
HAL Id: hal-00365900
https://hal.science/hal-00365900v1

Submitted on 4 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geodesic Computations for Fast and Accurate Surface
Remeshing and Parameterization

Gabriel Peyré, Laurent D. Cohen

To cite this version:
Gabriel Peyré, Laurent D. Cohen. Geodesic Computations for Fast and Accurate Surface Remesh-
ing and Parameterization. Progress in Nonlinear Differential Equations and Their Applications,
Birkhäuser Basel, pp.157-171, 2005, Progress in Nonlinear Differential Equations and Their Appli-
cations, Vol. 63, �10.1007/3-7643-7384-9�. �hal-00365900�

https://hal.science/hal-00365900v1
https://hal.archives-ouvertes.fr

Progress in Nonlinear Differential Equations
and Their Applications, Vol. 63, 157–171
c© 2005 Birkhäuser Verlag Basel/Switzerland

Geodesic Computations for Fast and Accurate
Surface Remeshing and Parameterization

Gabriel Peyré and Laurent Cohen

Abstract. In this paper, we propose fast and accurate algorithms to remesh
and flatten a genus-0 triangulated manifold. These methods naturally fits into
a framework for 3D geometry modeling and processing that uses only fast
geodesic computations. These techniques are gathered and extended from
classical areas such as image processing or statistical perceptual learning.
Using the Fast Marching algorithm, we are able to recast these powerful tools
in the language of mesh processing. Thanks to some classical geodesic-based
building blocks, we are able to derive a flattening method that exhibit a
conservation of local structures of the surface.

On large meshes (more than 500 000 vertices), our techniques speed
up computation by over one order of magnitude in comparison to classical
remeshing and parameterization methods. Our methods are easy to implement
and do not need multilevel solvers to handle complex models that may contain
poorly shaped triangles.

Keywords. Remeshing, geodesic computation, fast marching algorithm, mesh
segmentation, surface parameterization, texture mapping, deformable models.

3D model Speed function Uniform Semi-adaptive Adaptive

Figure 1. Remeshing of a 3D model using increasing weight for the
speed function.

158 G. Peyré and L. Cohen

1. Introduction

The applications of 3D geometry processing abound nowadays. They range from
finite element computation to computer graphics, including solving all kinds of
surface reconstruction problems. The most common representation of 3D objects is
the triangle mesh, and the need for fast algorithms to handle this kind of geometry
is obvious. Classical 3D triangulated manifold processing methods have several
well-identified shortcomings: mainly, their high complexity when dealing with large
meshes, and their numerical instabilities.

To overcome these difficulties, we propose a geometry processing pipeline
that relies on intrinsic information of the surface and not on its underlying trian-
gulation. Borrowing from well-established ideas in different fields (including image
processing and perceptual learning) we are able to process very large meshes effi-
ciently.

1.1. Overview

In Section 2 we introduce some concepts we use in our geodesic computations. This
includes basic facts about the Fast Marching algorithm, and a recently proposed
greedy algorithm for manifold sampling.

To flatten each patch of a segmented surface, we will recall some recent
advances in perceptual inference learning in Section 3. Combining these techniques
with our geodesic computational framework will lead to an elegant solution to the
flattening problem for large meshes.

In the conclusion, we will show the two algorithms in action, and see how
we can texture large meshes faster than current techniques would otherwise allow.
We will then give a complete study of the timings of each part of our algorithm,
including a comparison with classical methods.

1.2. Related Work

Surface Remeshing and Finite Elements. Remeshing methods roughly fall into
two categories:

• Isotropic remeshing: a surface density of points is defined, and the algorithm
tries to position the new vertices to match this density. For example the
algorithm of Terzopoulos and Vasilescu [Terzopoulos and Vasilescu, 1992]
uses dynamic models to perform the remeshing. Remeshing is also a basic
task in the computer graphics community, and [Surazhsky et al., 2003] have
proposed a procedure based on local parameterization.

• Anisotropic remeshing: the algorithm takes into account the principal di-
rections of the surface to align locally the newly created triangles and/or
rectangles. Finite element methods make heavy use of such remeshing algo-
rithms [Kunert, 2002]. The algorithm proposed in [Alliez et al., 2003] uses
lines of curvature to build a quad-dominant mesh.

