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Quantifying the degree of self-nestedness of trees.

Application to the structural analysis of plants
Christophe Godin and Pascal Ferraro

Abstract— In this paper we are interested in the problem
of approximating trees by trees with a particular self-nested
structure. Self-nested trees are such that all their subtrees of
a given height are isomorphic. We show that these trees present
remarkable compression properties, with high compression rates.
In order to measure how far a tree is from being a self-nested tree,
we then study how to quantify the degree of self-nestedness of
any tree. For this, we define a measure of the self-nestedness of a
tree by constructing a self-nested tree that minimizes the distance
of the original tree to the set of self-nested trees that embed
the initial tree. We show that this measure can be computed
in polynomial time and depict the corresponding algorithm.
The distance to this nearest embedding self-nested tree (NEST)
is then used to define compression coefficients that reflect the
compressibility of a tree.

To illustrate this approach, we then apply these notions to
the analysis of plant branching structures. Based on a database
of simulated theoretical plants in which different levels of noise
have been introduced, we evaluate the method and show that the
NESTs of such branching structures restore partly or completely
the original, noiseless, branching structures. The whole approach
is then applied to the analysis of a real plant (a rice panicle) whose
topological structure was completely measured. We show that the
NEST of this plant may be interpreted in biological terms and
may be used to reveal important aspects of the plant growth.

Index Terms— tree reduction, self-similarity, tree compression,
tree-to-tree edit distance, plant architecture, branching struc-
tures, meristem, differentiation state.

I. INTRODUCTION

Biological motivation. Plants are branching living organisms

that develop throughout their lifetimes. Organs are created by

small embryogenetic regions at the tip of each axis, called

apical meristems (or simply meristems). During plant ontogeny,

meristems develop branching structures that show remarkable

organizations, made up of many similar organs at different scales:

leaves, shoots, axes and branching systems of different sizes

[1], [2], [3], [4], [5]. Important progresses in the understanding

of these growth processes have been made in the last decades

by studying and quantifying real plants and their development

under various environmental conditions. Two complementary ap-

proaches are being used. In simulation approaches, developmental

models are built in order to reproduce the essence of the plant

development with a few parameters in a simulation model, see

[6], [7], [8] for reviews. On the other hand, in descriptive

approaches, quantitative analyses of observed plant structures

are tentatively used to reveal regularities or gradients hidden

in the complex organization of plant structures, see [9] for a

review. In the recent years, both the simulation and the descriptive
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approaches are being combined to obtain more accurate models

of plant development and assess them quantitatively against real

data, e.g. [10], [11], [12]. In the descriptive approach, a lot of

techniques have been developed for analyzing distributions of

events in the plant structure (e.g. [13], [14]) or sequences of

events along a branch or a meristem trajectory (e.g. [15], [16]).

Comparatively less attention has been paid to the development

of methods for directly characterizing tree-like structures, e.g.

[17], [18], [19]. However, the natural organization of plants

is primarily observed at the level of branching systems which

qualitatively show strong internal similarities between their own

parts. In many cases, this repetition of quasi-identical structures

is accompanied with the impression that the branching systems

are nested one into the others. Although these phenomena have

been empirically described by botanists for decades, [20], [21],

[22], [23], no algorithmic approach was developed yet to address

this problem of recognizing similar, possibly nested, patterns in

plant structures. The aim of this paper is to develop such a

computational framework and to illustrate its application to plant

architecture analysis.

Characterizing the nested structure of rooted trees. Plant

structures are usually represented by either ordered or unordered

rooted trees [24], [25] and a number of algorithms have been

developed in computer science on such trees that have connections

to our problem.

A first set of approaches makes it possible to compare quanti-

tatively the structure of two trees. They are based on the use of an

edit-distance approach, in which a metric is defined that reflects

the minimum number of elementary edit operations necessary

to transform one tree into the other. These algorithms solve

different tree-to-tree comparison problems, such as defining a

metric between trees, finding whether a tree is included into

another one [26], finding the consensus tree between two trees

(i.e. the minimal tree that contains both) [27], or the maximum

common subtree [28], [29], etc. Usually, to answer each question,

a whole family of algorithms is developed to account for differ-

ent characteristics of either the input trees (ordering of nodes,

labelling) or the comparison problem (constraints on the valid

edit operations, etc.). In the context of plant modeling, based on

an original algorithm proposed by Zhang in 1993 [30], [31], we

studied in a previous work how to use and adapt such algorithms

to compare plant architectures from a structural point of view [17].

However, all these studies concentrate on the comparison between

two different trees and usually pay no attention to characterizing

the internal structure of a tree.

In a different spirit, the problem of studying internal repetitions

of structures in a tree has been addressed by eliminating the

structural redundancy appearing in trees (or in graphs). For this,

similar parts in a tree are condensed, resulting in a directed

acyclic graph (DAG). Such an approach was used in different

domains. Based on a pioneering work by Akers [32], Bryant [33]
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introduced one of the very first uses of such DAGs to represent

efficiently the graph of Boolean functions. In this application,

these function graphs are actually binary, ordered DAGs (each

node of such a DAG has exactly two children, with a first and

a second child). An algorithm is depicted that reduces these

function DAGs to canonical DAGs from which all the structural

redundancy of the initial DAG has been removed. It is closely

related to the algorithm described in [34] for testing whether two

trees are isomorphic. DAG representations of trees are also much

used in computer graphics where the process of condensing a

tree into a graph is called object instancing [35]. This process,

first used by Sutherland in 1963 [36], makes it possible to share

nodes representing scene objects and thus avoids the unnecessary

duplication of different instances of the same graphical object.

This efficient scheme is now commonly implemented as scene

graphs in computer graphics applications. It allows to manipulate

efficiently very huge scenes and was notably applied to the

rendering of complex fractal scenes [35], [37] and plant scenes,

e.g. [38], [35], [39].

Finally, our problem is also connected to the notion of structural

self-similarity in trees. While self-similarity usually refers to

purely geometric properties of objects (parts of an object are

geometrically similar to the entire object up to a scaling factor),

structural self-similarity attempts to capture an equivalent idea

for structures and graphs. Different approaches of structural self-

similarities have been tentatively proposed. Authors defined self-

similarity by analysing either global branching parameters of trees

e.g. [40], [41], [42], [43] or topological structural properties of

graphs [44], [7]. Interestingly, in the context of studying efficient

subtree isomorphisms, Greenlaw [45] introduced the definition of

nested trees. As such, nested trees are not strictly self-similar, but

they have an internal recursive structure that makes them a closely

related notion. In this paper, we call such trees self-nested trees

to insist on their recursive structure and on their proximity to the

notion of structural self-similarity. Structural self-similarity was

also introduced in the context of plant modelling by Prusinkiewicz

[7] based on botanical insights of Arber [21]. This definition relies

on the use of L-system rules, and was shown to grasp the essence

of the pattern recursion through scales included in the idea of

self-similarity. Subsequently, an alternative approach to structural

self-similarity in plants was proposed by Ferraro et al. [19], who

used edit-distance metrics to find recursively similarities between

the high order branches of a plant and its trunk.

Based on concepts coming from these three areas, we introduce

in this paper a new algorithmic measure to quantify the degree

of self-nestedness of trees. In a first step, we present the formal

framework and main theoretical results. We then show how such

tools can be applied to the analysis of patterns in plant structures

and how they can give first insights on the more or less important

self-nested nature of plants and on their development. The paper

starts by studying different algorithms to reduce trees as DAGs

(section II). We extend Bryant algorithm to unordered trees and

show that this extension is closely connected to the definition

of tree-to-tree edit-distance algorithms. Then, in section III, we

introduce the notion of self-nested trees as the trees whose

reduced graph is linear and study several of their properties. Using

this framework, we consider the question of computing, for any

given tree, a nearest embedding self-nested tree (NEST), i.e. a

self-nested tree that minimizes the tree-to-tree edit-distance to the

initial tree and that embeds it. This leads us to the main result

of this paper in which we show that this question can be solved

in polynomial time and give the algorithm. The distance between

a tree and its NEST derives from this algorithm and defines a

notion of degree of self-nestedness of a tree. In the second part

of the paper, we then apply this theoretical framework to the

analysis of plant self-nestedness (section IV). We illustrate the

notion on different simulated theoretical plants and on a measured

plant. We show that the study of similarities between all parts

of a plant boils down to studying the self-nested nature of the

plant structure. We define the degree of self-nestedness of any

plant as a departure coefficient from pure self-nestedness. Finally,

as a by-product of such an analysis, we show that the method

enables us to identify putative hierarchies of meristem states that

could be further exploited in combination with investigations at

a biomolecular level to better understand plant development.

II. TREE REDUCTION

A. Definitions and notations

In the sequel, we will use the following definitions and nota-

tions. A multiset is a set of typed elements such that the number

of elements of each type is known. It is defined as a set of pairs

M = {(k, nk)}k where k varies over the element types and nk is

the number of occurrences of type k in the set. A finite oriented

graph, or simply a graph, is a pair G = (V,E) where V denotes

a finite set of vertices and E denotes a finite set of ordered pairs

of vertices called edges. Let (x, y) be an edge of E, x is called

a parent of y and y is a child of x. The set of children of a

node x is denoted by child(x). A vertex that has no child is

called a leaf. |G| represents the number of vertices of G. We

shall sometimes say that a vertex x is in G, meaning x ∈ V .

