensity H, or magnetic moment M, rather than in

the magnetic induction : ∇ · B = ∇ · (H + M) = 0. On all length scales above the

atomic scale, a 3 in - 1 out defect appears to be a local sink in the magnetic moment

and therefore as a source of field lines in H . It can lower its energy by moving in the

direction of an external field and therefore carries a positive magnetic charge [16]. What

is remarkable about spin ice is that it allows for the deconfinement of these effective

magnetic charges so that they occur in the bulk of the material on all scales, rather

than just at the surfaces within a coarse grained description [15]. A two dimensional

equivalent may exist in artificial spin ice, constituting arrays of nanoscale magnets [17].



3

Given the accessibility of these magnetic quasi-particles, the development of an

experimental signature is of vital importance and interest. The “Stanford” supercon-

ducting coil experiment [2, 18] could in principle detect the passage of a single magnetic

quasi-particle, but this seems highly unlikely given that the charges have no mass and

therefore have diffusive, rather than Newtonian dynamics. A more promising starting

point is therefore to look for a monopole signal from magnetic relaxation of a macrosco-

pic sample [3, 8, 19]. The general dynamic behaviour of spin ice is illustrated in figure 2

by the magnetic relaxation time, as a function of temperature for Dy2T i2O7 [3], taken

from bulk susceptibility measurements. The energy scales discussed above give rise to

different regimes : the time scale increases in the thermally activated high temperature

regime, entering a quasi-plateau region below 12K associated with quantum tunnelling

processes [8], before experiencing a sharp upturn below 2K. The spins are Ising like

below 12K and the configuration evolves by quantum tunnelling through the crystal

field barrier, while above this temperature higher crystal field levels are populated and

the time scale drops dramatically. The quantum tunnelling plateau regime can therefore

be well represented by an Ising system with stochastic single spin dynamics and hence

should be dominated by the creation and propagation of monopole objects. This is

illustrated, in a first approximation, by comparing the data with an Arrhenius law

τ = τ0 exp(2 Jeff/kBT ), as shown by the red curve in figure 2. The time scale τ0 is fixed

by fitting to the experimental time at 4K with Jeff = 1.11K, the value estimated for

Dy2T i207 [7]. 2 Jeff is the energy cost of a single, free topological defect in the nearest

neighbour approximation and is half that for a single spin flip. The calculation fits the

data over the low temperature part of the quasi-plateau region, where one expects a

significant defect concentration without any double defects (4-in or 4-out), and gives

surprisingly good qualitative agreement at lower temperature, as the concentration

decreases. Although still in the tunnelling regime, the plateau region corresponds

to high temperature for the effective Ising system. Good agreement here provides a

stringent test and any theory not fitting must be discarded. The above expression

clearly does a good job, allowing us to equate τ0 with the microscopic tunnelling time.

This test therefore already provides very strong evidence for the fractionalization of

magnetic charge [2] and the diffusion of unconfined particles. However, this (or any

other) Arrhenius function ultimately fails, underestimating the time scale at very low

temperature : while it is possible to fit the data reasonably below 2K by a single
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exponential function by varying the barrier height, simultaneous agreement along the

plateau and at lower temperature is impossible. The role of the missing Coulomb

interaction is therefore clear : although non-confining it must considerably increase the

relaxation time scale by modifying the defect concentration and slowing down diffusion

through the creation of locally bound pairs.

We have tested this idea by directly simulating a Coulomb gas of magnetically charged

particles (monopoles), in the grand canonical ensemble, occupying the sites of the dia-

mond lattice. The magnetic charge is taken as qi = ±q. In the grand canonical ensemble

the chemical potential is an independent variable, whose value in the corresponding

magnetic experiment is unknown. In a first series of simulations we have estimated it

numerically by calculating the difference between the Coulomb energy gained by crea-

ting a pair of neighbouring magnetic monopoles and that required to produce a pair

of topological defects in the dipolar spin ice model, with parameters taken from refe-

rence [7], giving a configurationally averaged estimate µ/kB = 8.92K. In a second series

of simulations µ was taken as the value required to reproduce the same defect concentra-

tion as in a simulation of dipolar spin ice at temperature T . Here µ varied by 3% only,

with the same mean value as in the first series, showing that our procedure is consistent.

The chemical potential used is thus not a free parameter. As the Coulomb interaction

is long ranged, we treat a finite system using the Ewald summation method [20, 21].

The monopoles hop between nearest neighbour sites via the Metropolis Monte Carlo

algorithm, giving diffusive dynamics, but with a further local constraint : in the spin

model a 3 in - 1 out topological defect can move at low energy cost by flipping one of the

three in spins, the direction of the out spin being barred by an energy barrier of 8 Jeff .

An isolated monopole can therefore hop to 3 out of 4 of its nearest neighbour sites only,

dictated by an oriented network of constrained trajectories similar to the ensemble of

classical “Dirac string” [2] of overturned dipoles [15]. The positively charged monopoles

move in one sense along the network while the negative charges move in the opposite di-

rection (see figure 1b). The network is dynamically re-arranged through the evolution of

the monopole configuration. The vacuum for monopoles in spin ice thus has an internal

structure ; the Dirac strings which, in the absence of monopoles, satisfy the ice rules at

each vertex. This structure is manifest in the dynamics and influences the resulting time

scales. In fact the characteristic time scale that we compare with experiment comes from
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the evolution of the network of Dirac strings rather than from the monopoles themselves.