The importance of using geodesic information to perform this remeshing task is
emphasized in [Sifri et al., 2003].

Fast and Accurate Surface Remeshing and Parameterization 159

Greedy solutions for sampling a manifold (see Section 2.2) have been used
with success in other fields such as computer vision (component grouping, [Cohen,
2001]), halftoning (void-and-cluster, [Ulichney, 1993]) and remeshing (Delaunay
refinement, [Ruppert, 1995]).

Flattening and Parameterization. The flattening problem can be seen as a particu-
lar instance of parameterization. The work of [Eck et al., 1995] first introduces the
harmonic formulation for the resolution of the mesh parameterization problem.
Most of these classical methods come from graph-drawing theory, and [Floater
et al., 2002] gives a survey of these techniques. Authors of [Desbrun et al., 2002]
give an in-depth study of the various energies that can be built to flatten a mesh.
The flattening algorithm of [Zigelman et al., 2002] is based on methods for find-
ing parameters that reduce a dataset’s dimensionality. Such methods have been
developed for the purpose of perceptual learning [Tenenbaum et al., 2000,Roweis
and Saul, 2000], and we will explain in Section 3 how to exploit these methods to
handle a 3D mesh with a large amount of vertices.

2. Geodesic Remeshing

2.1. Fast Marching Algorithm

The classical Fast Marching algorithm is presented in [Sethian, 1999], and a similar
algorithm was also proposed in [Tsitsiklis, 1995]. This algorithm is used intensively
in computer vision, for instance it has been applied to solve global minimization
problems for deformable models [Cohen and Kimmel, 1997].

This algorithm is formulated as follows. Suppose we are given a metric P (s)ds
on some manifold S such that P > 0. If we have two points x0, x1 ∈ S, the weighted
geodesic distance between x0 and x1 is defined as

d(x0, x1)
def.= min

γ

(∫ 1

0

||γ′(t)||P (γ(t))dt

)
, (1)

where γ is a piecewise regular curve with γ(0) = x0 and γ(1) = x1. When P = 1,
the integral in (1) corresponds to the length of the curve γ and d is the classical
geodesic distance. To compute the distance function U(x) def.= d(x0, x) with an
accurate and fast algorithm, this minimization can be reformulated as follows. The
level set curve Ct

def.= {x \ U(x) = t} propagates following the evolution equation
∂Ct

∂t (x) = 1
P (x)

−→nx, where −→nx is the exterior unit vector normal to the curve at x,
and the function U satisfies the nonlinear Eikonal equation:

||∇U(x)|| = P (x). (2)

The function F = 1/P > 0 can be interpreted as the propagation speed of the
front Ct.

160 G. Peyré and L. Cohen

The Fast Marching algorithm on an orthogonal grid makes use of an upwind
finite difference scheme to compute the value u of U at a given point xi,j of a grid:

max(u − U(xi−1,j), u − U(xi+1,j), 0)2

+ max(u − U(xi,j−1), u − U(xi,j+1), 0)2 = h2P (xi,j)2.

This is a second-order equation that is solved as detailed for example in [Cohen,
2001]. An optimal ordering of the grid points is chosen so that the whole compu-
tation only takes O(N log(N)), where N is the number of points.

In [Kimmel and Sethian, 1998], a generalization to an arbitrary triangulation
is proposed. This allows performing front propagations on a triangulated manifold,
and computing geodesic distances with a fast and accurate algorithm. The only
issue arises when the triangulation contains obtuse angles. The numerical scheme
presented above is not monotone anymore, which can lead to numerical instabil-
ities. To solve this problem, we follow [Kimmel and Sethian, 1998] who propose
to “unfold” the triangles in a zone where we are sure that the update step will
work. Figure 2 shows the calculation of a geodesic path computed using a gradient
descent of the distance function.

Figure 2. Front Propagation (on the left), level sets of the dis-
tance function and geodesic path (on the right).

2.2. A Greedy Algorithm for Uniformly Sampling a Manifold

A new method for sampling a 3D mesh was recently proposed in [Peyré and Cohen,
2003] that follows a farthest point strategy based on the weighted distance obtained
through Fast Marching on the initial triangulation. This is related to the method
introduce in [Cohen, 2001]. A similar approach was proposed independently and
simultaneously in [Moenning and Dodgson, 2003]. It follows the farthest point
strategy, introduced with success for image processing in [Eldar et al., 1997] and
related to the remeshing procedure of [Chew, 1993].

