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Abstract. This paper reviews both the theory and practice of the nu-
merical computation of geodesic distances on Riemannian manifolds. The
notion of Riemannian manifold allows to define a local metric (a symmet-
ric positive tensor field) that encodes the information about the prob-
lem one wishes to solve. This takes into account a local isotropic cost
(whether some point should be avoided or not) and a local anisotropy
(which direction should be preferred). Using this local tensor field, the
geodesic distance is used to solve many problems of practical interest
such as segmentation using geodesic balls and Voronoi regions, sampling
points at regular geodesic distance or meshing a domain with geodesic
Delaunay triangles. The shortest path for this Riemannian distance, the
so-called geodesics, are also important because they follow salient curvi-
linear structures in the domain. We show several applications of the nu-
merical computation of geodesic distances and shortest paths to problems
in surface and shape processing, in particular segmentation, sampling,
meshing and comparison of shapes.

1 Manifold Geometry of Surfaces

In [1], it was shown that finding the weighted distance and geodesic paths to
a point leads to fast algorithms for image segmentation. In this chapter, we give
a more general framework that is illustrated by different important applications.

This section introduces some basic definitions about local metric (a tensor
field) on a Riemannian manifold and the associated notion of geodesic distance
and minimal paths. The important point is that the geodesic distance to a set of
starting points satisfies a non-linear differential equation, the Eikonal equation,
which is solved to compute numerically the geodesic distance.

1.1 Riemannian Manifold

Parametric surface. A parameterized surface embedded in Euclidean space M ⊂
R

k is a mapping

u ∈ D ⊂ R
2 7→ ϕ(u) ∈ M.
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This definition can be extended to include surfaces not topologically equivalent
to a disk, by considering a set of charts {Di}i that overlap in a smooth manner.

A curve is defined in parameter domain as a 1D mapping t ∈ [0, 1] 7→
γ(t) ∈ D. This curve can be traced over the surface and its geometric real-

ization is γ̄(t)
def.

= ϕ(γ(t)) ∈ M. The computation of the length of γ in ambient
k-dimensional space R

k follows the usual definition, but to do the computation
over the parametric domain, one needs to use a local metric (the first fundamen-
tal form) defined as follow.

Definition 1 (First fundamental form). For a parametric surface ϕ, one defines

Iϕ =

(

〈 ∂ϕ
∂ui

,
∂ϕ

∂uj
〉
)

i,j=1,2

.

This local metric Iϕ defines at each point the infinitesimal length of a curve

L(γ)
def.

=

∫ 1

0

||γ̄′(t)||dt =

∫ 1

0

√

γ′(t)
T
Iϕ(γ(t))γ′(t)dt.

This fundamental form is an intrinsic invariant that does not depend on how the
surface is isometrically embedded in space (since the lengths depend only on this
tensor field Iϕ). In contrast, higher order differential quantities such as curvature
might depend on the bending of the surface and are thus usually not intrinsic
(with the notable exception of invariants such as the gaussian curvature).

Riemannian manifold. A parameterized surface is embedded into some Eu-
clidean domain R

k, which allows to define a local metric thanks to the first
fundamental form Iϕ. It is however possible to consider directly a field of posi-
tive definite tensors on a parametric domain D = R

s (in practice here s = 2 for
surfaces or s = 3 for volumes). With a slight abuse in notations, we assimilate
the resulting abstract surface M with D. Once again, we consider only sur-
faces globally parameterized by some Euclidean domain D and handling generic
surfaces requires to split the manifold into overlapping charts.

Definition 2 (Riemannian manifold). A Riemannian manifold is an abstract
parametric space M ⊂ R

s equipped with a metric x ∈ M 7→ H(x) ∈ R
s×s

positive definite.

Using the Riemannian metric, one can compute the length of a piecewise
smooth curve γ : [0, 1] → M

L(γ)
def.

=

∫ 1

0

√

γ′(t)
T
H(γ(t))γ′(t)dt.

At each location x, the Riemannian tensor can be diagonalized as follow

H(x) = λ1(x)e1(x)e1(x)
T

+ λ2(x)e2(x)e2(x)
T

with 0 6 λ1 6 λ2, (1)
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and e1, e2 are two orthogonal eigenvector fields. In fact, ei should be understood
as direction (un-oriented) field since both ei and −ei are eigenvectors of the
tensor. A curve γ passing at location γ(t) = x with speed γ′(t) has a shorter
local length if γ′(t) is colinear to e1(x) rather than any another direction. Hence
shortest paths (to be defined in the next section) tend to be tangent to the
direction field e1.

In practice, the Riemannian metric H is given by the problem one wishes
to solve. In image processing, the manifold is the image domain M = [0, 1]2

equipped with a metric derived from the image (for instance its gradient). Figure
1 shows some some frequently used geodesic metric spaces:

Euclidean space: M = R
s and H(x) = Ids.

2D shape: M ⊂ R
2 and H(x) = Id2.

Isotropic metric: H(x) = W (x)Ids, W (x) > 0 being some weight function.

Parametric surface: H(x) = Iϕ(x) is the first fundamental form.

Image processing: given an image I : [0, 1]2 → R, one can use an edge-stopping
weightW (x) = (ε+||∇xI||)−1. This way, geodesic curves can be used to perform
segmentation since they will not cross boundaries of the objects.