A chain between vertex x and vertex y is a (possibly empty)

sequence of vertex pairs {{xi, yi}}i=1,M such that either (xi, yi)

or (yi, xi) is an edge, {xi, yi} ∩ {xi+1, yi+1} 6= ∅ and x1 or

y1 = x and xM or yM = y. A path from a vertex x to a vertex

y is a (possibly empty) sequence of edges {(xi, xi+1)}i=1,M−1
such that x1 = x, xM = y. A vertex x is called an ancestor of

a vertex y (and y is called a descendant of x) if there exists a

path from x to y. A cycle is a non-empty chain between one

vertex and itself. A directed cycle is a non-empty path from one

vertex to itself. Two vertices of a simple graph are connected if

there exists a chain between the two vertices (a vertex is always

connected to itself). A graph is connected if any pair of vertices

are connected.

A directed acyclic graph (DAG) is a graph containing no

directed cycle (but which may contain cycles). In a DAG, the

ancestor relationship is a partial order relation denoted by �,

[46].

A tree is a connected graph containing no cycle. A rooted tree

is a tree such that there exists a unique vertex, called the root,

which has no parent vertex, and any vertex different from the root

has exactly one parent vertex. In the following, a rooted tree is

called simply a tree. In this paper, we consider the set of rooted

unordered trees, noted T . Unordered trees are trees for which

the order among the sibling vertices of any given vertex is not

significant. The degree deg of a tree is the maximum number of

children of a vertex of T . The height h(x) of a vertex x in a

tree T is recursively defined as h(x) = 0 if x is a leaf and as

h(x) = maxy∈child(x){h(y)} + 1 otherwise.

A subtree is a particular connected subgraph of a tree. Let x be

a vertex of a tree T = (V,E), T [x] is a complete subtree if it is the
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Fig. 1. a. A rooted tree T . Isomorphic nodes are colored identically: T [x] ≡
T [y] and z � x then T [y] ⊑ T [z]. b. Quotient graph Q(T ) associated with
T : vertices of this graph are equivalence classes colored according to the
color of the class of isomorphic vertices they represent in T . c. Reduction
graph of T corresponding to Q(T ) whose edges are labeled with the signature
distribution function n.

maximal subtree rooted in x: T [x] = (V [x], E[x]), where V [x] =

{y ∈ V |x � y} and E[x] = {(u, v) ∈ E|u ∈ V [x], v ∈ V [x]}. In

the sequel, we will only consider complete subtrees and use the

simpler term ”subtree” as a shorthand notation. A forest is a graph

whose connected components are trees. Let x1, x2, . . . , xK be the

children of a vertex x of a tree T , F [x] denotes the forest rooted

in x, i.e. the forest consisting of the subtrees of T [x] respectively

rooted in x1, x2, . . . , xK .

Definition 1 (tree isomorphism): Let us consider two rooted

trees, T1 = (V1, E1) and T2 = (V2, E2). A bijection φ from V1 to

V2 is a tree isomorphism if for each (x, y) ∈ E1, (φ(x), φ(y)) ∈

E2.

If there exists an isomorphism between two structures T1 and

T2, the two structures are identical up to a relabeling of their

components. In this case, we write T1 ≡ T2, and say that T1 is

isomorphic to T2. By extension, two subforests F1[x] and F2[y]

of T1 and T2 are isomorphic if there exists a bijection ψ from the

children xi of x to the children of y such that T1[xi] ≡ T2[ψ(xi)].

Let us now consider the equivalence relation defined by the

tree isomorphisms on the set of (complete) sub-trees of a tree

T = (V,E). We say that vertices x and y in V are equivalent if

T [x] ≡ T [y], and we note by extension x ≡ y. For each x ∈ V , let

c(x) denote the equivalence class of x. Throughout the paper, we

consider the following partial order relations between two trees

T1 and T2:

• T1 ⊆ T2 if T1 is a subtree (not necessarily complete) of T2

(i.e. T2 can be obtained from T1 by adding vertices only).

• T1 ⊑ T2 if T1 is isomorphic to a (complete) subtree of T2.

In a tree T , if z � x, then T [x] ⊑ T [z] (Fig. 1.a).

Let us consider the quotient graph Q(T ) = (VQ, EQ) obtained

from T using the above equivalence relation on T vertices. VQ
is the set of equivalence classes I on V . EQ is a set of pairs of

equivalence classes such that (I, J) ∈ EQ if and only if ∃(x, y) ∈

E, c(x) = I and c(y) = J . Note that in this case, x � y and

T [y] ⊏ T [x].

Proposition 1: Let T be a finite tree, then Q(T ) is a DAG.

Proof: Assume that there exists an oriented cycle

{(I1, I2), ..., (In−1, In)} in Q(T ) = (VQ, EQ), with In = I1.

Then for k ∈ {1, .., n − 1}, (Ik, Ik+1) ∈ EQ, implies that there

exists xk and xk+1 such that c(xk) = Ik, c(xk+1) = Ik+1 and

T [xk+1] ⊏ T [xk],where the inclusion between both trees is strict.

This means that T [xn] ⊏ ... ⊏ T [xk] ⊏ ... ⊏ T [x1], where all

inclusions are strict. However, since In = I1, xn ≡ x1 and then

T [xn] ≡ T [x1], which is a contradiction with the preceding series

of strict nested inclusions.

Q(T ) has a single source (resp. sink) vertex. The source

vertex represents the class of the entire tree while the sink

vertex represents the class of all leaves. Each path (x1, . . . , xk)

in T corresponds to a path (c(x1), . . . , c(xk)) with identical

length in Q(T ) (Fig. 1). Q(T ) obviously condenses the structural

information contained in the tree T . However, Q(T ) does not

necessarily contain the same information than T . We thus consider

now how the definition of Q(T ) can be augmented so that the

resulting condensed representation can be used to reconstruct the

original tree.

For this, we shall associate integers with the edges of Q(T ).

Let us consider a vertex x of T and denote n(x, J) the number

of children of x that have class J :

n(x, J) = | {z ∈ T |z ∈ child(x) and c(z) = J} |

To characterize each vertex x in the tree, we can count for each

class J the number of children of x that have class J . This makes

it possible to associate with each vertex x a signature defined as

a multiset σ(x).

Definition 2 (Signature of a vertex): Let x be a vertex of T .

We associate with x the multiset σ(x) defined as:

σ(x) = {(J, n(x, J)), J ∈ Q(T )}
For unordered trees, it is natural to define the signature as

a multiset. However, for different types of trees, this definition

should be modified to adapt our approach. For example for an

ordered tree, the signature of a vertex would naturally be defined

by the ordered list of the classes of its children.

Signatures can be used to characterize recursively vertices

having identical equivalence classes, based on the signatures of

their children.

Proposition 2: ∀x, y ∈ T , T [x] ≡ T [y] ⇔ σ(x) = σ(y).

Proof: If part. Let us consider two vertices x and y in a

tree T , such that c(x) = c(y). This means that T [x] and T [y]

are isomorphic. Then the forests F [x] and F [y] are isomorphic as

well and σ(x) = σ(y).

Only if part. Let us consider two vertices x and y in a tree

T , such that σ(x) = σ(y). This means that the sets child(x) and

child(y) have the same number of vertices and that the forests

rooted respectively in the vertices of child(x) and child(y) are

isomorphic. Therefore, the trees T [x] and T [y] are isomorphic as

well.

Since the function σ is constant over a class I, we shall define

by extension σ(I) as σ(x) for any x in class I.

Corollary 1: Let x1 and x2 be two vertices with identical class

I (i.e. c(x1) = c(x2) = I). Then for any class J , n(x1, J) =

n(x2, J).

The quantity n(x, J) is constant for any x in I, and is thus

denoted by n(I, J). This function, defined on the edges of Q(T ),

is called the signature distribution of T .

Definition 3 (Reduction of a tree): Let T be a tree and

Q(T ) = (VQ, EQ) be its quotient graph. The reduction

R(T ) of T is a graph (VQ, E
+
Q), where E+

Q is the multiset

{((I, J), n(I, J))}(I,J)∈EQ
, n being the signature distribution of

T .

R(T ) is thus the DAG Q(T ) augmented with labels on its

edges corresponding to n(I, J). Intuitively, the reduction R(T )

represents the tree T where all the structural redundancy of the

tree has been removed. Fig. 1.b depicts the quotient DAG Q(T )

of the tree of Fig. 1.a, while Fig. 1.c depicts its reduction R(T ).

In the sequel, we shall manipulate DAGs augmented with integer

labels but call them DAGs for sake of simplicity. We shall denote

D the set of such DAGs.



FOR SUBMISSION 4

B. Computing tree reduction

The problem of constructing a compression of a tree has

been raised in the early 1970’s. For ordered trees, previous

algorithms have been proposed to allow the reduction of a tree

with complexities ranging in O(n2) to O(n) (see [47] for a

review).

We present hereafter two different algorithms to compute

the reduction in the case of unordered tree. They are derived

from completely different approaches but, interestingly, lead to

the same time complexity (if no specific optimizing scheme is

designed to improve these original complexities).

