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J. POIRRIER,1 M. GADONNA,2 and L. DUPONT3

1France Telecom R&D, Lannion, France
2Institut Telecom, Telecom-Bretagne, Centre Commun Lannionnais d’Optique

(CCLO), UMR CNRS FOTON6082, Lannion, France
3Institut Telecom, Telecom-Bretagne, Optics Department, UMR CNRS

FOTON 6082, Brest, France

Abstract Polarization mode dispersion (PMD) remains the most important limiting impairment for
high bit rate transmission over optical fibers. In this article, after a brief description of PMD model
and the associated statistic, we study the pulse distortion due to PMD using a powerful time-
frequency diagram. This approach allows a very simple illustration of the second and high order
PMD effects through effective pulse broadening. Finally, the PMD emulation issue and both
electronic and optical compensation techniques are presented, that is a current field of cooperation
between ENST-Bretagne and France Telecom R&D.

Keywords optical transmission impairments, PMD compensation, PMD emulation, polarization 
mode dispersion, time-frequency analysis

1. Introduction

Polarization mode dispersion (PMD) has become the most limiting issue for high data rate

optical transmission due to the statistics of its temporal variations that require dynamical

compensation system. Many challenges remain to tackle for a good PMD management;

among them are a simple PMD model well suited to approximate real PMD fiber,

understanding of PMD impact on optical data transmission, and finally, design of the

most efficient compensation system. These different aspects have been jointly studied in

both France Telecom R&D and ENST Bretagne in the frame of the European e-photon

oneC network of excellence.

2. PMD Principles

PMD can be understood as a dispersion, function of polarization. To the first order, it can

simply be understood as a two mode transmission. Accordingly, the equivalent channel

can be understood as generating a single echo, as is described next.

2.1. First Order PMD

Basically, the PMD results from the dependence of the vectorial optical propagation

operator on the frequency and it induces pulse distortion [1]. The optical transmission
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properties of an optical fiber on the electrical field are well described by the Jones matrix

that is frequency dependent (each dimension represents a polarization):

ei�.!/T .!/; (1)

where ! represents the angular frequency deviation from the central frequency and �.!/

represents the isotropic phase accumulated by the mode along the propagation. The output

state of polarization (SOP) dispersion is expressed as:

_
s .!/ D ei�T .!/T �1.0/

_
s .0/: (2)

Using the Taylor expansion of the correlation matrix, T .!/T �1.0/, and considering only

the first order, it is interesting to extract the polarization states
_
p that remain invariant with

frequency (principal state of polarization (PSP)). Straightforward calculations show that

these steady polarizations are the eigenvectors of the matrix,1 T!.0/T �1.0/, which are

orthogonal in the absence of polarization dependent losses. The associated eigenvalues are

˙�=2 and they are identified to the variation to the average group delay for each PSP. This

eigenvector analysis, first proposed by Poole and Wagner [2], is a powerful representation

of the first order PMD in time domain that gives a very simple interpretation of pulse

impairment by the introduction of two different travelling modes in optical fiber (the

“echo channel” mentioned earlier). The repartition of energy between the two modes

or replica of the input pulse is determined by the projection of the input polarization

onto both PSP. The difference � between the arrival times of both replicas is called the

differential group delay (DGD), while their respective amplitudes are directly related to

the power sharing between the PSP. We notice that the operator, T!.0/T �1.0/, can be

expanded with the Pauli spin matrices [3]:

T!T �1 D � i

2
E� :E�; (3)

where E� is the PMD vector defined as E� D � Ep, with Ep the eigenvector defined in Stokes

space and E� is the spin vector. Using this formalism, the dispersion of polarization with

frequency, at first order, is assimilated to a rotation where the rotation axis is given by

the PMD vector, E� , and the angular velocity of polarization versus the frequency is given

by the modulus, jE� j. This evolution of polarization versus frequency can be summarized

by the simple vectorial equation:

d Es
d!

D E� � Es.!/: (4)

2.2. Higher Order PMD

In Stokes space, the high order description is the consequence of the limitation to the

(first order) rotation description of output polarization with frequency. We observe that

the rotation axis and the angular velocity do not remain constant over the full spectrum.