DTI imaging: M = [0, 1]3, and H(x) is a field of diffusion tensors acquired
during a scanning experiment. For DTI imaging, the direction field e1 indicates
the direction of elongated fibers of the white matter (see [2]).

Euclidean Shape Isotropic Anisotropic Surface

Fig. 1. Examples of Riemannian metrics (top row) and geodesic distances and curves
(bottom row). The blue/red colormap indicates the geodesic distance to the starting
point. From left to right: euclidean (H(x) = Id2 restricted to M = [0, 1]2), planar
domain (H(x) = Id2 restricted to M 6= [0, 1]2), isotropic (H(x) = W (x)2Id2 with
W computed from the image using (6)), Riemannian manifold metric (H(x) is the
structure tensor of the image, see equation (8)) and 3D surface (H(x) corresponds to
the first fundamental form).
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The anisotropy of a metric H(x) is defined as

α(x) =
λ1 − λ2

λ1 + λ2
= 2

√
ab− c2

a+ b
∈ [0, 1], for H(x) =

(

a c
c b

)

. (2)

A metric with α(x) close to 1 is highly directional near x, whereas a metric with
α(x) = 1 is locally isotropic near x.

1.2 Geodesic Distances

The local Riemannian metric H(x) allows to define a global metric on the
space M using shortest paths. This corresponds to the notion of geodesic curves.

Definition 3 (Geodesic distance). Given some Riemannian space (M,H) with
M ⊂ R

s, the geodesic distance is defined as

∀ (x, y) ∈ M2, dM(x, y)
def.

= min
γ∈P(x,y)

L(γ)

where P(x, y) denotes the set of piecewise smooth curves joining x and y

P(x, y)
def.

= {γ \ γ(0) = x and γ(1) = y} .

The shortest path between two points according to the Riemannian metric
is called a geodesic. If the metric H is well chosen, then geodesic curves can be
used to follow salient features on images and surfaces.

Definition 4 (Geodesic curve). A geodesic curve γ ∈ P(x, y) is such such that
L(γ) = dM(x, y).

A geodesic curve between two points might not be unique, think for instance
about two anti-podal points on a sphere. In order to perform the numerical
computation of geodesic distances, we fix a set of starting points S = (xk)k ⊂ M
and consider only distance and geodesic curves from this set of points.

Definition 5 (Distance map). The distance map to a set of starting points
S = (xk)k ⊂ M is defined as

∀x ∈ M, US(x)
def.

= min
k

d(x, xk).

The main theorem that characterizes the geodesic distance is the following,
that replaces the optimization problem of finding the minimum distance by a
non-linear partial differential equation.

Theorem 1 (Eikonal equation). If the metric H is continuous, then for any
S ⊂ M, the map US is the unique viscosity solution of the Hamilton-Jacobi
equation

||∇xUS ||H(x)−1 = 1 with ∀ k, US(xk) = 0, (3)

where ||v||A =
√
vTAv.
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It is important to notice that, even if the metric x 7→ H(x) is a smooth
function, the distance function US might not be smooth (it exhibit gradient
discontinuities). This is why the machinery of viscosity solution is needed to
give a sense to the solution of the Hamilton-Jacobi equation. See for instance [3]
for an introduction to viscosity solutions.

Once the distance map US has been computed by solving the Eikonal equa-
tion (3), one can extract a geodesic joining any point x to its closest point xk ∈ S
using a gradient descent on the function US .

Theorem 2 (Gradient descent). The geodesic curve γ between x and its closest
point in S solves

γ′(t) = − H(γ(t))−1∇γ(t)US

||H(γ(t))−1∇γ(t)US ||
with γ(0) = x.

The geodesic curve γ extracted using this gradient descent is parameterized
with unit speed since ||γ′|| = 1, so that γ : [0, T ] → M where T = dM(x, xk).

Figure 2 shows examples of geodesic curves computed from a single starting
point S = {x1} in the center of the image M = [0, 1]2 and a set of points on the
boundary of M. The geodesics are computed for a metric H(x) whose anisotropy
α(x) (defined in equation (2)) is decreasing, thus making the Riemannian space
progressively closer to the Euclidean space.

Image f α = 1 α = .5 α = .1 α = 0

Fig. 2. Examples of geodesics for a tensor metric with an decreasing anisotropy α (see
equation (2) for a definition of this parameter). The tensor field H(x) is computed from
the structure tensor of f as defined in equation (8), its eigenvalues fields λi(x) are then
modified to impose the anisotropy α.

For the particular case of an isotropic metric H(x) = W (x)2Id2, the geodesic
distance and the shortest path satisfies

||∇xUS || = W (x) and γ′(t) = − ∇xUS

||∇xUS ||
. (4)

This corresponds to the Eikonal equation, that has been used to compute mini-
mal paths weighted by W [4].

2 Numerical Computations of Geodesic Distances

In order to make all the previous definitions effective in practical situations,
one needs a fast algorithm to compute the geodesic distance map US . This
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section details Fast Marching algorithms based on front propagation that enable
to compute the distance map by propagating the distance information from the
starting points in S.

The basic Fast Marching algorithm and several extensions are exposed in
the book on Fast Marching methods [5]. For other applications to computer
graphics and image processing one can see [6] and [7]. The recent book [8] treats
all the details of the geometry of non-rigid surfaces, including geodesic distance
computation and shape comparison. One can also see the two books [9, 10] that
contain review articles with some applications of Fast Marching and geodesic
methods and in particular [1].