1) Signature-based algorithm:

Proposition 3 (Signature-based Complexity): The reduction

R(T ) of an unordered tree T can be computed in time

O(|T |2 deg(T ) log deg(T )).

The corresponding algorithm for tree reduction is depicted

in Appendix III. By using a more efficient data structure (for

instance a self-balancing binary search tree, [48]) to store the

signature, the overall time complexity of this algorithm would

fall to O(|T | deg(T ) log deg(T )).

2) Edit-distance-based algorithms: The above algorithm pro-

ceeds by detecting isomorphic subtrees in a bottom-up manner.

It relies at each stage on the detection of exact isomorphisms

between subtrees. Interestingly, a different approach, based on

tree edit-distance, can be used to carry out similar detections

with additional advantages. Various algorithms make it possible

to compute approximate (ordered, unordered) tree isomorphisms

and edit distance based on all-against-all subtree comparison [31],

[49], [50]. The complexity of these algorithms is kept polynomial

by the use of bottom-up recursion and dynamic programming.

A null distance between two trees (or subtrees) denotes the

existence of an isomorphism between the two structures. In our

context, the key idea is to use these algorithms to compute

the distance from a tree T to itself. Obviously the resulting

distance is null, but as a by-product, all the distances between

any two subtrees of T are computed recursively in close to

quadratic time. Since a null distance between two subtrees denotes

isomorphic structures, these algorithms can be exploited to build

the reduction graph of T . As a counterpart of their slightly higher

complexity (O(|T |2 deg(T ) log deg(T ) ) for Zhang’s algorithm for

instance), they open the way to the extension of the reduction

techniques presented in this paper to the detection of non-perfect

isomorphisms and approximate tree reduction.

C. Properties of tree reductions

Remarkably, a tree and its reduction are actually equivalent:

Proposition 4: A tree T can be exactly reconstructed from its

reduction R(T ).

Proof: Omitted. A description of the algorithm computing

a tree from a DAG is presented in Appendix IV.

Let A be a DAG, the tree obtained from A is denoted by T (A)

(i.e. R(T (A)) = A), and the number of vertices of T (A) is

denoted by n(A) = |T (A)|.

Definition 4 (DAG partial order relations): Let A and B be

two DAGs, the partial order relations ⊆ and ⊑ between trees

induces respective partial order relations ⊆ and ⊑ between DAGs:

A ⊆ B ⇔ T (A) ⊆ T (B)

A ⊑ B ⇔ T (A) ⊑ T (B)

Let us consider two DAGs A and B, reductions of respectively

two trees T (A) and T (B), then the distance D(A,B) will

represent the edit distance (introduced in the previous sub-section)

between T (A) and T (B). This distance between DAGs has the

following properties:

Proposition 5: Let A, B and C be three DAGs:

A ⊆ B ⇔ D(A,B) = n(B) − n(A)

A ⊆ B ⊆ C ⇔ D(A,C) = D(A,B) +D(B,C)

Proof: Let A and B be two DAGs such that A ⊆ B. Since

T (A) is a subtree of T (B), any vertex of T (A) can be mapped

onto a vertex of T (B) (there is only insertions). The number of

vertices that are not mapped defines the distance between T (A)

and T (B):

D(A,B) = D(T (A), T (B))

= |T (B)| − |T (A)| = n(B) − n(A)

Let A, B and C be three DAGs verifying A ⊆ B ⊆ C:


D(A,B) = n(B) − n(A)

D(B,C) = n(C) − n(B)

⇔ D(A,B) +D(B,C) = n(C) − n(A)

= D(A,C)

Different quantities that correspond to different characteristics

of the tree T can be directly computed on R(T ). For any I in

R(T ), there exists a vertex x in T such that I = c(x). We define

n(I) = |T [x]| the size of the tree rooted in x and m(I)=|{x ∈

T |c(x) = I}| the number of trees in T isomorphic to the tree

rooted in x.

Proposition 6: Size n(I) of a given subtree. For any I in R(T ),

n(I) = 1 +
X

J∈child(I)

n(I, J)n(J)

Note that for a leaf of T , child(I) = ∅, and then n(I) = 1.

Proposition 7: Number m(I) of trees in T isomorphic to a

given subtree of T . For any I in R(T ),

if parent(I) = ∅,

m(I) = 1

if parent(I) 6= ∅,

m(I) =
X

K∈parent(I)

n(K, I)m(K)

Fig. 2 illustrates the computation of n(I) and m(I). n(I) is

computed bottom-up and m(I) is computed top-down.

Since a tree reduction corresponds to a compacted version of

the original tree, we are interested in quantifying corresponding

reduction factors.

Definition 5 (Compression factors): Let nv(I) and ne(I) be

respectively the number of vertices (resp. of edges) of the sub-

DAG of R(T ) rooted in I. The vertex compression factor is

defined by:

ρv(I) = 1 −
nv(I)

n(I)
(1)

Similarly, the edge compression factor is defined by:

ρe(I) = 1 −
ne(I)

n(I) − 1
(2)

Definition 6: Let G be a DAG. We define h(G) as the maxi-

mum length of a path in G
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Fig. 2. a. A tree T whose vertices are colored according to their signature. b.
Corresponding reduction graph showing the value with n(I) on each vertex.
c. Reduction graph where vertices are valuated with m(I). Both quantities
are computed recursively.

Proposition 8: Let T be a tree and R(T ) its reduction. Then,

h(T ) = h(R(T ))

Proof: Every path in R(T ) corresponds to a path in T

and reciprocally. Therefore, the path with maximum length in

T corresponds to a path with maximum length in R(T )

III. SELF-NESTED TREES

We are now going to consider particular trees, whose reductions

show remarkable compression properties.

A. Definition

Let us first give a recursive definition of tree self-nestedness.

Definition 7 (Self-Nested tree): A tree T rooted in r is self-

nested either

• if it is a single leaf

• or if all the trees of F [r] are self-nested and one of them

contains the others as subtrees.

Based on this definition, self-nested trees can be characterized

as follows:

Proposition 9: Let T be a tree. The following propositions are

equivalent:

• T is a self-nested tree

• all the subtrees of T with identical height are isomorphic:

∀x, y ∈ T, h(x) = h(y) ⇔ T [x] ≡ T [y]

• any two subtrees of T are either isomorphic or included one

into another (one is a subtree of the other):

∀x, y ∈ T, T [x] ⊑ T [y] or T [y] ⊑ T [x]

Proof: The proof which presents no particular difficulty is

omitted.

In the sequel, we shall denote S the set of self-nested trees and

S+(T ) the set of all self-nested trees that contain T:

S+(T ) = {S ∈ S|T ⊆ S}

Now, let us consider the reduction of self-nested trees and their

properties.

Fig. 3. a. a linear DAG. b. a non-linear DAG

Fig. 4. Examples of a-c. different self-nested trees and their reduction graphs.
d. a non-self-nested tree.

B. Reduction of self-nested trees

Definition 8 (Linear DAG): A linear DAG is a DAG contain-

ing at least one path that goes through all its vertices.

The difference between a linear and a non-linear DAGs is

illustrated in Fig. 3. We shall denote L the set of all linear DAGs

and L+(T ) the set of linear DAGs that contain R(T ), T being a

tree.

Linear DAGs are tightly connected with self-nested trees. This

is expressed by the following property:

Proposition 10: A tree T is self-nested if and only if its

reduction R(T ) is a linear DAG.

Proof: This proposition is an immediate consequence of

proposition 9. In particular, note that a vertex in a linear DAG is

determined without ambiguity by its height.

Fig. 4a. , b. and c. show different configurations of self-nested

trees and their respective reductions. In Fig. 4d. a non self-nested

tree and its reduction, a non-linear DAG, are illustrated.

From proposition 8 we know that a tree T of height H has a

reduction containing at least h(T ) = H vertices (h(R(T )) = H).

Since the reductions of self-nested trees of height H are linear

graphs (prop. 10) of height H (prop. 8), these DAGs have exactly

H vertices. Self-nested trees thus achieve maximal compression

rates with respect to other trees with the same height H . To take

into account this remark, we can modify the definition of the



FOR SUBMISSION 6

compression factor, ρv(T ), so that self-nested trees have 100%

compression rates by definition. We therefore need to correct the

definition of eq. 1 as :

ρ′v(T ) = 1 −
nv(R(T )) − h(T )

n(T )
. (3)

C. Determination of the nearest self-nested tree of a tree

The previous compression factor gives us a first account of the

compressibility of a tree. However, this quantity does not reflect

the exact compression of information as it only takes into account

the number of vertices of the DAGs. Similarly, a coefficient

based on edges would be also incomplete and combinations of

both would lack a theoretical justification. In this section we are

interested in the problem of defining a measure reflecting the

compressibility of a tree on a theoretically sound basis.

For any tree T , the number of vertices of its reduction is

bounded by its height h(T ). For self-nested trees, this number

is exactly h(T ), i.e. R(T ) has exactly h(T ) vertices. Therefore,

self-nested trees achieve a maximal vertex compression rate. We

can therefore intuitively think of the compressibility of any tree

T as a measure of the distance at which the tree T is from perfect

self-nestedness. This would define a degree of self-nestedness for

T . Let us put this idea in formal terms.

Let us consider a distance D defined on T (the set of all trees).