This approach iteratively adds new vertices based on the geodesic distance
on the surface. Figure 3 shows the first steps of our algorithm on a square. The

Fast and Accurate Surface Remeshing and Parameterization 161

First point

Second point

20 points laterThird point

Figure 3. An overview of the greedy sampling algorithm.

result of the algorithm gives a set of vertices uniformly distributed on the surface
according to the geodesic distance.

Once we have found enough points, we can link them together to form a
geodesic Delaunay triangulation. This is done incrementally during the algorithm,
and leads to a powerful remeshing method.

100 points 800 points 1,500 points300 points

1,000 points300 points 5,000 points 20,000 points

Figure 4. Geodesic remeshing with an increasing number of points.

Figure 4 shows progressive remeshing of the bunny and the David. In order
to have a valid triangulation, the sampling of the manifold must be dense enough
(for example 100 points is not enough to capture the geometry of the ears of the
bunny). A theoretical proof of the validity of geodesic Delaunay triangulation can

162 G. Peyré and L. Cohen

be found in [Leibon and Letscher, 2000], and more precise bound on the number
of points is derived in [Onishi and Itoh, 2003]. Note that our algorithm works
with manifolds with boundaries, of arbitrary genus, and with multiple connected
components.

2.3. Adaptive Remeshing

In the algorithm presented in Sections 2.2, the fronts propagate at a constant
speed which results in uniformly spaced mesh. To introduce some adaptivity in
the sampling performed by this algorithm, we use a speed function F = 1/P (which
is the right-hand side of the Eikonal equation (2)) that is not constant across the
surface. Figure 5 shows the progressive sampling of a square using a speed function
with two different values. The colors show the level sets of the distance function
U to the set of points.

First point

Second point

100 points laterThird point

F=1
F=5

Figure 5. Iterative insertion of points in a square.

When a mesh is obtained from range scanning, a picture I of the model
can be mapped onto the 3D mesh. Using a function F of the form F (x) = (1 +
µ|∇(I(x))|)−1, where µ is a user-defined constant, one can refine regions with high
variations in intensity. On Figure 1, one can see a 3D head remeshed with various
µ ranging from µ = 0 (uniform) to µ = 20/ max(|∇(I(x))|) (highly adaptive).

The local density of vertices can also reflect some geometric properties of
the surface. The most natural choice is to adapt the mesh in order to be finer
in regions where the local curvature is larger. The evaluation of the curvature
tensor is a vast topic. We used a robust construction proposed recently in [Cohen-
Steiner and Morvan, 2003]. Let us denote by τ(x) def.= |λ1|+ |λ2| the total curvature
at a given point x of the surface, where λi are the eigenvalues of the second
fundamental form. We can introduce two speed functions F1(x) def.= 1 + ετ(x) and
F2(x) def.= 1

1+µτ(x) , where ε and µ are two user-defined parameters. Figure 6 (a)
shows that by using function F1, we avoid putting more vertices in regions of
the surface with high curvature. The speed function F1 can be interpreted as an
“edge repulsive” function. On the other hand, function F2 could be called “edge
attractive” function, since it forces the sampling to put vertices in region with
high curvature such as mesh corners and edges. Figure 6 (b) shows that this speed
function leads to very good results for the remeshing of a surface with sharp

Fast and Accurate Surface Remeshing and Parameterization 163

features, which is obviously not the case for the “edge repulsive” speed function
(Figure 6 (a)).

(a) Speed F1 (b) Speed F2

Figure 6. Uniform versus curvature-based sampling and remeshing.

3. Fast Geodesic Parameterization

The flattening problem can be seen as a particular instance of the more generic
problem of mesh parameterization. Given a genus-0 triangulated manifold S home-
omorphic to a disc, it consists in finding a map f : S → U , where U ⊂ R

2 is a
planar domain.

3.1. Geodesic Flattening and IsoMap

Recently, some nonlinear algorithms for dimensionality reduction have appeared
in the community of perceptual manifold learning. The most notable are IsoMap
[Tenenbaum et al., 2000] and Locally Linear Embedding (LLE) [Roweis and Saul,
2000].