2.1 Front Propagation Algorithms

Depending on the properties of the metric, one needs to consider several al-
gorithms, that all rely on the idea of front propagation. This family of algorithms
allows to sort the computations in such a way that each point of the discretiza-
tion grid is visited only once. This ordering is feasible for distance computation
because the distance value of a grid point only depends (and can be computed)
from a small number of points having only smaller distances. If one can sort
the grid points with increasing distance, then one gets a coherent ordering of
the computations. Of course, this is not that easy since this distance ordering
would require the knowledge of the solution of the problem (the distance itself).
But depending on the application, it is possible to devise a selection rule that
actually select at each step the correct grid point.

A front propagation labels the points of the grid according to a state

S(x) ∈ {Computed, Front, Far}.

During the iterations of the algorithm, a point can change of label according to

Far 7→ Front 7→ Computed.

Computed points S(x) = Computed are those that the algorithm will not con-
sider any more (the computation of US(x) is done for these points). Front points
S(x) = Front are the points being processed (the value of U(x) ≈ US(x) is well
defined but might change in future iterations). Far points S(x) = Far are points
that have not been processed yet.

In practice, a front propagation algorithm requires three key ingredients:

Given a point x in the grid, a local set of neighbors Neigh(x) connected to x.

A priority P(x) among points x in the front, that allows to select the point
to process at a given iteration. In most application, this priority is computed

as the current value of the distance P(x)
def.

= U(x). Section 3.2 shows how to
change this priority in order to speed up computations.

A procedure x 7→ Update(x) ∈ R that computes the distance value U(x)
approximating US(x) knowing the value U(x) for computed point and an ap-
proximate value for points in the front. This procedure usually solves some
kind of equation that discretizes the Eikonal equation (3) one wishes to solve.
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Listing 1 gives the details of the front propagation algorithm that computes a
distance map U approximating US(x) on a discrete grid. The following section
details for actual implementations of the Update procedure for different metrics.

The numerical complexity of this scheme is O(n log(n)) for a discrete set of
n points. This is because all the points are visited (tagged Computed) once, and
the selection of minP from the front points takes at most log(n) operations with
a special heap data structure (although in practice it takes much less and the
algorithm is nearly linear in time).

1. Initialization: ∀x ∈ S, U(S)← 0, S(x)← Front, ∀ y /∈ S, S(y)← Far.
2. Select point: x←− argmin

S(z)=Front

P(z).

3. Tag: S(x)← Computed.
4. Update neighbors: for all y ∈ Neigh(x),

– If S(y) = Far, then S(y)← Front and U(y)← Update(y).
– If S(y) = Front, then U(y)← min(U(y), Update(y)).
– Recompute the priority P(y).

5. Stop: If x 6= x1, go back to 2.

Table 1: Front propagation algorithm.

2.2 Eikonal Equation Discretization

On a square grid. The classical Fast Marching algorithm, introduced by Sethian
[5], is a fast procedure to solve the Eikonal equation (3) for an isotropic metric
H(x) = W (x)2Ids for a uniform regular grid that discretizes [0, 1]s. We recall
this procedure for a planar domain s = 2 although it can be extended to any
dimension.

In order to capture the viscosity solution of an Hamilton Jabobi equation,
one cannot use standard finite differences because of the apparition of shocks
and singularities in the solution of the equation. One needs to choose, at each
grid point, the optimal finite difference scheme (differentiation on the left or on
the right to approximate d/dx for instance). This optimal differentiation should
be chosen in the direction where the solution of the equation decreases. This is
called an upwind finite difference scheme, and on a 2D grid with spacing h it
leads to find u = Update(x) at a grid point x = xi,j that is the smallest solution
of

max(u− U(xi−1,j), u− U(xi+1,j), 0)2 +
max(u− U(xi,j−1), u− U(xi,j+1), 0)2 = h2W (xi,j)

2.
(5)

The smallest solution of this equation leads to a stable and convergent scheme
that can be used in the front propagation algorithm listing 1.

On a triangulation. The classical Fast Marching algorithm is restricted to isotropic
metrics on a regular grid. This setting is useful for image and volumetric data
processing, but in order to deal with arbitrary Riemmanian surfaces embedded
in R

k, one needs to modify equation (5).



8

Kimmel and Sethian [11] have developed a version of the Fast Marching
algorithm for a surface M ⊂ R

k with metric W (x) for x in embedding space R
k.

In the continuous setting, a parametric surface (M, ϕ) embedded with a metric
W (x) in ambient space corresponds to a Riemannian manifold with a metric
Iϕ(x̄)W (ϕ(x̄)) in parameter space x̄ ∈ R

2.
The algorithm of Kimmel and Sethian works on a triangulated mesh and

treats the triangles of this mesh as locally flat and equipped with an isotropic
metric W (x)2. The same algorithm can be used to process an anisotropic metric
H(x) ∈ R

2×2 defined on a square lattice (an image), by locally connecting a pixel
x to its 4 direct neighbors in order to create 4 adjacent triangles (that are flat).
In order to describe the algorithm for these two settings (curved triangulated
surface embedded in R

k and Riemannian manifold with arbitrary metric H(x)
for x ∈ R

2), we solve the Eikonal equation

||∇xU ||H−1(x) = W (x)

locally on the triangle faces f ∈ Fx adjacent to x in order to compute Update(x) ≈
U(x).