We introduce then small variations of PMD vector versus frequency through the second

order limited Taylor expansion of this vector:

*� .!/ D *� .0/ C *� !.0/! C 1

2

*� !!.0/!2 C .0/!2 C : : : : (5)

1The subscript ! stands for the derivation with respect to the variable !. 2



Figure 1. Vectorial second order PMD representation.

This description gives us an interesting geometrical approach of PMD dispersion (Fig-

ure 1). For example, the second order, taking into account the PMD vector definition, is

expressed by the vector derivative versus !:

E�! D �! Ep C � Ep! : (6)

The first term describes the polarization dependant chromatic dispersion (PCD). This

term is parallel to the first order PMD vector and geometrically, it describes a change

of SOP rotation velocity versus the frequency. The second is orthogonal to the first

order PMD vector and describes the depolarization of PSP with the frequency. This

classical representation of PMD should be carefully handled because the cut-off of the

Taylor expansion of PMD vector inevitably induces divergence of PMD magnitude with

frequency that is in contradiction with what is observed experimentally in optical fiber

with bounded magnitude PMD parameters. These aspects have been extensively studied

by F. Heismann [3].

3. PMD Statistics

We have seen that PMD limited to the first order is fully described by a vector: the PMD

vector. Its length is the differential group delay and its direction fixed along the slow

PSP. The fast PSP is associated to the antipodal vector. We also mentioned that PMD is

a random process. Let us now recall the statistics of this process to derive the statistics

of its system impact.

3.1. Maxwellian Statistics

The PMD vector of a fiber can be viewed as the concatenation of elementary PMD

vectors each representing an elementary section of birefringent fiber. The coupling angle

between two elementary sections is random; the global PMD problem is therefore a

three-dimensional random walk problem. As a consequence, the total length of the vector

follows a Maxwellian distribution, while it can take any direction equiprobably [1]. The

average DGD is referred as to PMD: it must be noted that this acronym represents the

physical phenomenon as well as the average DGD.

On the other hand, the impact of PMD on the signal is related to both the value of

the DGD and the factor  characterizing the repartition of energy between the modes.

The repartition of energy  is a random variable bounded between 0 and 1.  is not a

uniform but is more likely to take a value close to 0.5. 3



The impact can actually be expressed as:

g.�/ D aDGD2:.�/.1 � .�// D aDGD2: sin2.�/; (7)

where � follows a uniform distribution over the interval [0 2� ] and a is a constant.

As the DGD is theoretically not bounded, so is the penalty. To reach a reasonable

system design, it is typically specified that the system can not work correctly for a limited

and specified amount of its lifetime. This is referred as to the system unavailability or

outage. It is usually specified that PMD should not cause unavailability for more than 5

min/year (probability of 10�5). Accordingly the probability that the PMD induced penalty

exceeds a given penalty is bounded to this outage time.

3.2. From Statistics to Penalty

Equation (7) expresses the penalty as a function of DGD and  . How can we translate

this relationship to a penalty given an outage and a (DGD)? Estimating the outage implies

integrating the joint probability of the bi-dimensional random variable (DGD,  ) over the

region where (DGD,  ) induces a penalty greater than the margin. Fortunately, DGD and

 being two independent random variables, the joint probability is simply the product of

the individual densities.

A crude approximation consists in neglecting the statistics of  . It is then only

necessary to integrate over the probability density function (pdf) of DGD. We prefer a

method that implicitly takes into account the  dependency [4]. Let us call � the DGD

and �? the projection of the PMD vector along the axis perpendicular to the launch SOP;

we have the expressions:

The penalty formula is:

P�?;dB D APMD

4T 2
bit

.�?/2 (8)

The random variable �? follows a Rayleigh distribution:

p�?
.x/ D x

�2
� exp

�

� x2

2�2

�

if x > 0; 0 elsewhere

� D 1

2
�
r

�

2
h�i

(9)

translates in a penalty (") pdf

p"."/ D p�� .��."// � d��

d"
D 1

h"i � exp

�

� "

h"i

�

h"i D �APMD

16T 2
bit

h�i2

(10)

The probability for a penalty to exceed N dB:

Pout D P"�N D
Z 1

N

p"."/d" D exp

�

� N

h"i

�

(11)
4



Equivalently the maximum acceptable PMD given a penalty of N dB is:

h�i
Tbit

D 4 �
s

N

�APMD ln.1=Pout/
(12)

For transponder testing it is easier to measure in terms of instantaneous DGD and then

to relate the DGD limit to the average DGD:

h�i
�lim it

D 2 �
s

1

� ln.1=Pout/
Š 3 (13)

3.3. Enhanced Statistics: Hinge Model

The underlying assumption of a Maxwellian DGD distribution has been questioned [5].