Interestingly, the only echo of these techniques in the computer graphics
community seems to be the multi-dimensional scaling approach to flattening of
[Zigelman et al., 2002]. This method is closely related to IsoMap, and we will see
that it shares its main drawbacks.

We start with a given set of points {x1, . . . , xn} on our manifold, and we seek
f(xi) = x̃i ∈ R

2 such that the mapping minimizes some measure of distortion. The
most natural constraint is to try to keep the same distance between points, which
is exactly what IsoMap is doing by requiring that d(xi, xj) ≈ ||x̃i − x̃j ||, where d
stands for (some approximation of) the geodesic distance on the manifold. The
method of [Zigelman et al., 2002] is very close to this approach, since it uses
the geodesic distance d computed via the Fast Marching algorithm presented in
Section 2.1.

The major bottleneck of this method is that it needs to compute all pairwise
distances d(xi, xj). To overcome this difficulty, the authors of [Zigelman et al.,
2002] proposed to restrict the computations to a small set of points, which gives
rise to three questions:

164 G. Peyré and L. Cohen

• What should be done to speed up computation?
• How should we choose this small set of base points?
• How should we extend the map f from this small set of points to the rest of

the mesh?
In the next subsection, we will show how the LLE algorithm can bring a important
speed improvement that answers the first question. The answer to the two last
questions will be given in Subsections 3.3 and 3.4 respectively, with an extension
of LLE to triangulated manifolds.

3.2. Speeding Up Computation with LLE

The LLE algorithm is explained in detail in [Roweis and Saul, 2000]. The goal
of the algorithm is to find a low-dimensional embedding in R

d of a set of points
{x1, . . . , xn} in R

s, s > d. The only parameter of this algorithm is an integer K
that measures the size of the neighborhood of each point. We will denote by Ni

the K-neighborhood of xi, that is to say Ni
def.= {xm(1), . . . , xm(K)}, where xm(j)

is the jth closest point to xi for the Euclidean metric. We will briefly recall the
two main steps of the procedure:
Step 1: First, for each point xi, we are looking for some weights wi,j that locally
best reconstruct the manifold, from the set Ni only, by minimizing

E1 ({wi,j}j) = ||xi −
∑

j

wi,jxj ||2. (3)

We further enforce that wi,j = 0 if xj /∈ Ni, and that
∑

j wi,j = 1. This imposes
that the reconstruction is both local and invariant under affine transformations.
In a Euclidean setting, the minimization (3) requires the introduction of the Gram
matrix C(x) defined by

(C(x))i,j
def.=

〈
x − xm(i), x − xm(j)

〉
(4)

The solution of the minimization (3) is then

wi,j = 1Ni(xj)

∑
q

(C(xi)−1)k,q

∑
p,q

(C(xi)−1)p,q

, where xj = xm(k).

The value of 1Ni(x) is equal to 1 if x ∈ Ni, and 0 otherwise.
Step 2: To reconstruct the manifold in low dimension (here in 2D), we want to
solve a global minimization procedure, for x̃i ∈ R

2:

minimize E2 ({x̃i}) =
∑
i

||x̃i −
∑
j

wi,j x̃j ||2.

subject to
∑

x̃i = 0 and
∑ ||x̃i||2 = 1 to avoid a degenerate solution. To solve

this problem, we need to form the matrix M
def.= (W − Id)T(W − Id), where W

is a sparse matrix containing all the weights. The eigenvector of M with lowest

Fast and Accurate Surface Remeshing and Parameterization 165

eigenvalue it the constant vector 1 which should be discarded. The d following
eigenvectors give us the coordinates of our embedding in R

d for each point.
The fact that we only need to perform computations on sparse matrices

allows an improvement of one order of magnitude over dense procedures such as
in [Zigelman et al., 2002].

3.3. Geodesic LLE

In the previous section we saw the classical LLE algorithm in a Euclidean setting.
To solve the flattening problem for a mesh, we need to extend these computations
to the manifold setting. The following modifications allow such an extension.