In order to compute the update value at a given
vertex x, the algorithm computes an update value
Updatef (x) for each triangle f ∈ Fx in the face
1-ring around x, Fx = {f1, . . . , fk}. The resulting
Fast Marching update step is defined as

Update(x) = min
f∈Fx

Updatef (x).

In order to derive the expression for Updatef (x), one considers a planar trian-
gle f = (x, x1, x2) and denotes X = (x1−x, x2−x) ∈ R

2×2. The known distances

are u = (U(x1), U(x2))
T ∈ R

2 and one wishes to solve for Updatef (x) = p =
U(x).

The linear interpolation of US can be written at the point x1 and x2 as

for i ∈ {1, 2}, US(xi) ≈ 〈g, xi − x〉 + p where g ≈ ∇xUS .

With this approximation, equation (3) leads to a quadratic equation
{

U = XTg + pI
||g||2H−1(x) = W (x)2

=⇒ I
TQIp2 + 2(ITQu)p+ (uTQu−W (x)2) = 0.

where I = (1, 1)
T ∈ R

2 and Q = (XH(x)−1XT)−1 ∈ R
2×2. The only admissible

solution to this problem is

Updatef (x) = p =
I
TQu+

√

(ITQd)2 + ITQI(uTQu−W (x)2)

ITQI

There is some technical difficulties with this scheme on triangulations that con-
tain obtuse angles or with metric H(x) with a large anisotropy, because the
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update procedure might not be monotone anymore. More accurate monotone
schemes have been developped, see for instance [12, 13, 2]. We shall ignore these
difficulties here and focus on the application of the numerical computation of
geodesic distances.

2.3 Examples of propagations

2D isotropic propagation on a square grid. Figure 3 shows some examples of
front propagation with the Fast Marching, for an isotropic H(x) = W (x)2Id2.
The colored area shows, at some given step of the algorithm, the set of computed
points (its boundary being the set of front points). During the iterations, the
front propagates outwards until all the grid points are visited. The numerical
complexity of this scheme is O(n log(n)) for a grid of n points.

Fig. 3. Examples of isotropic front propagation. The colormap indicates the values
of the distance functions at a given iteration of the algorithm. On rows 1 and 2, the
potential W is computed using W (x) = f(x) so that geodesics tend to follow bright
regions. On row 3, the potential W is computed using (6) where c is chosen to match
the intensity of the road to extract.

Figure 4 shows examples of distance functions to a starting point x0 with the
corresponding geodesics γ(t) extracted from some ending point x1. The front
propagation is stopped when S(x1) = Computed to avoid performing useless
computations. The idea of using geodesics in order to extract salient curves in
images as been introduced in [14].
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Fig. 4. Example of distance functions (top row) and geodesics (bottom row).

In practice, the difficult task is to design a metric W in order have meaningful
geodesics. Here are some examples of possible choices, for image processing with
an input image f :

Pixel value based potential: in many applications, one simply wishes to extract
curves with a constant value c. In this case, one can use a potential like

W (x) =
1

ε+ |f(x) − c| . (6)

Figure 4, left and middle, shows examples of such curves extractions. Also in
many applications related to segmentation of tubular shapes, like vessels, we
are looking for curves that are located in brighter or darker regions. In this
case the potential can be chosen respectively as

W (x) = f(x) or W (x) = −f(x) (7)

and W should be rescaled to fill the range [ε, 1].

Gradient-based potential: for application such as edge detection one would like
the geodesics to follow regions with high gradients. One can choose a potential
such as

W (x) = ε+Gσ ∗ ||∇xf ||,
where Gσ is a smoothing kernel.

3D isotropic propagation on a square grid. The Fast Marching works the same
way in any spacial dimension k and in particular can be used to extract shortest
paths in 3D volumetric medical data. Such a volume is a discretization of a
mapping f : [0, 1]3 7→ R. Figure 5 shows a 3D display with a semi-transparent
mapping that removes more or less parts of the data. The transparency at point
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(x, y, z) is defined as ρ(f(x, y, z)) where ρ : [fmin, fmax] → [0, 1] is the α-mapping.
Figure 6 shows in red the front of the Fast Marching propagation, displayed as
an isosurface of US .

Fig. 5. Example of semi-transparent display of volumetric data..

Figure 6 shows some examples of geodesic extraction on a medical image that
represents tubular structures (blood vessels) around the heart. The potential
W (x) is chosen as W (x) = (|f(x) − f(x0)| + ε)−1 where x0 is a point given
by the user and supposed to lie inside some vessel. A geodesic follows nicely a
vessel since its density is constant and thus the value of f is approximately equal
to f(x0) inside the vessel. Figure 7 shows other application of shortest path to
extract tubular structures and centerlines in 3D medical data [15].

Fig. 6. Example of volumetric Fast Marching evolution (top row) and geodesic extrac-
tions (bottom row).
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Fig. 7. Left: vessel extraction. Right: tubular structure extraction.

Fig. 8. Example of Fast Marching propagation on a triangulated mesh.

Isotropic propagation on a triangulated mesh. Figure 8 shows an example of
propagation on a triangulated surface. The colored region corresponds to the
points that are computed (its boundary being the front).