Let us call NST(T ) the set of self-nested trees with minimal

distance to T :

NST(T ) = argmin
S∈S

D(T, S) (4)

In general for topological distances, there exists more than one

self-nested tree S∗ with minimal distance D(T, S∗). This quantity

characterizes how distant the tree T is from the nearest self-nested

tree and therefore is a good candidate to quantify the degree of

self-nestedness of T .

In equation 4, D can be any distance between two trees. A

particular choice of D corresponds to different definitions of the

NST of a tree. In this paper, we are interested in edit-distances

corresponding to mappings that preserve certain structural prop-

erties between the compared trees, e.g. Zhang’s distance. The

definition of the NST can also be modified by solving equation 4

over self-nested sets with different characteristics. For example,

the nearest self-nested tree of a given tree T can be looked for

in the set of the self-nested trees that contain T , or in the set of

self-nested-trees that are contained in T .

In our context, due to biological motivations detailed in section

IV, we are interested in carrying out the optimization process over

the set denoted S+(T ) of self-nested trees that contain T , i.e. that

can be obtained from T by inserting nodes only:

NEST(T ) = argmin
S∈S+(T )

D(T, S) (5)

In the sequel, we are going to show that a solution of this

optimization problem can be found in polynomial time for any

given tree T . We chose to develop and illustrate the reasoning

on DAGs, although a reasoning on the dual space of trees would

have also been possible. In particular, equation 5 can be expressed

in terms of DAG optimization: if G = R(T ), let denote

A∗(T ) = argmin
A∈L+(T )

D(G,A)

Fig. 5. a. a DAG G b. a linear DAG L such that h(L) ≤ h(G). c. DAG
G 〈L〉 corresponding to the DAG G partially linearized by L.

then

NEST(T ) = T (A∗(T ))

Let us consider a tree T and its reduction G = R(T ). Let us

also consider a linear DAG L such that h(L) ≤ h(G).

Definition 9 (DAG partially linearized by a linear DAG): We

denote by G 〈L〉 the DAG obtained by modifying G with L as

follows:

• remove all the vertices of height k = 1..h(L) in G

• for each pending edge, which used to connect a vertex v

of height K > h(L) to a removed vertex of height k in G,

connect v to the unique vertex of L of height k by a new

edge with the same edge label.

• in the obtained DAG, if several edges appear between two

vertices, replace them by one edge whose label is the sum

of the edge labels.

The figure 5 illustrates the partial linearization G 〈L〉 of a DAG

G by a linear DAG L.

Let K be an integer. We denote S+
K(G) the set of partially

linearized DAGs by linear DAGs of height K, K ≤ h(G):

S+
K(G) = {G 〈L〉 |L ∈ L, h(L) = K, and such that:G ⊆ G 〈L〉}

All the DAGs of this set contain G. We consider the subset of

S+
K(G) of DAGs with the smallest number of vertices and let ZK

be an element of this subset:

ZK ∈ argmin
H∈S+

K
(G)

{n(H)}

Note that ZK also minimizes the distance D(G,H) = n(H)−

n(G) for H ∈ S+
K(G). In particular, Zh(G) is a linear DAG that

minimizes this distance and therefore corresponds to a solution

of equation 5. To compute the NEST of G (i.e. equivalently

the NEST of T ), we are thus going to show that Zh(G) can be

computed in polynomial time. The following proposition shows

that this computation can be carried out recursively.

Proposition 11: For any K = 1..h(G),

D(G,ZK) = min
H∈S+

K
(G)

D(G,H)

= D(G,ZK−1) + min
H∈S+

K
(ZK−1)

D(ZK−1, H)

Proof: A detailed proof is given in Appendix II.

The computation of D(G,ZK) makes use of the dynamic

programming principle frequently used in discrete optimization

problems, e.g. [51]. The optimal solution at stage K, i.e. the

best linearized graph at height K, is a function of the optimal

solution at stage K−1 and of a local optimization to pass from the

optimal solution at stage K−1 to the optimal solution at stage K

(right-hand member of the recursive equation). Interestingly, this

local optimization problem (i.e. min
H∈S+

K
(ZK−1)

D(ZK−1, H))

is expressed in a way similar to the global optimization problem
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w1 ... ...

zK-1

zK-2

zk

z2

z1

...

...

n(w1,zK-1)

w2 wi wI

n(w1,zK-2)

n(w1,zk)

n(w1,z2)

n(w1,z1)

n(wi,zk)

rzK-1

Fig. 6. DAG ZK−1. The minimization D(ZK−1, H) for H ∈ S+

K
(ZK−1)

consists of merging all the vertices at level K in a minimal way to obtain a

new DAG in S+

K
(G), i.e. linearized up to height K.

(i.e. min
H∈S+

K
(G)D(G,H)), in which the DAG G has been

substituted by the linear DAG ZK−1.

From a DAG perspective, this local optimization problem

comes down to finding the smallest DAG that embeds all the

subDAGs of ZK−1 rooted respectively in the vertices wi at height

K of the DAG ZK−1. This problem is equivalent in the dual tree

space to finding the smallest common super-tree of all the trees

corresponding to the subDAGs rooted in wi. This remark can be

exploited to solve the local optimization problem.

Proposition 12: The local optimization problem

min
H∈S+

K
(ZK−1)

D(ZK−1, H) can be solved in time

O(deg(ZK−1))

Proof: cf Appendix II.

Based on propositions 11 and 12, we can finally derive our

main result:

Theorem 1: The NEST optimization problem (equation 5) can

be solved in time O(h(G)2 × deg(G))

Proof: The proof of theorem 1 is based on a constructive

approach of the solution. We describe here the corresponding

NEST algorithm.

Let us denote G the reduction of a tree T . The NEST algorithm

consists of computing recursively a sequence of DAGs ZK ∈

S+
K(G), for K = 1, .., h(G), starting from Z0 = G. Each ZK

has a linear part of height K and the final DAG Zh(G) is a

linear DAG. The NEST of G is recursively computed from the

leaves to the root of G. At a given step of the computation,

we suppose that all the nodes zi (1 ≤ i ≤ K − 1) and the

edge weights n(wl, zi) have been determined (Fig. 6). We then

consider the calculation of zK and the edges between zK and all

the nodes zi. This local optimization problem is solved in time

O(deg(ZK−1)) ⊂ O(deg(G)) (prop. 12). However, in order to

fully determine ZK , for any i ∈ {1, ..,K − 1}, n(zK , zi) must

be updated according to the local optimization problem solution.

2 1

2

2

1

1

1

1

1

1

3

a. a1

b1 b2 b3

c1 c2

z1

1

2 1

2

2

2

1

1

1

1

1

3

b. a1

b1 b2 b3

c1 c2

z1

1

1

2

2

1

1

1

3

1

3

c. a1

b1 b2 b3

z2

z1

1

1

2

2

1

1

1

3

1

3

d. a1

b1 b2 b3

z2

z1

1

3

2

2

1
1

3

1

3

e. a1

b1 b2 b3

z2

z1
1

3

2

2

1
1

3

1

3

f. a1

b1 b2 b3

z2

z1

1
1 1

2

4
1

3

g.a1

z3

z2

z1

1

Fig. 7. The seven steps of the algorithm needed to find the nearest linear
DAG of the DAG introduced in Fig. 2

These values are thus computed from zK−1 to z1, for each wl,

the weight between wl and any zi is updated as follows:

• if the sum of weights between wl and any zi is smaller than

the maximum value, then all the weights between wl and zi
for i < K − 1 become equal to 0 and n(wl, zK−1) is set to

this maximum value,

• otherwise, the n(wl, zi) are set to the current n(wl, zK−1).

In the worst case, the update is repeated for each vertex at

height K, i.e. in time O(deg(ZK−1) × K) ⊂ deg(G) × K).

Finally, the nodes wl are removed and replaced by a node zK
such that n(zK , zi) is equal to the maximum value of n(wl, zi).

The recursive computation is repeated for each K in 1..h(G)

which leads to the overall complexity: O(
P|h(G)|

K=1 K deg(G)) =

O(h(G)2 × deg(G)).

To illustrate the NEST algorithm, Fig. 7 presents the different

steps that occur during its application to a particular a DAG:

• Let us consider (Fig. 7a.) the DAG introduced in Fig. 2. The

bottom vertex (of height 0) is called z1, which initializes the

recursion.

• At a first stage, we consider all the vertices at height 1,

in this case c1 and c2 7b.). The value n(ci, z1) of edges

pointing from the vertices ci to the extremity z1 of the DAG

are compared and the maximum of these values is chosen

(2 in this example).

• The edge values n(ci, z1) are then updated to this maximum.

The resulting DAG contains two equivalent vertices that can

be collapsed in a new node z2, Fig. 7c.

• So far, the original DAG has been transformed into a partially

linear DAG at height 1 and 2 that contains the original DAG

itself and such that a minimum number of vertices has been

added to the corresponding tree. We then iterate these two

previous steps at height 2.

• The values n(bi, z2) of edges from vertex bi (Fig. 7d.) to the

vertex z2 are compared to identify the maximum (3 in this

example). All edges (bi, z2) must be homogenized using this

maximum value. Only n(b3, z2) which is equal to 1 must

be updated. To add a minimum number of vertices to the

underlying tree, we first use the complete tree(s) available

from edge (b3,z1) to participate in the increase of n(b3, z2).