Tending towards Maxwellian statistics requires that all the elementary sections composing

a fiber are evolving with time. It has, however, been observed that most of them are stable.

They belong to buried fibers and therefore do not sense ground temperature modifications.

In the absence of external time varying stresses, these sections appear as “dead.” Only

fiber sections exposed to temperature fluctuations such as when crossing a bridge or

amplifier site induce time-varying fluctuations. The total PMD vector appears then as

the concatenation of large vectors (representing the segments embedding all the sections

between two sensing points) that are connected by hinges around which they rotate.

These hinges correspond to the sensing points.

When the number of hinges is limited, the central theorem cannot be applied and

the DGD distribution diverges from a Maxwellian distribution. First, it implies that the

distributions (one per wavelength) are truncated with respect to a Maxwellian of same first

moment. Second, different wavelengths exhibit different distributions, because the DGD

in each dead section is wavelength dependent. Consequently, different DGD distributions

are observed at different wavelengths, as presented on Figure 2. There the wavelength

dependent DGD cumulative probability for 80 wavelengths and for a 12 spans, 11 hinges

Figure 2. Outage probability as a function of DGD for 80 wavelengths, 105 independent hinges

draws. 5



Figure 3. Distribution of the DGD at an outage probability of 10�5 for 100 independent segments

DGD draws. (a) Outage DGD for all wavelengths (a color represents a wavelength) and (b)

distribution of the worst channel DGD out of the 80 wavelengths. Histogram for the 100 draws.

The bold line represents the outage probability expected under the Maxwellian assumption.

link are presented; 105 different hinges draws were realized. The outage is understood

as the probability of observing a DGD greater than the value found on the x-axis. The

PMD values per segment are [5.7, 8.3, 2.8, 0.6, 5.4, 0.2, 8.4, 3.9, 5, 0.5, 0.3, 0.5]. The

maximum DGD observed for a 10�5 outage varies from 28 to over 60 ps. The previous

simulation (based on hinge draws) was repeated for 100 draws of DGD per segment and

per wavelength. The observed DGDs at a cumulative probability of 10�5, referred as to

“outage DGD” for the 80 wavelengths and the 100 independent segment DGD draws is

presented on Figure 3a, where grayscale represents wavelengths. For the present example,

it appears that the actual outage DGD is often smaller than the outage DGD predicted

using the Maxwellian distribution (thick vertical line). This is a rather good piece of

news. Unfortunately, the counterpart of this observation is that in some cases and for

some wavelengths, the Maxwellian outage DGD is exceeded by the actual outage DGD.

On a system point of view, this means that for the considered wavelength its DGD will

exceed its “nominal outage DGD” during a longer time than expected/accounted for. At

this wavelength the system does not respect its availability specification.

Although only few channels per draw are not compliant with their specifications,

there is typically half of the draws for which at least a channel is not compliant Figure 3b.

Actually, the section DGD draw presented on Figure 3b exhibits 6 noncompliant channels,

and the 52nd out of the 100 section DGD draws had 13 noncompliant channels out of 80.

4. System Impact

4.1. Classical

The prediction of PMD impact is a great challenge for optical transmission systems.

Usually the impact of PMD is quantified with system penalties and the main difficulty is

to find the relevant and simple parameter that can be used to express the law for the system

penalties. This parameter should include all PMD orders to simplify the mathematical

expression of the law and to simplify experimental measurement. Finally, another remark

should be pointed out: the truncation of PMD expansion (till second order for example)

induces always an overestimated penalty due to the unbounded magnitude of the second

order PMD in frequency. This subtle problem of penalty estimation is obviously linked 6



Figure 4. Projection in Stokes space of the input polarization on the two PSPs.

to that of PMD representation (or PMD emulation). Two parameters give interesting

results and are usually taken to measure the impact of PMD: the rms pulse spreading

and the string length (polarization state trajectory on the Poincaré sphere over the signal

bandwidth). The degree of polarization (DOP) has also been extensively studied but the

correlation between DOP and the bit error rate (BER) become evanescent in presence of

high order PMD. This parameter is no longer used for the penalties estimation.