The propagation can be started from several starting points S = (xk)k in
order to compute the geodesic distance map US . Figure 9 shows examples of
such distances to several points together with geodesics. A geodesic γ links a
point x to its closest point in S.

Anisotropic propagation on a square grid. In order to better follow the salient
structures of an image f , one can replace the isotropic metric H(x) = W (x)2Ids

(examples are given here in s = 2 dimensions) by a fully anisotropic metric
H(x) ∈ R

2×2 which is a symmetric tensor field. This field might be given by the
physical problem, such as the tensor field of DTI imaging [2]. Another option is
to infer this field from some input image f .

The local orientation of a feature around a pixel x is given by the vector
orthogonal to the gradient v(x) = (∇xf)⊥, which is computed numerically with
finite differences (using maybe some little smoothing to cancel noise). This local

direction information can be stored in a rank-1 tensor T0(x) = v(x)v(x)
T
. In

order to evaluate the local anisotropy of the image, one needs to average this
tensor

T (x) = T0 ∗Gσ(x) (8)
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Fig. 9. Examples of geodesic extraction on a mesh with an increasing number of start-
ing points.

where the 4 entries of the tensor are smoothed against a gaussian kernel Gσ of
width σ > 0. The metric H corresponds to the so-called structure tensor, see for
instance [16]. This local tensor T is able to extract both the local direction of
edges and the local direction of textural patterns (see figure 11, left). Another
option, that we do not pursue here, is to use the square of the Hessian matrix
of f instead of the structure tensor.

In order to turn the structure tensor into a Riemannian metric, one can apply
a non-linear mapping to the eigenvalues,

T (x) = µ1e1e1
T + µ2e2e2

T =⇒ H(x) = ψ1(µ1)e1e2
T + ψ2(µ2)e2e2

T. (9)

where ψi is a decreasing function, for instance ψi(x) = (ε + |x|)−1 for a small
value of ε.

Fig. 10. Examples of anisotropic front propagation (from 9 starting points). The col-
ormap indicates the values of the distance functions at a given iteration of the algorithm.
The metric is computed using the structure tensor, equation (8), of the texture f shown
in the background.

Figure 10 shows an example of Fast Marching propagation using an anisotropic
metric H(x). The front propagates faster in the direction of the main eigenvec-
tor field e1(x). Figure 11 shows distance map for a tensor field H(x) whose
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anisotropy α is progressively decreased, so that the geodesic distance becomes
progressively Euclidean.

α = .9 α = .5 α = .2 α = 0

Fig. 11. Left image: example of texture together with the structure tensor field, com-
puted using equation (9). Right: examples of anisotropic distances (top row) and
Voronoi diagrams (bottom row) with a decreasing anisotropy α (see equation (2) for a
definition of this parameter).

3 Applications and Extensions of Geodesic Distances

3.1 Shape Analysis

In order to analyze the shape of planar objects, one can consider the metric
space obtained by restricting the plane to the inside of a planar domain.

Definition 6 (2D shape). A 2D shape S is a connected, closed compact set
S ⊂ R

2, with a piecewise-smooth boundary ∂S.

The geodesic distance inside such a shape is obtained by constraining the
curve to lie inside S.

Definition 7 (Geodesic distance in S). The geodesic distance in S for the uni-
form metric is

dS(x, y)
def.

= min
γ∈P(x,y)

L(γ) where L(γ)
def.

=

∫ 1

0

|γ′(t)|dt.

where P(x, y) ⊂ S are the paths with starting point x and ending point y.

Figure 12 shows examples of shapes together with the geodesic distance to a
starting point. The geodesic curve is the union of segments inside S and pieces
of the boundary ∂S.
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Fig. 12. Geodesics inside a 2D shape.

The geodesic distance can be used to define several functions on the 2D
shape. This section studies the eccentricity of a shape, as introduced by [17] to
perform shape recognition.

Definition 8 (Eccentricity). The eccentricity ES : M 7→ R is

ES(x)
def.

= max
y∈S

dS(x, y) = max
y∈∂S

dS(x, y).

Fig. 13. Example of eccentricity ES and corresponding histograms hS.

Figure 13 (top row) shows several examples of eccentricity. The colormap
indicates in blue points with small eccentricity.

The points for which the minimum in the definition of ES is obtained are
called eccentric. The set of eccentric point is denoted as E(S).

Definition 9 (Eccentric points). An eccentric point x ∈ E(S) satisfies ∃y ∈
S, ES(y) = d(x, y).

These eccentric points define regions of influence which perform a segmenta-
tion of the shape as follow

S =
⋃

x∈E(S)

{y ∈ S \ ES(y) = d(x, y)} .
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Fig. 14. Example of eccentricity and corresponding histograms for 3D surfaces.

These eccentric points are in fact located along the boundary.

Theorem 3 (Location of eccentric points). One has E(S) ⊂ ∂S.

A more general definition of eccentricity allows to replace the maximum by
a weighted average of geodesic distances.

Definition 10 (α-eccentricity). The α eccentricity of some shape S is defined
as

Eα
S(x)

def.

=

(
∫

S

dS(x, y)αdy

)1/α

.

This eccentricity allows to generalize the notion of gravity center to the
geodesic setting.

Definition 11 (Euclidean gravity center). The Euclidean gravity center is

argmin
x

∫

S

||x− y||2dy.

The α-eccentric center is
argmin

x
Eα

S(x).