Only n(b3, z1) = 1 tree is available. The vertices of this tree

are removed from the underlying tree, and used to create a

new tree on edge b3, z2 leading us to n(b3, z2) = 2. n(b3, z1)
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is now zero (the edge between b3 and z1 can be removed.

Now, additional vertices can be added to augment the number

of trees on edge b3, z2 by one unit, leading to n(b3, z2) =

3(Fig. 7e.).

• The edge homogenization procedure for vertices at height 2

is then repeated for each vertex zi from z2 to z1, actually

at this stage only for z1. The edge values n(bi, z1) are

compared to find the maximum value (1 in this example).

Values of n(bi, z1) are augmented to reach this maximum

(dotted edges in Fig. 7f.).

• Finally, the DAG obtained contains three equivalent vertices

at height 2. These vertices can be collapsed into a new vertex

z3 leading us to a linear DAG, i.e. the Nearest Embedding

Linear DAG (Fig. 7g.).

Let T ∗ be an element of NEST (T ). We define the degree of

self-nestedness of T , δNEST (T ), as the percentage of vertices

occupied by T in T ∗. Since T ⊏ T ∗, δNEST (T ) can be defined

by :

δNEST (T ) = 1 −
D(T, T ∗)

|T ∗|
. (6)

This measure is independent of the particular element T ∗

chosen in NEST (T ). Indeed, for any tree T ∗ in NEST (T ), T ⊑

T ∗ and then D(T, T ∗) = |T ∗|−|T |. Since by definition D(T, T ∗)

is constant over this set, two different trees in NEST (T ) must

have the same number of vertices, and therefore δNEST (T ) is

independent of the choice of T ∗ in NEST (T ).

IV. APPLICATION TO THE STRUCTURAL ANALYSIS OF PLANTS

Internal similarities and nested structures in plants have for long

been studied by botanists to understand the general organization

of plants and the dynamics of their development [20], [52], [1],

[2], [21], [53]. Different techniques were used until now ranging

from qualitative analysis, with the help of descriptions based on

botanical drawing or pictures, to varying levels of quantitative

analysis. However, first techniques for the systematic analysis

of the internal similarities of plant branching systems have been

proposed only recently [19], [18]. Such techniques are important

for two major reasons:

• First, they may be used to reveal structures of plants deeply

hidden in a complex branching system. If all the redundancy

that is expressed in the branching structure of a plant

is removed, we would be likely to characterize the deep

structure of the plant. Being more simple, this structure could

be easier to interpret, to characterize or to compare with the

corresponding structure of other plants.

• Second, the fact that plants are made up of the repetition

of many similar components at different scales provides

macroscopic presumptions for the existence of similarities

in processes that drive meristem activity at microscopic

scales. Thus characterizing the internal similarities of plants

is expected to give important clues to understand meristem

growth.

From a biological perspective, since the pioneering work of

Goethe on plant metamorphosis [54], [55], repetitions and gradi-

ents in plants are supposed to express the idea that the meristems

of a plant undergo series of differentiation stages throughout

their lives and that these differentiation routes derive from a

unique common differentiation process. In the last decades, this

hypothesis was applied to the study of various plant architectures

by several teams of botanists who developed and confirmed its

unifying ability, e.g. [1], [56], [52], [57], [23], [53]. Recently, a

new important stage was reached in the support of this hypothesis

by Prusinkiewicz’s and Coen’s groups [58] who developed a

first plausible physiological model of inflorescence meristem

differentiation (measured as vegetativeness) based on molecular

genetic studies. The model was shown to explain various types of

inflorescence architectures found in nature and their association

with particular climate and life history during evolution.

In this section, we show that the notion of self-nestedness can

be used as a new tool to investigate quantitatively, and from

a macroscopic perspective, the differentiation stages followed

by meristems in a plant. In the spirit of the previous works

on plant architecture analysis, we assume that the organization

of macroscopic structures in plants reflects (at least partially)

processes at a more microscopic scale characterizing the states

of meristems during ontogeny. As a first approximation of this

connection, we shall rely on the following simplifying and explicit

assumption:

Hypothesis 1 (Continuous developmental potential): If two

branching structures in a plant are similar, they were produced

by meristems with similar differentiation states.

In other terms, if we consider the function that associates

each meristem with the branching structure it produces, this

hypothesis states that this function, expressing the developmental

ability of meristems, should be continuous. In the sequel, we

shall show that it is possible to use this idealized - but useful -

hypothesis to organize the multitude of meristem states by classes

of equivalence with respect to the similarity of what they produce.

The hypothesis of continuous developmental potential implic-

itly requires that metrics are defined on both the branching

system space and the meristem state space. To compare branching

structures we use a metric based on edit distances. In the paper we

use the metric based on Zhang’s edit-distance algorithm between

unordered trees [31]. However, other metrics could be used,

taking into account other types of mapping constraints between

the tree structures. Similarly, we also consider only topological

distances based on the use of binary local distances between plant

components. The component shape for instance is not taken into

account.

To study the self-nestedness of plants, we shall use the

paradigm of meristem differentiation as follows. We assume that

each plant meristem is potentially able to produce a maximal self-

nested structure, depending on its differentiation stage. However,

the actual development conditions of plant meristems (light en-

vironment, water or nutrient stress, pest diseases, accidents, etc.)

modify this optimal production by altering the ability of certain

meristems to develop. In this context, an actual plant can be

considered as an altered version of a self-nested plant, where some

components are missing. We will therefore naturally quantify the

degree of self-nestedness of a plant T by computing the distance

between T and the smallest self-nested plant that contains it, i.e. in

S+(T ).

We first apply the method to a set of simulated theoretical plants

to assess its performances on plants with controlled architectures.

In particular, based on the hypothesis of continuous developmen-

tal potential, we test the ability of the method to retrieve the

theoretical meristem states that were used to generate each plant.

The method is then applied to the architecture analysis of a real
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Fig. 8. Differentiation graphs used for the definition of theoretical plants. a)
The differentiation graph of a non-branching plant structure. b) The resulting
axis structure, where component colors correspond to the differentiation graph
states in which these components were created. The numbers attached to
each loop indicate the number of steps a meristem stays in the corresponding
state. Right: The differentiation graphs of models M1, M2, M3 and M0.
Solid arrows correspond to possible transitions of the apical meristem states.
Dashed arrows correspond to possible transitions from the apical meristem
state to the axillary meristem states.

plant. It enables us to compute a compressed version of the plant,

its NEST, and to derive hypothetical meristem states for all its

internal branching systems, under the hypothesis of continuous

developmental potential.

Analysis of theoretical plants

Creation of the plant database: A database of plants corre-

sponding to 3 contrasted types of architecture was created. Four

models, denoted by M0,M1,M2 and M3, were designed to create

plants of this database with a procedure similar to that described

in [19] and that is briefly recalled hereafter.

In each model we assumed that the apical meristem of the

main axis progresses through a sequence of morphological dif-

ferentiation states, from germination to the flowering state. The

set of states is ordered and an apical meristem in state s produces

a branch segment whose characteristics (geometry, color) are

defined by s and can only pass in a state greater than or equal

to s. The state of the apical meristem thus gradually increases

from the initial state s0 until the apex reaches the final state and

becomes a terminal organ (a flower). At each step, in addition to

apical productions, the apical meristem of any axis can produce

lateral meristems. When a lateral meristem is created, its initial

state must be equal to or greater than that of the apical meristem

that created it according to the model specification. A branch

refers to a maximal sequence of segments produced by a given

meristem in a plant. See [9] for complementary details.

We visualize the above process using differentiation graphs

[19] that show the set of states and two types of possible

transitions between them (apical and lateral). Colored circles

represent differentiation states. Solid arrows represent possible

state changes of the apical meristem during the apical growth of

an axis. The meristem stays in the same state for the number of

steps indicated by the label associated with a loop, then progresses

to the next state. For example, the differentiation graph of Fig. 8.a

corresponds to the axis shown in Fig. 8.b. At each step, apical

meristems may produce lateral meristems as indicated by the

dashed arrows. The state transitions represented by these arrows

relate the state s of the apical meristem with the state s′ of

M0

T0 T0,8 T0,4

Fig. 10. The T0 family: (a) template plant T0 and random trees from (b)
T0,8 and (c) T0,4.

the lateral meristem. Differences in these transitions are the key

feature distinguishing the three types of models M1, M2 and M3,

discussed next.

The differentiation graph of each plant model M1,M2,M3 has

seven states, with 1 denoting the initial state and 7 denoting

the terminal (flowering) state. The model M0 is similar to M1

with a smaller number of differentiation states. The differentiation

graphs of the deterministic models M1,M2 and M3 are shown

in Fig. 8. In model M1, the lateral meristems that are generated

by an apical meristem in state s have state s + 1. The state of

the apical meristem remains unchanged for the given number of

steps, then advances by 1 (except for the final state). Model M2

differs from M1 in that some lateral meristems produced by the

apical meristem in state s may assume state s′ greater than s+1.

For example, the apical meristem in state 1 produces a lateral

meristems directly in state 3. In model M3, a meristem in state s

produces 3 lateral meristems in states s′ = s+ 1, but there is no

gradual progression of states along either the main or the lateral

axes. Instead, at each step, apical meristems directly differentiate

into flowers.