Indeed, the monopole autocorrelation time, as extracted from the monopole density -

density correlation function [22] turns out to be small for this range of temperature.

We locally define the string network by an integer σ = ±1, giving the orientation of

the Dirac string along each bond of the diamond lattice and define the autocorrelation

function

C(t) =
1

N

∑

i

σi(t)σi(0), (2)

where t is the Metropolis time and N is the number of bonds (up to N ≈ 25000). For

the initial conditions we take an ordered network with no monopoles, which we let

evolve at temperature T until an equilibrium configuration is attained. This defines

t = 0. C(t) decays almost exponentially, with characteristic time, τ , that varies with

temperature. To avoid initial transient effects we define τ such that C(τ) = 0.8. The

time is re-set to zero when C(t) decays beyond 0.01 and the process is repeated many

times to give the configurationally averaged decay time. In figure 2 we compare our

simulations with the experimental data of reference [3]. The Metropolis time is again

scaled to the experimental time at 4K and there is again no scale factor on the

temperature axis. Data for fixed chemical potential are shown by the pink triangles,

while data with µ varying are shown by the blue circles. There is a quantitative

evolution of the simulation data compared to the nearest neighbour spin ice model.

Agreement between the experimental and numerical data now looks excellent, showing

clearly that the experimental relaxation is due to the creation and proliferation of

quasi-particle excitations that resemble classical monopoles in the magnetic intensity H.

As the temperature increases, towards the end of the plateau region, a small systematic

difference occurs. This is because the spin system can access double defects at finite

energy cost, while this state corresponds to two like charges superimposed on the same

site, which is excluded by the Coulomb interaction. The inset of figure 2 shows results

at low temperature illustrating in detail the extent of the improvement in comparison

with experiment. Allowing the variation of µ provides a further evolution towards the

experimental data, compared with that for fixed µ and the blue circles represent our best

numerical results. We now have quantitative agreement between experiment and theory

down to low temperature, showing that the Coulomb interactions are responsible for the

non-Arrhenius temperature dependence of the relaxation time scales. Differences remain
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at this level of comparison below 1K but to go further would require an even more

detailed modelling of spin ice [23] as well as complementary experimental measurements.

Finally we consider the response of monopoles to an external magnetic field, h, pla-

ced along one of the [100] directions. Applying such a field to a system for closed circuit

geometry (periodic boundaries), one might expect the development of a monopole cur-

rent in the steady state [16]. This is not the case, at least for the nearest neighbour

model, where we find that a transient current decays rapidly to zero (see figure 3a).

The passage of a positive charge in the direction of the field re-organises the network

of strings, leaving a wake behind it that can be followed either by a negative charge, or

by a positive one moving against the field, with the result that the current stops. This

is a dynamic rather than static effect and is not related to confinement of monopole

pairs by the background magnetization [2]. Reducing the temperature at finite field, the

magnetization saturates around a critical temperature ; a vestige of the Kasteleyn tran-

sition [24], which is unique to topologically constrained systems. Confinement occurs

here, as the Zeeman energy outweighs the entropy gain of free monopoles. The transient

currents suggest the development of charge separation in an open system. This is indeed

the case despite the fact that monopole numbers are not conserved at open boundaries.

In figure 3b we show the profile of positive charge density across a sample of size L, with

open boundaries, for varying fields. There is a clear build up of charge over a band of 4-5

lattice spacings, although including long range interactions may lead to a quantitative

change in this value. As the ratio T/h and the monopole density go to zero the band

narrows and the system forms a conventional layer of magnetic surface charge as one

expects for any magnetically ordered system [15]. In the absence of topological defects

the magnetization is conserved from one layer to another, so that a charge density profile

manifests itself as a magnetization profile. The data here suggest charge build up in a

layer several nanometres thick, making it in principle a measurable effect.
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Figure 1: Spin Ice structure and emergence of monopoles. a) The magnetic ions (Ho3+

or Dy3+) lie on the sites of the pyrochlore lattice and are constrained to the bonds of the

duel diamond lattice (dashed lines). Local topological excitations 3 in - 1 out or 3 out - 1 in

correspond to magnetic monopoles with positive (blue sphere) or negative (red sphere) charges

respectively. b) The diamond lattice provides the skeleton for the network of Dirac strings with

the position of the monopole restricted to the vertices. The orientation of the Dirac strings

shows the direction of the local field lines in H.
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Figure 2: Relaxation time scales τ in Dy2Ti2O7 : experiment and simulation. The

experimental data (×) are from Snyder & al. [3]. The Arrhenius law (red line) represents the

free diffusion of topological defects in the nearest neighbour model. The relaxation time scale

of the Dirac string network driven by Metropolis dynamics of magnetic monopoles has been

obtained for fixed chemical potential (pinkN) and with µ varying slowly to match the defect

concentration in dipolar spin ice (blue •). The temperature scale is fixed without any free

parameters. Inset : Same data shown in the low temperature region.
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Figure 3: Monopole density profile. a) A magnetic field h is applied at t = 0 along the

z-axis ([100] direction). We display the transient flux of positive charges, Φ, passing through

a plane perpendicular to the field, as a function of Metropolis time, t. The simulations are

obtained using the nearest neighbour spin ice model with periodic boundary conditions (�)

and open boundaries, with current measured either at the surface (blueN) or in the bulk (red

•). b) Density of positive defects in the horizontal planes for T = 1K, as a function of z and

h (in units of kBT/mµ0).