Remark 1. For α = 2, the eccentric center is called geodesic gravity center (and
equivalent to the Euclidean center in the case of an uniform metric).

Having defined a function such as ES inside a shape S, one can collect infor-
mation about the shape using the histogram of that function.

Definition 12 (Descriptors). The eccentricity histogram descriptor hS ∈ R
m of

a shape is

∀ i = 1, . . . ,m, hS(i) =
1

|S|#
{

x ∈ S \ i− 1

m
6

ES(x) − min(ES)

max(ES) − min(ES)
<

i

m

}

.
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In particular, one can compare shapes by measuring the distance between
the histograms

δ(h, h̃)2
def.

=
m

∑

i=1

(h(i) − h̃(i))2.

These histograms are invariant if one modifies a shape isometrically. In the plane,
geodesic isometry of shapes are not interesting since they are rotations and trans-
lations. One can however consider approximate isometries such as articulations,
that are useful to model deformations of planar shapes, as defined in [18].

Definition 13 (ε-articulated object). An articulated object S can be split as

S =
m
⋃

i=1

Si

⋃

i 6=j

Jij ,

(a disjoint union) with diam(Jij) 6 ε.

Definition 14 (Articulation). An articulation is a mapping between two artic-
ulated shapes S, S′ such that

f : S → S′ =
m
⋃

i=1

S′
i

⋃

i 6=j

J ′
ij

is rigid on Si 7→ S′
i.

The eccentricity is approximately invariant for shapes that are modified by
articulation.

Theorem 4 (Articulation and isometry). If f is an articulation, then

|dS(x, y) − dS′(x, y)| 6 mε and |ES(x) − ES′(x)| 6 mε.

Starting from a shape library {S1, . . . , Sp}, one can use the shape signature
hS to do shape retrieval using for instance a nearest neighbor classifier, as shown
in table 2. Figure 15 shows examples of typical shape retrievals. More complex
signatures can be constructed out of geodesic distances and un-supervised recog-
nition can also be considered. We refer to [17] for a detailed study of the perfor-
mance of shape recognition with eccentricity histograms. In a similar way, the
eccentricity can be used to perform 3D surface retrieval, using the histograms
displayed in figure 14.

1. Dataset:shapes {S1, . . . , Sp} (binary images).
2. Preprocessing: compute eccentricity descriptors hSi

.
3. Input: shape S.
4. Retrival: return i⋆ = argmin

i

δ(hS , hSi
).

Table 2: Shape retrieval process.
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Fig. 15. Examples of shape recognitions. The shape on the left is the input S and the
second shape in each raw is Si⋆ .

3.2 Heuristically Driven Propagation

The various implementations of the front propagation algorithm, pseudo-
code 1, use a simple priority P(x) = Ux0

(x), where U(x) ≈ dM(x0, x) is the
current value of the distance to the starting point. This strategy leads to an
isotropic grow of the front which enforces the exploration of a large area of
the computational grid. The advantage of using this priority is that it does not
favor any points and thus produces provable valid approximations of geodesic
distance (both on a graph with Dijkstra and on a square/triangular grid with
Fast Marching).

In order to reduce the computational burden, one could think about using
more aggressive ordering of the front that favors some specific direction in the
front. The hope is that the front would advance faster in the direction of the
goal x1 one wishes to reach. Ultimately, one would like the front to explore only
points along the geodesic γ ∈ P(x0, x1) joining the starting point to the ending
point.

If one has an oracle: V (x) ≈ d(x1, x) that estimates the remaining geodesic
distance from the current point x to the end x1, one can use as priority map

P(x) = U(x) + V (x).

The map V is called a heuristic since the exact distance d(x1, x) is not available
in practice. The value of a good heuristic close to the real distance is revealed
by the following theorem.

Theorem 5 (Geodesic segment). The function ψ(x) = d(x0, x) + d(x1, x) is
minimal and constant ψ(x) = d(x0, x1) along the geodesic path joining x0 and
x1.

In the setting of graph theory, the Dijkstra algorithm can be replaced by the
A∗ (A-star), [19], which uses a heuristic to speed up computations. The following
theorem proves the validity of this approach.

Theorem 6 (A∗ validity). If the heuristic satisfies V (x) 6 d(x1, x), then the
curve γ ∈ P(x0, x1) extracted from the front propagation, algorithm 1, is a
geodesic between x0 and x1.
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Over a continuous domain, one can invoke a similar (but weaker) theorem.

Theorem 7 (Explored area). If the heuristic satisfies V (x) 6 d(x1, x), then the
geodesic γ ∈ P1(x0, x1) between x0 and x1 satisfies

{γ(t) \ t ∈ [0, 1]} ⊂ {x \ P(x) = U(x) + V (x) 6 P(x1)} .
This theorem shows why it is important to estimate the geodesic distance by

below, since otherwise the region explored by the algorithm might not contain
the true geodesic.

Fig. 16. Example of propagations with a priority P(x) = U(x) + λV (x) for λ =
0, 0.5, 0.9.

Figure 16 shows examples of heuristics that approximate the true remain-
ing distance by bellow. One can see how the explored area of the propagation
progressively shrinks while containing the true geodesic. Such a heuristic is how-
ever impossible to use in practice since one does not have direct access to the
remaining distance during the propagation.

Many strategies can be used to estimate a heuristic. For instance, on a Rie-
mannian metric (M,H(x)), one could use

V (x) = ρ||x− x1|| where ρ = min
x6=0,v 6=0

||v||H(x).