For each model Mi, we generated a template plant Ti in a

deterministic way and a set of 10 other derived plant samples,

labeled Ti,0, Ti,1, . . . , Ti,9, by randomizing the functioning of the

lateral meristems. With probability p, a lateral meristem was

allowed to develop into a branch; otherwise, the branch was

aborted. This probability p is indicated in the plant sample name:

Ti,0 for p = 0.0, Ti,1 for p = 0.1, and so on. Each sample Ti,j

contains K = 10 individuals generated from Mi with constant

branching probability p = j/10. Fig. 9 shows the template plant

M1 and 5 randomized trees obtained using different branching

probabilities. The whole set of plants generated from a model Mi

defines the Ti family. Fig. 10 and 11 respectively show similarly

trees from the T0 and the T2, T3 families.

According to this design, the template plants T1 and T2 have

a well defined hierarchy of branches with a marked trunk (they

would correspond to ’monopodial’ plants). Their lateral branches

repeat parts of the main stem structure; thus, structures T1 and T2

are self-nested in the sense of definition 7. T3 illustrates a different

type of self-nested plant where the trunk itself is not repeated

while the branching sequences are (this would correspond to

’sympodial’ plants). The random removal of branches in these

structures introduces variations that are expected to reduce their

degree of self-nestedness.

The plants were generated using the L-system-based modeling

program cpfg [59], incorporated into the plant modeling soft-

ware L-studio/VLab [6], [60]. Structure generation begins

with a single shoot apical meristem (emerging from the seed)

and proceeds in a sequence of simulated developmental steps.



FOR SUBMISSION 10

T1

M1

T1,8 T1,4T1,6 T1,2 T1,0

Fig. 9. Template plant T1 corresponding to model and M1, and 5 of its random versions from the plant samples T1,8, T1,6, T1,4, T1,2, T1,0

T2 T2,8 T2,4T2,6 T2,2 T2,0

T3 T3,8 T3,4

M2

M3

Fig. 11. Top row: template plant T2 and trees in T2,i for i = 8, 6, 4, 2, 0.
Bottom row: T3 and 2 of its random versions from T3,8, T3,4.

TABLE I

Average tree statistics of tree families T0, T1, T2 and T3 and size of the

tree reductions. MaxOrder is the average maximum branch order (depth of a

branch in a tree: 1 for the main trunk, 2 for the branches borne by the

trunk, etc.) in a tree and Branch Nb is the average total number of branches

in a tree.

Proba. Tree Size MaxOrder Branch Nb |R(T )|
T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

0.0 11 17 17 1 1 1 1 1 0 0 0 0 11 17 17 1

0.1 18 34 31 2 2.22.52.5 1.4 1.5 1.2 1.8 0.912.3 22.5 21.2 1.4

0.2 29 71 50 4 2.94.33.5 2.1 2 2.8 3.1 1.516.8 34.4 36 2.1

0.3 31 108 102 4 3.3 5 5 1.9 3.1 3.6 4.1 1.515.9 41.4 38.7 1.9

0.4 45 221 119 25 3.76.25.1 3.9 3.3 5.4 5.5 1.819.8 65.5 40 5.2

0.5 69 522 224 48 3.96.75.3 4.6 5 8.7 7.3 2.123.4104.454.1 8.1

0.6 83 974 330 95 4 7 5.8 5.4 5.210.1 8.8 2.422.4143.4 61 11.5

0.7 1021336 582 176 4 7 5.9 5.8 6.610.910.72.424.1149.677.815.1

0.8 1412318 813 376 4 7 6 5.8 7.511.812.82.425.9173.579.219.1

0.9 16537871176 651 4 7 6 7 7.813.614.2 3 22.8170.973.820.5

1.0 191518315381093 4 7 6 7 9 15 15 3 11 17 17 8

At every step, the meristem adds a growth unit to the plant axis

and changes its state according to its differentiation graph. Each

growth unit supports a lateral meristem, which may give rise to

a new lateral axis. This process repeats for higher-order axes,

resulting in the formation of a branching structure (see [9] for

further details).

Reduction of theoretical trees: We first computed the tree

reduction R(T ) of each tree T in the database, Table I. Fig. 12

depicts three DAGs corresponding to these tree reductions for

trees of the T0 family. Tree reductions are obviously linear DAGs

for all the deterministic trees Ti, i = 0, 1, 2, 3 and their absolute

compression factors, ρv as defined by eq. 1, are very close to 1

since the number of vertices of R(T ) is equal to h(T ) which is

much smaller than |T | (Fig. 13). Then, as the branching proba-

bility decreases, the vertex compression rate decreases as well,

expressing a loss of compressibility of the trees with decreasing

values of p. Interestingly, this decrease is not linear and we can

observe for example that a plant in T1 or T2 families with 40% of

aborted branches (p = 0.6) can still be compressed by more than

75%. From eq. 1, we can see that the loss of compressibility is

caused by the combined effect of both a degraded self-nestedness

of the random trees (|R(T )| increases) and the decreasing size

|T | of the tree. In the extreme case where p = 0, Ti contains

a single tree Ti,0, and R(Ti,0) is isomorphic to Ti,0, and the

compression factor is thus ρv(Ti,0) = 0. The effect of the tree

size can be suppressed by using the alternative relative definition

of the compression factor in eq. 3 (see relative coefficients in

Fig. 13). For all tree families except M3, we can see that for

high probabilities both the absolute and relative compression

factors are similar and decrease roughly linearly. Then, the relative

compression factor gets significantly different from the absolute

compression factor around p = 0.4, where the effect of the size

of the tree starts to appear. For probabilities lower than p = 0.3

the relative compression factor increases again due to the fact

that the plants sizes get closer and closer to h(T ). When p = 0,

|R(T )| = h(T ) and ρ′v(Ti,0) = 1, showing that the compression

of a tree with this height could not be better.

NEST of theoretical trees: For each tree T in the database,

an element T ∗ of NEST (T ) was computed using the NEST

algorithm. For template plants Ti, T
∗ is Ti itself and their

reduction DAG, R(Ti), is linear. In this case, the structure of

R(Ti) reflects exactly the structure of the original differentiation

graph Mi that was used to generate the corresponding theoretical

template trees. The loops on vertices of Mi appear in an expanded

way in the computed DAG, where the corresponding vertices have

been repeated in the graph as specified by the loop label in Mi,

Fig. 14. Note however that no difference is made between the

edge types in the reconstructed R(Ti) as we did not consider

different types of edges in our approach.

For randomized plants, the structure of the NESTs could not be

analyzed directly from the reduction DAGs that were too complex.

Instead, we investigated different global aspects of these NESTs.

First, their average size was estimated over each plant sample
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a. b. c.

Fig. 12. DAGs corresponding to the reductions of tree individuals in the
families a. T0, b. T0,4 and c. T0,8.
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Fig. 13. Average vertex absolute and relative compression factors (ρv(T ) and
ρ′v(T )) of the trees in the Ti families, i = 0, 1, 2, 3 (standard deviations are
not shown here). Abscissa represents branching probability. Curves passing
through the point (0,0) correspond to the absolute coefficients.

Ti,j . When the branching probability decreases, the size of T ∗

tends to decrease in each tree family, Fig. 15. The difference

between the number of vertices in T ∗ and T is reflected by the

degree of self-nestedness, Fig. 16, which can be interpreted as the

percentage of nodes of T that cover the NEST. This percentage is

minimum for intermediate probabilities, showing that the degree

of self-nestedness is lower for structures that are moderately

perturbed compared with the template plant. If the perturbation is

too strong, then the decrease of the plant size counter-balances the

perturbation and the degree of self-nestedness gets higher again.

For all the plants in the database, we observe that a degree of self-

nestedness greater than 0.5 (NEST (T ) contains no more than

50% extra vertices than T ) is achieved by trees of families Ti,j

with either j < 1 or j > 8, for any i = 0, .., 3. This shows

that the degree of self-nestedness is particularly sensitive to the

perturbation intensity (here represented by p) of the template

plants.

Then, to quantify how much the NEST structure of a tree is

resistant to noise, we computed the number of times the NEST of

a randomized plant in Ti was isomorphic to its original template

plant Ti, Fig. 17.a. Surprisingly, the correct original template tree

(without noise) was identified as the NEST of a randomized tree

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

a. b. c. d. e.

Fig. 14. R(NEST (T )) corresponding to a. both T0 and particular instances
of b. T0,8, c. T0,6, d. T0,4 and e. T0,2.

1

10

100

1000

10000

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

M0

M1

M2

M3

Fig. 15. Average number of vertices in NEST (T ) for trees of the different
families as a function of the branching probability.

T for many perturbed trees. This suggests that the NEST structure

is rather robust to the introduction of ’noise’. For plants of T0,8

and T1,8 for example, the NEST corresponded to the template

plant for more than 60% of the trees, thus expressing a high

degree of redundancy in these plants. However, when the ’noise’

increases (i.e. p decreases), less and less trees in the database

have a NEST that corresponds to their original template tree. At

a branching probability of 0.5, only a few plants from families T0

and T1 have a NEST corresponding to the original template tree,

Fig. 17. As the probability of branching does not directly account

for the amount of vertices removed in the trees, we also computed

the cumulated percentage of trees whose NEST preserves the

template tree as a function of noise (defined as the ratio between

a tree size and its template tree size) (Fig. 17.b).