4.2. PMD Pulse Impairment

The impact of PMD on pulse distortion remains a very informative way to understand

the physics of PMD. Basically, the propagation of a pulse in a first order section induces

a pulse splitting in two replicas (see Figure 4).

The first and high order PMD can be emulated by a two sections emulator; Figure 5

shows the four replicas observed at the output with this configuration (for concatenation

Figure 5. (a) Experimental set-up. (b) Principle of successive splitting of pulse with a two-section

PMD emulator. (c) Oscillogram with 33% NRZ pulse. The pulse distortion is studied using a bit

pattern: [1,0,0] at 40 Gb/s. The pulse duration is 8 ps. Right same pulse splitting with first order

PMD (DGD D 37 ps). 7



rule see emulator section). The two replicas generated by the first section are equally

split into two replicas in the second section.

4.3. Time Frequency Representation of Pulse Distortion Due to the PMD

The aim of this section is to illustrate the first and second order PMD effects on

pulse propagation. The study of optical pulse propagation in optical fiber with PMD

is interesting from both fundamental and applied views. For these studies the signals can

be represented in either the time or frequency domains. In this work, pulse shape analysis

is based on representation in a joint time-frequency (TF) plane [6]. TF representations

have been used for the analysis of short light pulses and a well know application in

optical domain is the spectrogram based on short time Fourier transform [7] and the

Wigner distribution [8–9]. Here we will use the spectrogram which is a very simple tool

from an implementation point of view and provides a reliable and easily interpretable

representation of the TF energy distribution of an optical pulse. The TF representation

does not provide more information than the time or the frequency representation but give

this information in a more illustrative form.

Given a pulse envelope A.z; t/, this signal is represented in the frequency domain

by:

QA.z; !/ D TFŒA.z; t/� D 1p
2�

Z C1

�1

A.z; t/ exp.�j!t/dt: (14)

The spectrogram provides a short time Fourier analysis. A small portion of the signal

centered at time t 0 is selected and Fourier transformed, giving then a “time dependent

spectrum,” the modulus of which is called the spectrogram. In order to select a portion

of the signal, we use a gate or window function G.t/. The spectrogram SP.!; t 0/ and

the distribution W.!; t 0/ are:

SP.!; t 0/ D jW.!; t 0/j D
ˇ

ˇ

ˇ

ˇ

ˇ

Z

A.z; t/G.t � t 0/ exp.�j!t/dt

ˇ

ˇ

ˇ

ˇ

ˇ

: (15)

The input optical pulse is assumed to be Gaussian and a Gaussian function is selected

as a mobile window. This choice for the window is known to optimize the resolution

between time and frequency:

A.0; t/ D exp

 

�1

2

�

t

ıts

�2
!

I

G.t/ D exp

 

�1

2

�

t

ıtg

�2
!

:

(16)

The practical implementation will use discrete Fourier transform. The resolution in time

and frequency depends on the sampling frequency used for the discrete Fourier transform

and the window width. With this basic analysis without any specific corrections, no re-

assignments of time and frequency are used; we obtain only an estimated value for time

and frequency, but the general pulse shape is correct.

In this study, the PMD effects analysis is based on the Bruyère’s model [10–12]. For

simplicity we consider that PSPs at the central frequency are aligned with S1 in Stokes 8



space. Following Bruyère’s model, the PMD operator is described by the matrix M.!/:

M.!/ D R.!/�1D.!/R.!/

M.!/ D
�

cos.k!/ � sin.k!/

sin.k!/ cos.k!/

� �

exp.�j.�0! C �!!2/=2/ 0

0 exp.j.�0! C �!!2/=2/

�

�
�

cos.k!/ sin.k!/

� sin.k!/ cos.k!/

�

(17)

where �0 is the DGD, �! is the PCD, and k is linked to the depolarization j Ep!j D 4k at

central frequency.

In our work, the input pulse polarization is linear and its orientation makes an angle

� with the PSPs at the central frequency.