In this case, ρ is the minimum eigenvalue of all the tensors H(x). This heuristic
estimates the geodesic distance with a Euclidean distance and satisfies V (x) 6

d(x1, x).
For a propagation on a graph (A∗ algorithm) that is embedded in Euclidean

space according to i ∈ V 7→ xi ∈ R
k, one could also define

∀ i ∈ V, V (i) = ||xi1 − xi||,
where i1 is the index of the ending point. This heuristic also satisfies V (i) 6

d(i1, i).
These Euclidean heuristics performs poorly on spaces that are not relatively

flat. In order to compute more accurate heuristic, we use an expression of the
geodesic distance as a minimization.
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Theorem 8 (Reversed triangular inequality). For all (x, y) ∈ M, one has

d(x, y) = sup
z

(

|d(x, z) − d(z, y)|
)

.

If one restricts the minimum to a small subset of landmark points {z1, . . . , zn} ⊂
M, one can define the following approximate distance

d̃z1...zn
(x, y) = sup

k=1...n

(

|dk(x) − dk(y)|
)

,

This kind of approximation has been used first in graph theory [20] and it is
defined in a continuous setting in [21]. This leads to a heuristic V (x) = d̃(x, x1)
that has the following properties.

Fig. 17. Heuristically driven propagation in 2D with an increasing number of landmark
points.

Theorem 9 (Convergence of heuristic). One has d̃ 6 d and d̃
n→+∞−→ d.

In a numerical application that requires the extraction of many geodesics in
real time over a large domain, one can pre-compute (off-line) the set of distance
maps to the landmarks {d(x, zi)}m

i=1. At run time, this set of distances is used
to compute the heuristic and speed up the propagation. Figure 17 shows how
the quality of the heuristic increases with the number of landmarks. Figure 18
shows an application to geodesic extraction on 3D meshes.

4 Surface Sampling

In order to acquire discrete samples from a continuous surface, or to reduce
the number of samples of an already acquired mesh, it is important to be able
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Fig. 18. Heuristically driven propagation on a 3D mesh with landmark points.

to seed evenly a set of points on a surface. This is relevant in numerical analysis
to have a good accuracy in computational simulations, or in computer graphics
to display 3D models with a low number of polygons. In practice, one typically
wants to enforce that the samples are approximately at the same distance from
each other. The numerical computation of geodesic distances is thus a central
tool, that we are going to use both to produce the sampling and to estimate the
connectivity of a triangular mesh.

4.1 Farthest Point Sampling

A sampling of a Riemannian surface M is a set of points {x1, . . . , xn} ⊂ M.
If the surface is parameterized by ϕ : [0, 1]2 7→ M, the easiest way to compute a
sampling is to seed points regularly over the parametric domain

∀ (i, j) ∈ {1, . . . ,
√
n}2, xi,j = ϕ(i/

√
n, j/

√
n).

This strategy performs poorly if the mapping ϕ introduces heavy geodesic dis-
tortion and the sampling might not be regular any more for the geodesic metric
on the surface. In order to ensure the quality of a sampling, one can use the
notion of a well separated covering.

Definition 15 (ε-covering). A sampling {x1, . . . , xn} ⊂ M is an ε-covering if

⋃

i

Bε(xi) = M where Bε(x)
def.

= {y \ dM(x, y) 6 ε} .

Definition 16 (ε-separated). A sampling {x1, . . . , xn} ⊂ M is ε-separated if

max(dM(xi, xj)) 6 ε.

The farthest point sampling algorithm is a simple greedy strategy able to
produce quickly a good sampling. This algorithm has been introduced in image
processing to perform image approximation [22]. It is used in [23] together with
geodesic Delaunay triangulation (to be defined in the next section) to do surface
remeshing. The detection of saddle points (local maxima of the geodesic distance)
is used in [24] to perform perceptual grouping.

Table 3 gives the details of this iterative algorithm. In particular, note that
the update of the distance d(x) to the set of already seeded points goes faster at
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Fig. 19. Examples of farthest point sampling (the colormap indicates the distance
function to the seeds).

each iteration since the domain of update is smaller when the number of points
increases.

1. Initialization: x1 ←random, d(x)← dM(x1, x), set i = 1.
2. Select point: xi+1 = argmax

x

d(x), ε = d(xi+1).

3. Local update of the distance: d(x)← min(d(x), dM(xi+1, x)).
This update is restricted to the set of points {x \ dM(xi+1, x) < d(x)}.

4. Stop: If i < n or ε > ε0, set i← i + 1 and go back to 2.

Table 3: Farthest point sampling algorithm.

The output sampling of the algorithm enjoys the property of being a well
separated covering of the manifold.

Theorem 10 (Farthest seeding properties). The farthest point sampling {x1, . . . , xn}
is an ε-covering that is ε-separated for

ε = max
i=1,...,n

min
j=1,...,n

dM(xi, xj).

Note however that there is no simple control on the actual number of samples
n required to achive a given accuracy ε. We refer to [25] for an in-depth study
of the approximation power of this greedy sampling scheme.

Figure 19 shows examples of farthest point sampling with a uniform (top
row) and a spatially varying isotropic metric W (x) (bottom row). One can see
that this scheme seeds more points in areas where the metric W is large. One
can thus control the sampling density by modifying the metric W .