Modification 1: The points {x1, . . . , xn} should be sampled as uniformly as possible
on S. That is why we use the greedy sampling algorithm of Section 2.2 to select
these points. To get an adaptive sampling, one could use a varying speed function,
as shown in Figure 2.2 (see also [Peyré and Cohen, 2003] for a curvature-based
adaptation).

Modification 2: The K-neighborhood Ni of each point should be computed using
the geodesic distance and not the Euclidean one. This can be done very quickly
using a local front propagation.

Modification 3: The matrix C(x) of equation (4) can not be computed anymore
using dot products. Instead, following [Roweis and Saul, 2000] (pairwise LLE), we
propose the following formula

−2C(x)i,j
def.= d(xm(i), xm(j))2 − 1

K

K∑
k=1

d(xm(i), xm(k))2

− 1
K

K∑
k=1

d(xm(k), xm(j))2 +
1

K2

K∑
k,l=1

d(xm(k), xm(l))2,

that only uses geodesic distance information. This formula is equivalent to (4) in
the Euclidean setting.

3.4. Extending the Map

The three modifications proposed in the previous section allow us to find the
location of x̃i = f(xi) = (f1(xi), f2(xi))

T ∈ R
2 for each base point xi. To compute

the whole map f , we need to interpolate the location of f(x) = (f1(x), f2(x))T

for each point x ∈ S, using the known locations f(xi).
This problem has been addressed very recently in [Bengio et al., 2003], by

recasting it into a unified framework of eigenvector learning, common to many
dimensionality reduction methods.

To extend f , we use the fact that vectors {f1(xi)}n
i=1 and {f2(xi)}n

i=1 are
eigenvectors of the symmetric matrix M = (W − Id)T(W − Id) (with eigenvalues
λ1 and λ2). In the continuous setting, this matrix becomes a symmetric kernel

166 G. Peyré and L. Cohen

M̃(x, y) for each point x, y in S. Matrix multiplication by M is then replaced by

ϕ �→ M̃ϕ(x) def.=
∫
S

ϕ(y)M̃(x, y)dy, (5)

where ϕ is any mapping from S to R. Using this remark, it is natural to suppose
that the continuous maps f1 and f2 are eigenfunctions of the operator defined by
equation (5) for the same eigenvalues λ1 and λ2. This implies that we can compute
them using a Nyström-like formula

f1(x) =
1
λ1

∫
S

f1(y)M̃(x, y)dy ≈ 1
nλ1

n∑
i=1

f1(xi)M̃(xi, y), (6)

and similarly for f2.
Since the f1(xi) are known, we just need to setup our kernel M̃ . The only

constraint is that for all y ∈ S, M̃(xi, y) should be easy to compute, e.g., it should
only involve already computed distances such as d(xj , y) for xj ∈ Ni. This can be
done in a straightforward manner by first setting the weights for y:

w(xi, y) def.= 1Ni(y)

∑
q

(C(xi)−1)k,q

∑
p,q

(C(xi)−1)p,q

with y = xm(k),

and then defining the kernel:

M̃(x, y) def.= w(x, y) + w(y, x) − ∑
k

w(xk, x)w(xk , y),

We can check that for base points, we retrieve the original matrix up to a sub-
straction of the identity, i.e., M̃(xi, xj) = δi,j − Mi,j . This shift is only here to
avoid a singularity along the diagonal and does not modify the computation.

This shows that we can extend the map f to a new point x using only
some local distance information between x and its neighborhood in {x1, . . . , xn}.
Furthermore, most of the time, this information is already available from previous
front propagations performed to flatten {x1, . . . , xn}.

Figure 7 shows the flattening of one half of a human head. Even with a large
patch that contains holes, our method gives very good results (no face flip) with
only 100 base vertices.

Figure 8 shows the influence of the number of base points on the flattening.
Even with only 20 points, the resulting embedding is nearly smooth except at the
border of the mesh, and with 100 points, we get a perfectly smooth flattening.

4. Results and Discussion

Texturing of a Complex Model. To perform texture mapping on a complex 3D
mesh, a segmentation step is required to first cut the model into disk-shaped
charts. Although the study of this step is outside the scope of this paper, we note
that the notion of Voronoi cells is often to perform mesh partition, as introduced

Fast and Accurate Surface Remeshing and Parameterization 167

Flatten MapTexture

Figure 7. The original model, texture on the flattened domain,
and on the 3D mesh.