First we calculate the input pulse spectrogram, depicted in Figure 6a. The first order

PMD is only considered in a first step, therefore the matrix R.!/ reduces to the identity

matrix. The operator D.!/ represents a delay of ˙�=2 for the projections onto the PSPs,

giving at the output two replicas of the input pulse (Figure 6b). In a second step, the

PCD is set to zero while 4k D 30 ps. We can see on the spectrogram of Figure 7a that in

this case the effect of matrix R.!/ and R.!/�1 appears as a periodic amplitude variation

with frequency. Figure 7b presents the same pulse after Fourier Transform inversion;

therefore the frequency domain is transformed back in time domain. The six replicas as

determined by the Bruyère’s model are clearly visible on Figure 7b.

PCD and chromatic dispersion correspond to a frequency dependent time delay. Now

we fix also a value for the PCD and the output pulse spectrogram is shown in Figure 8a

and after Fourier transform inversion in Figure 8b. Figures 9a and 9b show the same

configuration with a non zero chromatic dispersion. It can be observed that combination

of PCD and chromatic dispersion changes the pulse distortion and therefore the PMD

impact.

Figure 10 presents the pulse shape when only depolarization is present and the input

pulse injection is aligned with a PSP at the central frequency. The output pulse is then

split up into two replicas at ˙�0=2, which indicates that energy is present on the two

PSPs (otherwise only one pulse would be observed).

This time frequency analysis allows illustrating the impacts of the different PMD

parameters on the pulse shape. We have to carry on more work in order to optimize the

Figure 6. (a) Input pulse spectrogram and (b) output pulse spectrogram with DGD D 60 ps,

PCD D 0, p! D 0. 9



Figure 7. (a) Output pulse spectrogram and (b) Inverse transform of spectrogram with DGD D

60 ps, PCD D 0, p! D 20 ps.

Figure 8. (a) Output pulse spectrogram and (b) inverse transform of spectrogram with DGD D

60 ps, PCD D 5 103 ps2, p! D 20 ps.

Figure 9. (a) Output pulse spectrogram and (b) inverse transform of spectrogram with DGD D

60 ps, PCD D 5 103 ps2, p! D 20 ps, chromatic dispersion D 400 ps/nm.

10



Figure 10. (a) Output pulse spectrogram and (b) inverse transform of spectrogram with DGD D

60 ps, PCD D 0, p! D 5 ps, input polarization aligned with a PSP.

resolution and precision on time and frequency and to study in more details the relation

between the output and input distribution in different cases.

5. Emulation

The basis of PMD emulation is to create a realistic, reproducible and steady PMD source

with a simple set of parameters to test optical transmission system sensitivity to PMD

impairments.

5.1. Principle of PMD Emulation

The issue of PMD emulation is how to generate a realistic frequency dependent polarimet-

ric operator which simulates the polarimetric effects of optical fiber [12]. To do that, the

first step is to define the relevant parameters of PMD (first and second order for example)

and then using a mathematical inversion process to obtain the emulation operator. This

operator could be defined for example with his Jones matrix, T .!/. Extracting the

emulator Jones matrix with only first order PMD and PCD terms is formally very simple

by using the equation:

T!T �1 D � i

2
E�:E�: (18)

Finally, we find the Jones matrix of the emulator:

T .!/ � e� i!

2
E�.!/:E� : (19)

In the case of high order PMD with frequency-dependent cross coupling between PSP

vectors (e.g., depolarization terms), the calculations are significantly more complex. A

method has been proposed [13] to solve rigorously this equation, including second order

PMD. However, this method cannot be used to carry out practicable PMD emulator

architectures.

PMD emulators are basically constituted by the assembling of group delay blocks

and birefringent waveplates and all architectures use the concatenation rules to gener-

ate predictable, stable, and repeatable PMD parameters (first and second order PMD).

Emulators can be divided in two groups: those which are compatible with a WDM use

and gives a realistic polarimetric behavior over a large spectral range, and those which 11



Figure 11. Geometrical concatenation of PMD vectors for the planar sweep model.

are devoted to a single channel use and should emulate PMD behavior over the signal

spectral bandwidth.

5.2. Architectures of Single Channel of PMD Sources

Focusing on single channel PMD sources, two kinds of architecture that can emulate

higher orders PMD are identified [14–15]. The first architecture represented on Figure 11,

called “planar sweep model,” derives directly from the application of concatenation rule

of two birefringent sections: E�out D E�2 C R.!�2/E�1.