4.2 Triangulations

Having computed, for instance with farthest points, a sampling {xi}i∈V ⊂
M, the next step is to compute some connectivity between the samples in order
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Metric W (x) Sampling Voronoi Delaunay

Fig. 20. Examples of sampling and triangulations with an isotropic metric H(x) =
W (x)2Id2. The sampling is denser in the regions where the metric is small (dark).

to build a graph, or even better, a triangulation. The problem of surface remesh-
ing has been studied extensively in computer graphics, see the survey [26]. This
section explains a solution based on the geodesic Delaunay triangulation.

The following definition generalizes the notion of an Euclidean Voronoi dia-
gram, to an arbitrary surface.

Definition 17 (Voronoi segmentation). The Voronoi segmentation of a sam-
pling {xi}i∈V ⊂ M is

M =
⋃

i

Vi with (Vi)
m
i=1

def.

= VoronoiM({xi}i)

where
Vi

def.

= {x \ ∀ j 6= i, dM(x, xi) 6 dM(x, xj).}

Each Voronoi cell Vi is thus composed of points that are closer to xi than to
any other sampling point. The boundary between two adjacent cells Vi and Vj is
thus a piece of curve at equal distance between xi and xj . One can then compute
the graph dual to a given partition, which joins together pair of adjacent cells.
This leads to the notion of Delaunay graph.

Definition 18 (Geodesic Delaunay graph). The Delaunay graph (V,E) of a
sampling {xi}i∈V ⊂ M is defined for V = {1, . . . , n} as

E = {(i, j) ∈ V \ ∂Vi ∩ ∂Vj 6= 0} .

The main interest of this Delaunay graph is that, if the number of points
is large enough to capture the topology of the surface (for instance at least 4
points are needed on a sphere), then one gets a valid triangulation.
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Fig. 21. Example of Voronoi segmentations for an increasing number of seeding points.

Theorem 11. For a large enough number of points, the Delaunay graph is a
valid triangulation.

This theorem means that one can find a set of faces F such that (V,E, F ) is a
triangulated mesh. One can see [27] for a theoretical study of geodesic Delaunay
triangulations.

4.3 Examples of Meshing and Remeshing

This Delaunay triangulation can thus be used to perform a geodesic meshing
or re-meshing of any Riemannian surface, as explained in [23].

Figure 20 shows examples of Voronoi segmentations on the plane for various
isotropic Riemannian metrics W (x). The Delaunay graph allows to define a
planar mesh of points evenly sampled according to the metric. Figure 21 shows
examples of Voronoi cells on a surface embedded in R

3.
Instead of using a constant or an isotropic metric W (x), one can use a fully

anisotropic metric H(x) ∈ R
2×2. The local dominant eigenvector e1(x) given

in the decomposition (1) of the tensor gives the local preferred direction of the
triangles and the anisotropy λ1(x)/λ2(x) describe how much the triangles should
be stretched in this direction. Figure 22 shows an example of meshing with a
metric of decreasing anisotropy. Figure 23 shows an anisotropic farthest point
meshing with an increasing number of sampling points.

In order to mesh the interior of a planar shape S ⊂ R
2, one can use the

Euclidean metric inside the shape and compute a geodesic Delaunay triangu-
lation. Some care should be made during the algorithm so that the boundary
of the domain is included in the delaunay triangulation. This requires splitting
boundary edges if they disappear from the Delaunay graph during the algorithm.



25

α = 0.05 α = 0.2 α = 0.6 α = 1

Fig. 22. Meshing of a square with a metric of decreasing anisotropy of a same synthetic
tensor field. Top: Voronoi diagrams, tensor fields and points added by the algorithm (last
image is the Euclidean case). Bottom: resulting meshes.

Figure 24 shows some examples of shape meshing with this uniform metric. This
triangulation is however very close to the usual definition of a planar Euclidean
Delaunay triangulation. In contrast, one can use a non-uniform metric W (x) and
compute a sampling inside the shape that conforms itself to this density. Figure
24 shows a sampling and meshing that uses a metric W (x) = (ε + d(x, ∂S))−1

that tends to seed more points on the boundary of the shape S.
Figure 25 shows an example of uniform remeshing of a 3D surface acquired

from medical imaging with an increasing number of points. Figure 26 shows how
one can adapt the density by defining a non-constant isotropic metric on the
surface.

An option to compute this metric is to use a texture mapped on the surface.
Starting from some parametric surface: ϕ : D ⊂ [0, 1]2 → M, a texture T is a
mapping T : [0, 1]2 → R. It allows to define an isotropic metric using for instance
an edge adaptive function

∀x ∈ D, H(x) = ψT (x)Id2.

where the edge-based stopping function is ψT (x) = (||∇xT || + ε)−1. Figure 27
shows examples of remeshing with a texture-adapted metric with a decreasing
value of ε (increasing adaptivity).

Conclusion

This chapter has reviewed several applications of Riemannian metrics in com-
puter vision and graphics. In particular, the use of geodesic distances and short-
est paths is useful in many areas of these fields. The design of adapted isotropic



26

tensor field

41 points inserted 75 points inserted 150 points inserted

Fig. 23. Anisotropic meshing of a square with an increasing number of points.

or anisotropic metrics allows to solve efficiently segmentation, sampling, meshing
and recognition problems with fast algorithms.
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