5 base points 10 base points 20 base points 100 base points

Figure 8. Influence of the number of base points. The original
model is shown on the left of Figure 7

in [Eck et al., 1995]. We choose to use a scheme based on a weighted geodesic
distance [Peyré and Cohen, 2004], since its continuous nature is clearly related to
our flattening approach.

On Figure 9 one can see the whole pipeline in action. This includes first a
centroidal tessellation of the mesh, then the extraction and flattening of each cell,
and lastly the texturing of the model.
Computation Times. For our tests of the flattening procedure, we have chosen
to use a fixed number of points (200 points), since the geometric complexity of
the meshes was almost constant. The parameterization of [Desbrun et al., 2002] is
implemented using the boundary-free formulation (Neumann condition).

Table 1 shows the complexity of the algorithms mentioned in the paper, for a
mesh of 10k vertices. The constant A is the number of steps in the gradient descent
for the localization of the intrinsic center of mass, which is about A = 8 for 10k
vertices. The constant B represent the number of base points, which is n/100 in
our tests. This clearly shows the speed up that Geodesic LLE can bring over global
methods such as [Zigelman et al., 2002]. This is confirmed by the running times
reported in table 2. For large meshes, the stability of our method is an advantage
over the approaches based on large linear system such as [Desbrun et al., 2002],
for which it is difficult to ensure the convergence of the conjugate gradient.

168 G. Peyré and L. Cohen

Figure 9. Texturing of the David.

F. Marching Greedy sampl. 1 Lloyd iter. Zigelman02 Geodesic LLE

Complexity n log(n) n log(n)2 An log(n) Bn log(n) + B3 n log(n) + B2

Times 2s 10s 6s 55s 28s

Table 1. Complexity of the algorithms

Nbr.vertices [Zigelman et al., 2002] [Desbrun et al., 2002] Geodesic LLE

1,000 7s 3s 5s

10,000 55s 25s 28s

100,000 440s 210s 150s

700,000 2160s 1320s 740s

Table 2. Comparison of flattening algorithms

Discussion. The complete texturing of the David mesh (700,000 vertices) shown
on Figure 9 clearly enlightens the strengths of our approach:

• The resulting flattening map is smooth, with no face flip (at least on this
model). This can be seen on the close-up of the flattened domain.

• The whole texturing procedure takes 740s, which shows an important speed
up with respect to previous methods.

• Our scheme is more local than the flattening procedure of [Zigelman et al.,
2002], but it does not reach the per-vertex resolution of classical methods such
as [Desbrun et al., 2002]. This enables both fast computations and respect of

Fast and Accurate Surface Remeshing and Parameterization 169

M1 M2 M3

[Desbrun et al., 2002] Ec = 0.9 Ec = 1.5 Ec = 2.5
(conformal) Ea = 1.2 Ea = 3 Ea = 10.4

[Desbrun et al., 2002] Ec = 1.4 Ec = 3.0 Ec = 8.3
(authalic) Ea = 0.6 Ea = 1.1 Ea = 3.5

[Zigelman et al., 2002] Ec = 0.8 The flattening
(MDS) Ea = 0.9 is not valid

Our scheme Ec = 1.1 Ec = 1.7 Ec = 6.5
(GeodesicLLE) Ea = 0.9 Ea = 1.6 Ea = 5.5

Table 3. Area and angular distortion for various schemes

the small scale variations (bumps or noise), which is not the case of [Zigelman
et al., 2002].

Notice that there is no theoretical guarantee on the validity of the flattening.
The only cases where face flips occurs is on patches with huge isoperimetric dis-
tortion. We believe that this is not a real issue since such degenerate cases can be
easily detected and fixed (for example by subdividing the region). It is important
to note that classical methods also face similar problems. In [Levy et al., 2002] a
cut is performed to accelerate the convergence of the system resolution and ease
the parameterization in regions with a sock-like shape. In practice however, our
segmentation algorithm ensures that patches that need to be flattened do not con-
tain high curvature variations and the whole process performs very well with no
face flip.