The resulting PMD vector rotates around the PMD vector of the second birefringent

section. The first and second orders are simply expressed as

E� D E�1 C E�2

E�! D E�1 � E�2

(20)

This model is able to emulate first order and depolarization term. The PCD term is

absent due to the fact that the module of the resulting PMD vector does not depend on

frequency.

The second architecture derives from the Bruyère’s model [15]. This emulator is

made up of the concatenation of three elements corresponding to the three terms of

the product in Eq. (17). The circular birefringent waveplates introduce a rotation versus

frequency of the linear birefringence. Straightforward calculations give a spectral depen-

dence of the PMD vector as depicted is the Figure 12. The eigenvectors of the Jones

matrix T and the PMD vector do not coincide over all spectral range but only at the

central frequency, and then the trajectory of PMD vector no longer stays in the equatorial

plan as the birefringent vector.

This emulator is able to simulate all PMD orders (PCD and depolarization C higher

orders). A particular design of PMD compensator has been proposed by Shtaif et al. [10].

This compensator can be obviously used as a PMD emulator with a decreasing degree

of freedom numbers. His architecture is based on the Bruyère’s model and it offers the

possibility to induce simultaneously first and higher order PMD parameters that emulate

realistic PMD fiber.

6. OPMDC

Compensation of channel with distorting effects is a natural step in transmission engi-

neering. In the case of PMD this compensation can be done by two ways, either in optical

layer or by electronic means. 12



Figure 12. Trajectory of PMD vector in the Bruyère based model emulator. All sections have the

same DGD.

6.1. Principle of PMD Optical Compensation

The concept of optical PMD compensation (OPMDC) is simple: it consists to add a

“birefringent” element that can be, more or less, the inverse operator to the one of fiber.

This function is carried out by the concatenation of a polarization controller (PC) and

first order PMD sections. However a deeper insight lets numerous difficulties to appear

carrying out this highly complex functionality.

The first difficulty is linked to the architecture of the compensator and this problem

appears very similar to that of the emulator: how to create the compensation operator as

the fiber with a reduced number of relevant parameters (degrees of freedom). The second

difficulty is linked to the constraint on the number of degrees of freedom (DOF) to

maintain a sufficient efficiency to the compensator. Too many parameters induce a great

complexity of the tracking algorithms. Moreover, the response time of the compensator

obviously grows when increasing the DOF number. Another difficulty is linked to the

nature of the monitoring signal: DOP, RF (Radio-frequency, i.e., tones in the electrical

spectrum of the received spectrum), BER, Eyes opening, etc. More precisely, the great

challenge to carry out an efficient OPMDC is to extract a relevant monitoring signal

strongly correlated to the BER, which determines the quality of the received digital data

stream, seen from the operator. The third difficulty is related to the complexity of efficient

and endless tracking algorithms with several sub-optimums (operating points) and related

possible false locks.

The last difficulty is to obtain the full endless working for the optical compensator.

This ability results from both the polarization controller (PC) behavior and from the algo-

rithm efficiency. The PC should be able to continuously transform any input polarization

to each other. This property is either intrinsic to the PC (endless rotatable waveplates) or 13



Figure 13. Architecture of first order OPMDC.

is obtained by specific driving algorithms that include some reset operations compatible

with the endless control.

6.2. OPMDC Architectures

The simple architecture for the PMD compensator is the first order OPMDC made up of

a PC and a fixed first order PMD section as on Figure 13.

The PC orients the PMD vector of OPMDC. The resulting PMD vector is then

the concatenation of two PMD vectors and the objective is to align the resulting PMD

vector onto the input SOP. With this PMD compensation scheme, the monitoring signal

classically used is the DOP.

First and high order OPMDC has been also proposed based on two or three PMD

sections. These devices are designed to compensate a larger range of PMD effects, but

the driving of such a system becomes significantly more complex due to the large number

of degrees of freedom.

7. Electronic PMD Compensation (EPMDC)

Digital signal processing (DSP) takes place either at the emitter between the Forward

Error Correction (FEC) coder and the modulator, or at the receiver between the detection

stage and the FEC decoder. For PMD compensation, it is implemented at the receiver,

because it is required to adaptively track the channel changes. Doing so at the emitter

would require a feedback control signal from the receiver side to the emitter which is

quite complex. Information about the current system performance is either internally

determined by the DSP or received (typically from the FEC).