Analysis of a real plant

Rice panicle: The structure of a rice panicle (Oryza sativa

(rice) cv ‘Nippon Bare’) was entirely described including veg-

etative and floral parts [61] (Fig. 18.a). A panicle usually has

complex lateral structures that are interpreted as systems reiterated

from the main stem and slightly ’reduced’, Fig. 18.b. The structure

V1 of the considered individual was made of a main axis bearing

a main inflorescence (panicle, P1) and four lateral reiterated
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Fig. 16. Average degree of self-nestedness depending on the branching
probability.

TABLE II

Rice panicle statistics.

Struct. SizeMaxOrderBranchNb|R(T )|ρv(T )ρ′v(T )|NEST (T )|δNEST

P1 168 3 13 19 0.89 0.96 192 0.88

P2 128 3 13 16 0.88 0.97 164 0.78

P3 126 3 11 14 0.88 0.98 132 0.95

P4 95 3 10 13 0.87 0.98 107 0.89

P5 111 3 9 14 0.87 0.97 117 0.95

P6 69 3 7 12 0.82 0.98 75 0.92

P7 33 3 5 9 0.78 1.00 36 1.00

P8 42 3 6 9 0.72 0.99 42 0.92

V1 843 5 13 106 0.87 0.90 5314 0.15

V2 192 4 13 35 0.82 0.91 360 0.53

V3 246 4 11 40 0.84 0.92 661 0.37

V4 107 3 10 21 0.80 0.96 121 0.88

V5 119 3 9 20 0.83 0.97 127 0.93

systems (called tillers, Vi, i = 2, .., 5), each composed of a

vegetative part (in green) and inflorescences (in red, Pj , j =

2, .., 8).

Analysis of the panicle self-nestedness: We first computed the

reduction tree R(Trice) (Fig. 19). This DAG, from which the

original tree can be reconstructed, is not linear and shows a

number of different meristem differentiation sequences.

In Table II, a set of global statistics of the different tillers

and inflorescences is depicted with their computed self-nested

properties. We first observe that the vertex compression factors

ρ′(T ) of the structures are all above 90 percent, suggesting that

such a real plant contains a high level of structural redundancy.

For inflorescences Pj , j = 1, .., 8, the degree of self-nestedness

is high (with a mean value of 0.91 and an average size of 97

vertices per tree), meaning that on average less than 10 percent

of vertices need be added to each inflorescence to obtain a perfect

self-nested tree. For bigger vegetative structures (V1, V2, V3), the

self-nestedness dramatically drops, reaching only 15 percent for

the entire panicle (V1).

Retrieving meristem differentiation sequences: We then com-

puted a linear DAG T ∗
rice in NEST (Trice) using the NEST

algorithm (Fig. 20.a). Based on the hypothesis that similar

structures were produced by meristems in similar differentiation

states (hypothesis of continuous developmental potential), the

DAG sequence can be interpreted as the meristem differentiation

sequence that best explains the original plant structure. The states

of this sequence can be projected onto the original topological

structure using the mapping resulting from the building of T ∗

NEST

(i)

(ii)

T0.8

a.

(b)
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Noise rate
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Fig. 17. a. Two random versions of T0,8 such that (i) the NEST is isomorphic
to the template or (ii) not. b. Cumulated percentage of plants from the different
families having a NEST isomorphic to their template plant as a function of
noise.

from T . To interpret visually this mapping, a small number

of contiguous, 4- or 5-vertices long, zones have been defined

by a set of arbitrary colors (Fig. 20.a). The states of a given

differentiation zone have the same color. The color mapping

on Fig. 20.b therefore characterizes parts of the panicle that

were elaborated by meristems in similar differentiation states and

provides a biological interpretation of the entire structure in terms

of meristem differentiation.

V. CONCLUSION

In this paper, we introduced the notion of tree self-nestedness

to assess the amount of structural redundancy embedded in a tree.

Self-nested trees are such that all their subtrees of a given height

are isomorphic. We derived this notion from the possibility to

compress unordered trees without loss of information as more

compact DAGs and showed that self-nested trees are those trees

that can be compressed as linear DAGs. Two algorithms were

presented to achieve this compression scheme and were shown to

have identical time complexities (compression and decompression

pseudo-codes are detailed in the supplementary material). We then

defined the degree of self-nestedness of a tree as one minus
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Fig. 18. a) photo of a rice panicle (courtesy of Y. Caraglio). b) corresponding
topological structure (reconstructed with the AMAPmod/VPlants open soft-
ware [62]).

Fig. 19. Reduction of the tree representing the topological structure of the
rice panicle.

the normalized distance of the tree to its nearest embedding

self-nested tree (NEST). We showed that this quantity can be

computed in polynomial time and described an algorithm to

compute the NEST of any tree (whose pseudo-code is described

in the supplementary material).

We then illustrated these notions on the structural analysis of

plant architectures. The approach was first assessed on artificial

plants, for which the amount of self-nestedness was controlled

by gradually introducing noise in perfect self-nested trees. For

all trees, high relative compression rates were achieved by the

DAG reduction, ranging from 75% to 100%. We showed that

even for highly perturbed self-nested trees (i.e. trees with up

to 50% of removed vertices compared to their template self-

nested tree), the template self-nested tree could be recovered by

the NEST algorithm in 10% to 50% of the cases, depending

on the tree type. The degree of self-nestedness of the perturbed

trees was then assessed on the tree database and was shown to

reach a minimum value for intermediate perturbations. We then

applied our approach to the analysis of a real plant architecture (a

rice panicle). Inflorescences showed highly self-nested structures

while the global plant did not. Based on the hypothesis of

continuous developmental potential, we then showed how the

Fig. 20. a. An element T ∗ of NEST (T ) b. Backward projection of the
differentiation states inferred from T ∗ onto the initial tree structure of the
panicle (see text for color interpretation).

sequence of meristem differentiation states could be derived from

the computation of the NEST. This opens up the perspective to use

such an analysis on various plant species as a guiding principle to

further investigate the notion of meristem differentiation at bio-

molecular, genetic and architectural levels, in the spirit of the

pioneering work described in [58].
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[1] F. Hallé, R. A. A. Oldeman, and P. B. Tomlinson, Tropical trees and

forests. An architectural analysis. New-York: Springer-Verlag, 1978.
[2] J. L. Harper, B. R. Rosen, and J. White, The growth and form of modular

organisms. London, UK: The Royal Society, 1986.
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[15] Y. Guédon, D. Barthélémy, Y. Caraglio, and E. Costes, “Pattern analysis
in branching and axillary flowering sequences.” J Theor Biol, vol. 212,
no. 4, pp. 481–520, Oct 2001.
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APPENDICES

I. PROOF OF PROPOSITION 3

Proof: Let T be a tree. The proof consists of defining an

algorithm that enables us to build R(T ) from T . The algorithm

proceeds from the leaves up to the root of T . We thus index the

vertices {xk}k=1,|T | of T such that the indexes are increasing

from the bottom to the top of the tree, and are consistent with the

ancestor relationship in T , i.e. xk1
� xk2

⇒ k1 > k2 (a post-fix

numbering of the vertices for instance verifies this condition). Let

us proceed by induction on k.

Initialization: let R0 = (V0, E0) represent the initial state of

the reduction graph of T , with V0 = ∅, E0 = ∅. We also set up

a list of signatures L0, initially empty.

By induction, let us assume that Rk = (Vk, Ek), which

represents the state of the reduction graph at step k ∈ [0, |T |−1],

was computed at step k, together with the associated list of

signatures Lk. Vk is the set of classes and Ek is a multiset of

edges between classes (already identified from the observation of

the k first vertices in the list {xi}i=1,|T |).

Let us now consider vertex xk+1. Two cases must be consid-

ered.

• If xk+1 is a leaf of T , then I = c(xk+1) is the signature

of a leaf. If it does not already exist in the signature list

Lk (xk+1 is the first leaf encountered by the algorithm),

then both classes and signatures must be updated : Vk+1,

i.e. Vk+1 = Vk ∪ I, and Lk+1 = Lk ∪ I. Otherwise nothing

is done. The time complexity of this operation is constant.

• If xk+1 has children xk1
, . . . , xkM

in the tree T , then, by

induction, we know that the class of every child xkj
has

already been determined at a previous step since kj <

k + 1, ∀j ∈ [1,M ]. σ(xk+1) is thus well defined and can

be compared to the signatures already stored at previous

steps. Since the number of children of xk+1 is deg(T ) in

the worst case, the time complexity of each comparison

is O(deg(T ) log deg(T )). Since there are at most k sig-

natures already stored in Lk, O(k) comparisons have to

be performed. If the signature does not exist in Lk, both

the set of classes and the signature list must be updated:

Lk+1 = Lk ∪ σ(xk+1), Vk+1 = Vk ∪ c(xk+1) and Ek+1 =

Ek ∪ {(c(xk+1), c(xkj
))} for j ∈ [1,M ]} (note that the

number n(c(xk+1), c(xkj
)) is automatically updated by the

update of the multiset Ek+1). Otherwise nothing is done.