Distorsion Measures. To support our claim that our flattening scheme performs
a trade-off between conservation of area and conservation of angle, we have per-
formed some test (see table 3). We used 3 finger-like meshes M1, M2 and M3

with increasing isoperimetric distortion. On each face x we compute the eigenval-
ues (s1, s2) of of the Jacobian of the parameterization map (linearly evaluated).
Locally, conformality is characterized by s1 = s2 and conservation of area by
s1s2 = 1. As a conformal metric, we use

Ec(M)2 =
1
A

∑
x

∣∣∣∣s1(x)
s2(x)

+
s2(x)
s1(x)

− 2
∣∣∣∣
2

A(x)

and as an equi-areal metric we use

Ea(M)2 =
1
A

∑
x

∣∣∣∣s1(x)s2(x) +
1

s1(x)s2(x)
− 2

∣∣∣∣
2

A(x)

where A(x) is the area of a face x, A is the total area.

170 G. Peyré and L. Cohen

5. Conclusion

We have described new algorithms to perform the remeshing and the flattening of a
genus-0 triangulated manifold. The main tool that allows having a fast algorithm
is the fast marching on a triangulated mesh, together with some improvements
we added. We have presented a fast algorithm for remeshing of a surface with a
uniform or adaptive distribution. This is based on iteratively choosing the farthest
point according to a weighted distance on the surface. We introduced a geodesic
version of Locally Linear Embedding that is able to perform fast computations on
a given set of points, and to extend the embedding to the rest of the mesh in a
transparent manner. The resulting flattening is smooth and achieves a desirable
trade-off between conservation of angle and area.

References

[Alliez et al., 2003] Alliez, P., D. Cohen-Steiner, O. Devillers, B. Levy, and M. Desbrun:
2003, ‘Anisotropic Polygonal Remeshing’. ACM Transactions on Graphics. Special
issue for SIGGRAPH conference pp. 485–493.

[Bengio et al., 2003] Bengio, Y., J.-F. Paiement, and P. Vincent: 2003, ‘Out-of-Sample
Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering’. Proc. NIPS
2003.

[Chew, 1993] Chew, L. P.: 1993, ‘Guaranteed-Quality Mesh Generation for Curved Sur-
faces’. Proc. of the Ninth Symposium on Computational Geometry pp. 274–280.

[Cohen, 2001] Cohen, L.: 2001, ‘Multiple Contour Finding and Perceptual Grouping Us-
ing Minimal Paths’. Journal of Mathematical Imaging and Vision 14(3), 225–236.

[Cohen and Kimmel, 1997] Cohen, L.D. and R. Kimmel: 1997, ‘Global Minimum for Ac-
tive Contour Models: A Minimal Path Approach’. International Journal of Computer
Vision 24(1), 57–78.

[Cohen-Steiner and Morvan, 2003] Cohen-Steiner, D. and J.-M. Morvan: 2003, ‘Re-
stricted Delaunay Triangulations and Normal Cycles’. Proc. 19th ACM Sympos.
Comput. Geom. pp. 237–246.

[Desbrun et al., 2002] Desbrun, M., M. Meyer, and P. Alliez: 2002, ‘Intrinsic Parameter-
izations of Surface Meshes’. Eurographics conference proceedings 21(2), 209–218.

[Eck et al., 1995] Eck, M., T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W.
Stuetzle: 1995, ‘Multiresolution Analysis of Arbitrary Meshes’. Computer Graphics
29(Annual Conference Series), 173–182.

[Eldar et al., 1997] Eldar, Y., M. Lindenbaum, M. Porat, and Y. Zeevi: 1997, ‘The Far-
thest Point Strategy for Progressive Image Sampling’. IEEE Trans. on Image Pro-
cessing 6(9), 1305–1315.

[Floater et al., 2002] Floater, M. S., K. Hormann, and M. Reimers: 2002, ‘Parameteriza-
tion of Manifold Triangulations’. Approximation Theory X: Abstract and Classical
Analysis pp. 197–209.

[Kimmel and Sethian, 1998] Kimmel, R. and J. Sethian: 1998, ‘Computing Geodesic
Paths on Manifolds’. Proc. Natl. Acad. Sci. 95(15), 8431–8435.

[Kunert, 2002] Kunert, G.: 2002, ‘Towards Anisotropic Mesh Construction and Error
Estimation in the Finite Element Method’. Numerical Methods in PDE 18, 625–648.