The goal of EPMDC is to make the full digital channel from coder to decoder

more robust to PMD (and any distortion) induced by the fiber optical channel. Different

strategies can be embraced to reach this goal, the theoretical background of which is

not specific to the optical channels, because these equalizers are widely used in a lot of

modern communication systems. First DSP techniques, feed forward equalizer (FFE) and

decision feedback equalizer (DFE) aim at removing the inter symbol interference (ISI)

resulting from pulse overlapping found at the decision time. It is equivalent to re-opening

the eye at the decision instant. Other techniques aim at making the decision process

more robust towards ISI, through a more optimal processing of the received signal.

These techniques are nonlinear cancellation (NLC) and maximum likelihood sequence

estimation (MLSE). 14



7.1. Linear Transversal Filter: Feed Forward Equalizer and

Decision Feedback Equalizer

A linear transversal filter realizes the addition of weighted and delayed copies of the

received signal (Figure 14, left).

The goal of the linear addition is to remove as much ISI as beneficial at the sampling

time. It does not mean that the equalizer tries to recover exactly the sent eye but rather

to open it at the sampling time.

The FFE treats similarly ISI induced by previous or future symbols. Nevertheless,

previous symbols could be advantageous processed because they are associated to already

decided bits (assuming errorless decision). Decided signal samples are not corrupted by

noise. Then the ISI produced by these symbols can be suppressed without any noise

enhancement. A DFE implements the observed advantages by addressing the ISI caused

by previously decided symbols. The linear addition of weighted copies of (noiseless)

signal samples after decision replaces the linear addition of signal copies. Usually FFE

and DFE are associated for optimal performance.

A drawback of the DFE is its catastrophic behavior at high BER. An erroneous

decision weakens the ISI cancellation by removing/adding a wrong amount of energy,

causing then the so-called error propagation phenomenon. Such behavior appears however

at BER, which transmission systems in normal conditions do not operate at, around 10�2.

Furthermore, high speed implementation of such a device is quite challenging as it

requires analogue feeding back and addition signal within one bit period without distorting

too much of the signal. This becomes quite tedious already for 10 Gbit/s applications.

That is why a high speed implementation was proposed that allows further nonlinear

cancellation of ISI.

7.2. Nonlinear Canceller

The nonlinear canceller (NLC) [16] is an adaptation of a DFE. It constitutes an el-

egant way of overcoming the analogue feedback issue required in the typical DFE

implementation. It offers further nonlinear equalization as the previous bits dependent

subtraction/addition is any function of these previous bits (not just linear).

The NLC is built as 2N independent decision flip-flops, having independent thresh-

olds (Figure 15), where N represents the number of previously decided bits that are

taken into account. The 2N decision signals feed a switch that selects the current correct

decision device according to the previously decided bits. The previous decided sequence

can be understood as an address. There is no analogue feedback but a digital one used

to address the switch. 2N decisions take place at each clock cycle but only one is

delivered after the switch. Adaptation of the equalization reduces to adaptation of the

Figure 14. Schematic of a feed forward equalizer (left) and a decision feedback equalizer (right),

T represents the bit period. 15



Figure 15. Schematic of a 2 bit nonlinear canceller.

2N thresholds. These can be arbitrarily chosen offering nonlinear cancellation. The 2N

independent thresholds replace the weighting coefficients as providers of the mitigation

dynamicity. The NLC catastrophic behavior at high BER is the same as for DFE.

The main drawback of a NLC resides in its limitation to the cancellation of ISI

induced by previously received symbols. In a sense, it can only cope with half of the

cases. On the other hand, the NLC provides nonlinear ISI cancellation and does not cause

noise enhancement. It is therefore attractive to implement a pseudo nonlinear canceller

addressing the ISI due to symbols to be decided. This requires estimating future symbols.

This can be done for example as a tentative decision that runs in parallel of the main

decision scheme. Figure 16 represents a possible implementation of such a pseudo NLC

that we refer as to multi threshold receiver (MTR). For the sake of clarity, a 1-1 bit MTR

Figure 16. Schematic of a MTR. 16



is presented. 1-1 means that the MTR takes decisions conditioned to one previously

decided bit and to one estimated future bit.