Since this operation is repeated for each vertex, the over-

all time complexity is O(
P|T |

k=1 k deg(T ) log deg(T )) =

O(|T |2 deg(T ) log deg(T )).

II. PROOF OF THEOREM 1

A. Proof of proposition 11

Lemma 1: There exists a growing sequence

{ZK}K∈{1...h(G)}, solutions of argmin
H∈S+

K
(G)

{n(H)}, i.e. ∀K

in {2 . . . h(G)},

ZK−1 ⊆ ZK

Proof: By definition for any K < h(G) and for any ZK ∈

S+
K(G) there exists LK ∈ L such that h(LK) = K such that

ZK = G 〈LK〉. Consequently:

∀v ∈ G, h(v) ≤ K ⇔ G(v) ⊆ LK

This means that T (LK) is a super-tree of the subtrees of height

K in T (G).

Furthermore, D(ZK , G) = n(ZK) − n(G) =

min{D(H,G), H ∈ S+
K(G)}. n(ZK) and n(G) represent

respectively the number of nodes of T (ZK) and T (G). Actually

the only differences between the trees T (ZK) and T (G) are

the subtrees of height K in T (G) that have been replaced by

T (LK). In other terms, T (LK) is a smallest super-tree of the

subtrees of height K in T (G).

However, a smallest super-tree T (LK) of a set of trees can be

recursively computed from the smallest super-tree T (LK−1) of

the sub-trees of height K − 1 ([63] lemma 5.1) and is such that :

T (LK−1) ⊆ T (LK)

⇔ LK−1 ⊆ LK

⇔ G 〈LK−1〉 ⊆ G 〈LK〉

⇔ ZK−1 ⊆ ZK

Lemma 2:

S+
K(G) = S+

K(ZK−1)

Proof: According to lemma 1

∀H ∈ S+
K(G) ∃ZK−1, ZK : G ⊆ ZK−1 ⊆ ZK ⊆ H

⇒ H ∈ S+
K(ZK−1)

Reciprocally, for any H in S+
K(ZK−1) ∃L ∈ L; h(L) = K

and ZK−1 〈L〉 = G 〈LK−1〉 〈L〉 ⊆ H then G ⊆ H , and then

H ∈ S+
K(G).

Lemma 3: Let G be a DAG, let K be an integer and

let ZK ∈ argmin{n(H); H ∈ S+
K(G)}, then ∃ZK−1 ∈

argmin{n(H); H ∈ S+
K−1(G)} such that :

D(G,ZK) = D(G,ZK−1) +D(ZK−1, ZK)

Proof: Following lemma 1, ∃ZK−1 ⊆ ZK . Then (prop. 5):

D(G,ZK) = D(G,ZK−1) +D(ZK−1, ZK)

Then, according to lemma 3:

min
H∈S+

K
(G){D(G,H)}

= D(G,ZK−1) +D(ZK−1, ZK)}

= D(G,ZK−1) +min
H∈S+

K
(G){D(ZK−1, H)}

= D(G,ZK−1) +min
H∈S+

K
(ZK−1)

{D(ZK−1, H)}

which completes the proof of proposition 11.

B. Proof of proposition 12

In the following, we assume that for any h ∈ {0 . . .K − 1},

Zh has been recursively computed from G. Let us consider the

computation of ZK . ZK−1 can be represented as in Fig. 6.

In ZK−1, the nodes (zh)h∈1..K−1 represent the nodes in the

linear part of ZK−1 and the nodes w1, w2, . . . , wI represent the

nodes of ZK−1 such that h(wi) = K for any i ∈ {1..I}. In

the following, the subtrees T (ZK−1[wi]) of T (ZK−1) that are

defined by a node wi of the DAG ZK−1 will be simply denoted

by T (wi)

As proposed above, ZK is the smallest self-nested DAG in

S+
K(ZK−1). This means that any subtrees of T (ZK−1) of height

K (basically the trees (T (wi))i≤I ) must be included in a subtree
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T (zk) of T (ZK). In other terms, T (ZK(zk)) is the smallest super

tree of the sequence of trees (T (wi))i≤I .

Gupta and Nishimura proposed in [63] a method that computes

the smallest super-tree of two trees in O(n2.5 log n). However,

with the configuration of our problem, the super-tree can be

computed in linear time. We present hereafter the proof for two

trees. The result can be generalized to the sequence (T (wi))i≤I .

Let us consider two trees Ti = T (wi) and Tj = T (wj) of

this sequence. Determining the smallest super-tree of Ti and Tj

involves solving a bipartite matching problem [63]. In the bipartite

graph G(X,Y ) (fig. 21), X represents all the subtrees (rooted in

a child of the root of Ti) of Ti and Y represents all the subtrees

of Tj . Remark that X and Y are ordered according to the size

of the subtrees. This order also corresponds to the nestedness

of the trees. The cost ckl of matching a tree T (zk) from X to

a tree T (zl) is obviously the absolute difference of number of

nodes between T (zk) and T (zl) (i.e. |n(zk)−n(zl)|). In general,

X and Y do not have necessarily the same size (we suppose

|X| ≥ |Y |). To capture this possibility, it is usual to add empty

trees to the smallest set Y . The matching cost to these empty

trees to a tree T (zk) is then the size of the tree itself. Finally, the

bipartite matching problem is equivalent to find a permutation π

such that
P

0≤i<|X| ci,π(i) is minimized. It can be shown [64]

that the identical permutation is an optimal solution if the cost

matrix fullfills the weak Monge property:

for 1 ≤ i < k ≤ |X|, and 1 ≤ i < l ≤ |X| :

cii + ckl ≤ cil + cki.

It can be easily shown that since X and Y are ordered according

to the size of the trees, the matrix cost of our problem has the weak

Monge property (using the triangular inequality of the absolute

value). Subtrees of Ti must then be assigned to the subtrees of

Tj according to their sizes. Finally, from the initial DAG (Fig.

6), we get the matching shown in Fig. 21.

In order to illustrate the above proof, Fig. 22 shows the bipartite

matching problem when computing the node z3 in the DAG of

Fig. 7c. The cost of this matching problem is then the sum of

the edge cost (6 in this case) and represents the number of nodes

that should be added to T (b3) in order to obtain the smallest

super-tree of T (b3) and T (b1). The cost of the matching problem

is computed in O(max(deg(Ti), deg(Tj))) ⊂ O(deg(ZK−1)).

The matching problem can be solved simultaneously for all the

subtrees of ZK−1 in the same time complexity.
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Fig. 21. Bipartite Matching Problem in the general case
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Fig. 22. Bipartite Matching problem associated with Fig. 7c.

III. TREE REDUCTION ALGORITHM

input : tree = <V,E>

output : dag = <node_list,edge_list>

function treeReduction(tree):

edge_list = []

node_list = []

signature_list = []

signature = 0

for i in 1..|V|:

n = V[i] # ith node of Tree

signatures_of_children = []

for child in childList(n) :

signatures_of_children

+= [child.signature]

if signatures_of_children is

in signature_list :

signature += 1

n_i = new Node

n_i.signature = signature

node_list += [n_i]

for k in signatures_of_children:

e = new Edge

e.begin = node_list[signature]

e.end = node_list[k]

edge_list += [e]

signature_list

+= [signatures_of_children]

n.signature = signature

return <node_list,edge_list>

IV. TREE RECONSTRUCTION ALGORITHM

input : dag = <V,E>

output : tree = <node_list,edge_list>
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function treeReconstruction(tree):

edge_list = []

node_list = []

signature = nbNodes(dag)

root = new Node

root.signature = signature

tree_list = [root]

while tree_list != []

node = tree_list.pop()

signature = node.signature

n_i = new Node(dag,signature)

for j in 1..nbEdges(n_i):

# nbEdges is the number of edges

# connected to n_i

e_j = E[n_i,j]

# e is the jth edge connected to n_i

for k in 1..label(e_j):

tree_node = new Node

tree_node.signature = e.end.signature

tree_edge = new Edge(tree_node,n_i)

node_list += [tree_node]

edge_list += [tree_edge]

return <node_list,edge_list>

V. NEST ALGORITHM

input : tree = <V,E>

output: dag = <node_list,edge_list>

function NEST(tree):

ZK = TREE_REDUCTION(tree)

for K in 1 .. height(ZK):

for l in K-1 .. 1:

nl = node of ZK at height l

max value = the maximum signature

between nl and any

node of ZK at height K

for zk in Node(ZK):

if height(zk)==K:

# signature between nl and

# zk is changed in max_value

signature_list

= list of signatures between

zk and ni for any ni in ZK

at height less than K

signature_sum = sum(signature_list)

r = max_value - signature_list[K-1]

if signature_sum > max_value :

i = K-1

while r != 0:

signature_list[i] = 0

i += 1

r -= min(r,signature_list[i])

signature_list[K-1] = max_value

else :

signature_list[K-1] = max_value

for i in K-2 .. 0:

signature_list[i]=0

N = new Node(ZK)

for i in K-1 .. 0:

ni = node of ZK at height i

edge = new Edge(N,ni)

edge.signature = max(signature(zk,ni))

# the signature of the edge between N

# and any node ni in ZK at height

# k is the maximum signature nodes

# between a zk at height K and ni

for zk in node_at_height(k,ZK):

if zk != N :

removeNode (zk)

return ZK