Fast and Accurate Surface Remeshing and Parameterization 171

[Leibon and Letscher, 2000] Leibon, G. and D. Letscher: 2000, ‘Delaunay triangulations
and Voronoi diagrams for Riemannian manifolds’. ACM Symposium on Computa-
tional Geometry pp. 341–349.

[Levy et al., 2002] Levy, B., S. Petitjean, N. Ray, and J. Maillot: 2002, ‘Least Squares
Conformal Maps for Automatic Texture Atlas Generation’. In: ACM (ed.): Special
Interest Group on Computer Graphics – SIGGRAPH’02, San-Antonio, Texas, USA.

[Moenning and Dodgson, 2003] Moenning, C. and N.A. Dodgson: 2003, ‘Fast Marching
Farthest Point Sampling’. Proc. EUROGRAPHICS 2003.

[Onishi and Itoh, 2003] Onishi, K. and J. Itoh: 2003, ‘Estimation of the necessary number
of points in Riemannian Voronoi diagram’. Proc. CCCG.

[Peyré and Cohen, 2003] Peyré, G. and L.D. Cohen: 2003, ‘Geodesic Remeshing Using
Front Propagation’. Proc. IEEE Variational, Geometric and Level Set Methods 2003.

[Peyré and Cohen, 2004] Peyré, G. and L.D. Cohen: 2004, ‘Surface Segmentation Using
Geodesic Centroidal Tesselation’. Proc. 3D Data Processing Visualization Transmis-
sion 2004.

[Roweis and Saul, 2000] Roweis, S. and L. Saul: 2000, ‘Nonlinear Dimensionality Reduc-
tion by Locally Linear Embedding’. Science 290(5500), 2323–2326.

[Ruppert, 1995] Ruppert, J.: 1995, ‘A Delaunay Refinement Algorithm for Quality 2-
Dimensional Mesh Generation’. Journal of Algorithms 18(3), 548–585.

[Sethian, 1999] Sethian, J.: 1999, Level Sets Methods and Fast Marching Methods. Cam-
bridge University Press, 2nd edition.

[Sifri et al., 2003] Sifri, O., A. Sheffer, and C. Gotsman: 2003, ‘Geodesic-based Surface
Remeshing’. Proc. 12th International Meshing Roundtable pp. 189–199.

[Surazhsky et al., 2003] Surazhsky, V., P. Alliez, and C. Gotsman: 2003, ‘Isotropic
Remeshing of Surfaces: a Local Parameterization Approach’. Proc. 12th Interna-
tional Meshing Roundtable.

[Tenenbaum et al., 2000] Tenenbaum, J.B., V. de Silva, and J.C. Langford: 2000, ‘A
Global Geometric Framework for Nonlinear Dimensionality Reduction’. Science
290(5500), 2319–2323.

[Terzopoulos and Vasilescu, 1992] Terzopoulos, D. and M. Vasilescu: 1992, ‘Adaptive
Meshes and Shells: Irregular Triangulation, Discontinuities, and Hierarchical Sub-
division’. In: Proc. IEEE CVPR ’92. Champaign, Illinois, pp. 829–832.

[Tsitsiklis, 1995] Tsitsiklis, J.: 1995, ‘Efficient Algorithms for Globally Optimal Trajec-
tories’. IEEE Trans. on Automatic Control.

[Ulichney, 1993] Ulichney, R.: 1993, ‘The Void-and-Cluster Method for Generating Dither
Arrays’. Proc. IS&T Symposium on Electronic Imaging Science & Technology, San
Jose, CA 1913(9), 332–343.

[Zigelman et al., 2002] Zigelman, G., R. Kimmel, and N. Kiryati: 2002, ‘Texture Mapping
Using Surface Flattening via Multi-dimensional Scaling’. IEEE Trans. on Visualiza-
tion and Computer Graphics 8(1), 198–207.

Gabriel Peyré

CMAP, École Polytechnique, UMR CNRS 7641
e-mail: peyre@cmapx.polytechnique.fr

Laurent Cohen
CEREMADE, Université Paris Dauphine, UMR CNRS 7534
e-mail: cohen@ceremade.dauphine.fr