Guessing the next bit contributes also to the catastrophic behavior and in a stronger

manner. Well-optimized thresholds ensure that the performance is not any worse than the

performance of a NLC. The threshold of the tentative decision circuit can typically be

chosen as the average of V01 and V10.

7.3. Maximum Likelihood Sequence Estimation

In a sense, linear filtering prepares signals for the decision. On the other hand, NLC

principle resides in making the decision “context aware” by adapting the decision thresh-

old according to the surrounding bits and to the ISI level. A MLSE receiver goes one

step further in taking into account the context. As the transmission channel spreads the

impulse response over several timing intervals, the decision process can take advantage of

the signal in the surrounding timing intervals, which contains information useful for the

decision. The MLSE receiver does so by determining the most likely (or most probable)

data, conditionally to the sequence at the receiver input.

MLSE aims at finding the most probable/likely sent sequence given the received

signal. It moves away from a bitwise decision to a sequence decision. Thinking in terms

of “most likely” induces the quantitative evaluation of the likelihood of each sequence. In

the ordinary binary case (absence of ISI), no calculation is needed, although the receiver

maximizes also the likelihood (maximization reduces to the comparison to a threshold).

The MLSE is reduced to the classical bit by bit decision receiver in this trivial case.

The goal of MLSE is to associate to an N bits long received sequence the most likely

binary sequence given the received signal of duration NT . It is equivalent to comparing

the received sequence to the 2N possible reference sequences and to compute for each of

them the “distance” between received and reference sequences (measuring the sequence

likelihood conditionally to the received signal). The closest or most likely is chosen and

the associated binary sequence is the decision result.

Let us take an example with N D 3. This specializes in finding the most likely

sequence out of 8 [000, 001, : : : , 111]. If xyz represents any of the triplets, each sequence

is the corner of a unitary cube in a 3D space. A received 3T long sequence appears after

sampling as a triplet of real for example [0.1 0.9 0.2]. Under additive white Gaussian noise

(AWGN) assumption the most likely sequence is just the closest in terms of Cartesian

distance. Since direct detection the fiber optic channel is not AWGN, Cartesian distance

is suboptimal, but it will be used first to ease understanding. Figure 17 presents a 27

PRBS noisy sampled sequence (crosses) in this 3D representation.

If ISI is present, the reference triplets (black circles) move and are no more on the

cube corners (Figure 18). Decision is equivalent to determining for each cross the closest

cube corner rather than considering just the y direction position.

7.4. Comparative Performance

An experimental test bed was built to determine the relative performance of the two most

promising DSP techniques that are NLC and MLSE. The test bed includes noise, CD,

and PMD (up to second order) emulation. Polarization control ensures further the correct

estimation of the launch SOP impact. The joint statistics of first and second order PMD

were used to generalize the measured performance to any PMD. Figure 19 presents the 17



Figure 17. Eye diagram for a noisy 27 PRBS, NRZ. Left hand side corresponding triplet samples

representation in Cartesian coordinates. Circles are the reference triplet, the red crosses are the

samples.

Figure 18. Similar to Figure 17 for non-negligible ISI.

Figure 19. OSNR penalty (dB) for 10�5 outage probability as a function of CD and PMD; for three

different transponders: Standard, eNLC, and MLSE. Other conditions: Back to back, 10.7 Gbit/s

NRZ, SOP penalty dependency taken into account.

induced CD and PMD penalty for three receivers: the standard (optimized threshold)

receiver (used as reference), the MTR, and the MLSE.

8. Conclusions

In this article we have introduced some fundamental aspects of PMD: its system impact,

statistics, and emulation. The core of this article resides in the proposition of a new

representation of its impact by time-frequency analysis. This powerful tool proved to

deepen our understanding of PMD impact, especially higher order. Finally, solutions 18



to overcome PMD, either optical or electrical, were described. For the most promising

solutions (assuming 10 Gbit/s systems), their robustness was assessed. The maximum

likelihood sequence estimator appeared as the most powerful electronic dispersion com-

pensator.

Next, studies should assess the performance of electronic mitigation when associated

to optical coherent detection. In this context, the optical channel is linear again and

equalization should provide much better performance.

Finally, the time-frequency representation of PMD impact has only been touched on

and further work is necessary to extract all the benefits of this new tool.
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