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Abstract:  

Main characteristics of colloidal systems that develop fluid phases with different mechanical 

properties, namely shear-banding fluids, are briefly reviewed both from experimental and 

theoretical (modelling) point of view. A non-monotonic shear stress vs. shear rate constitutive 

relation is presented. This relation derives from a phenomenological model of a shear rate-

dependent viscosity describing structural changes and involves the possibility of multivalued 

shear rates under a given shear stress. In the case of a stress-dependent viscosity, the same 

model allows one to predict vorticity banding. Predictions of this model under controlled 

stress are discussed, namely occurrence of a kind of top- and bottom-jumping of the shear rate 

in response to stress increasing-decreasing. Applying this model to evaluation of the flow 

curve of such colloidal systems is performed. Particular emphasis is placed on the adequate 

computation of the shear rate function in cylindrical Couette cells in order to handle the 

corresponding flow curve which exhibits the well-known shear stress plateau. Indeed, as 

different fluid phases coexist in the flow domain, measured (torque vs. angular velocity) data 

cannot be directly converted into rheometric (shear stress vs. shear rate) functions. As the 

lacking non-local terms in the model prevents the direct determination of the stress-plateau, 

this value is included as an adjustable parameter. Thus model predictions satisfactorily match 

up experimental data of wormlike micellar solutions from the literature. 
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1 - Introduction 

Under shear flow conditions, many complex fluids develop fluid phases with different 

mechanical properties, namely shear bands, parallel to the flow direction, where the shear rate 

takes different mean values. This so-called shear banding behaviour has been interpreted as 

resulting from flow instabilities associated to the existence of a non-monotonic flow curve 

with a region of negative slope. Under controlled stress experiments, band coexistence occurs 

in a certain range of shear rate where the flow curve presents either a stress plateau or a 

notably reduced slope. Typical results found in the analysis of wormlike micellar solutions 

(WMS)  are represented in Fig.1. 

Shear banding has mainly been found experimentally in WMS [1−6], colloidal crystals 

[8−10] and lamellar surfactant systems [11,12]. In these materials, shear-induced changes of 

the microstructure have been observed by birefringence [4,6,12], local light and neutron 

scattering [13,14], associated with various methods of velocimetry [7,12,15−18], performed in 

various geometries (pipe, cone-and-plate and coaxial cylinders). In many cases, experimental 

findings prove that banding can be interpreted as a I-N phase transition between a disordered 

(Isotropic) phase coexisting with an ordered (Nematic) one. Hence the fluid exhibits shear-

thinning, with low viscosity as micelles align in the flow direction at high shear rate. By 

contrast, micelle entanglements lead to high viscosity at low shear rate. In Fig.1, inset boxes 

schematically show the microstructural changes driven by shear flow. General agreement 

between birefringence and velocity profiles have been observed, although some systems 

exhibit a high viscous nematic state at high shear rate, which could reveal either a possible 

mesoscale ordering [16] or shear-thickening effects as yet observed in similar systems in this 

rate domain [19]. 

Another kind of banding formation is called vorticity banding because band interfaces 

appear as turbid and clear (pancake-like) rings oriented perpendicular to the vorticity axis. 

However no steady state has been observed in this case due to stress oscillations that take 

place once  the pancake structure appears [20,21,22]. 

A large number of theoretical works have demonstrated that the main feature in shear 

banding modelling is the need of a non-monotonic constitutive relation in order to obtain a 

flow curve, shear stress σ  vs. shear rateγ& , which exhibits a region where the slope γσ &dd  is 

negative.  

Basically, it is admitted that the flow curve should take the form shown in Fig.2, with 

maximum and minimum shear stresses, σ M  and σ m, reached at shear rates Mγ& and mγ& , 
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respectively. For any given stress σ 0  lying within the interval [σ m , σ M ], one may define 

two “stable” shear rates, 1γ&  and 2γ&  , the intermediate solution 3γ&  corresponding to γσ &dd  < 

0, hence to an instable state. For simple shear in planar Couette, force balance ( 0=⋅∇ σ ) 

requires that σ  remains uniform across the gap, σ 0 = σ( 1γ& ) = σ( 2γ& ) ,  which suggests that 

the flow is shared out in two coexisting bands with constant rates 1γ&  and 2γ&  . The average 

shear rate thus follows a lever rule 21av )x1(x γγγ &&& −+=  , where x gives the interface location 

within the gap of the rheometric cell, with 0 < x < 1 [23]. All streamlines being equivalent in 

steady planar Couette flow, the presence of shear bands should be possible for any stress σ 0  

such as σ m <σ 0 < σ M , thus band interface location cannot be determined. However, 

experiments in real systems have shown the robustness of a well defined stress plateau, σ = 

σ *, at which the two phases coexist. Some criterion is required for selecting this value. 

Therefore, modelling should incorporate some new ingredient. Note that in the case of non-

planar geometries, the stress variation within the gap cannot give the selection criterion, 

although it might explain the experimental observation of a quasi-plateau in this curve instead 

of a  true one. 

Although the way of spontaneous formation of a banded flow still remains an open 

question, several works have proposed that instabilities should result from a flow/structure 

coupling, i.e. coupling between shear induced changes of the internal structure of the material 

(as the isotropic-to-nematic transition in WMS) and pure hydrodynamic instabilities 

associated to the presence of bands which induce non-homogeneous velocity profile [1,20].  

The basic role played by molecular orientation in I-N transition and more generally in 

nematic structures has been treated by Doi and Hess theories which appear as the more 

powerfull tools to solve this problem [24−26], leading to applications among which number 

of works should be mentionned [27−31]. 

In addition, many situations exist where the observed unsteady properties result in 

propagating waves or instabilities, leading to periodic motions (stick-slip like, alternating 

bands…) or irregular chaotic behaviour [22,29−31,36−39]. 

On the other hand, it was early suggested from instabilities and hysteresis cycles observed 

in polymer melt extrusion that assuming a multivalued flow curve could be sufficient to 

generate instability [40,41]. More recently, extensive work on stability analysis has confirmed 

that the region where γσ &dd <0 is indeed responsible of band formation [32−35,42]. 

However, most of these theoretical models fail in predicting the robustness of the stress value 
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at the plateau, σ*, if they do not incorporate in the constitutive relation some non-local effect 

as diffusion terms concerning either concentration [43,44], shear stress [42,43,45−47], shear 

rate [35] or both shear stress and shear rate [48]. This allows to change each (unphysical) 

discontinuity in γ&  into a “material interface”, the thickness of which is of the order of the 

diffusion length, with γ&   varying continuously within the interface from low to high values in 

outside bands, 1γ&  and 2γ& . Note that considering only a coupling through concentration-

dependent stress σ(φ)  − or viscosity η(φ) −  where φ  is the particle volume fraction also 

allowed to obtain a selection of σ * as in reaction-diffusion models [49]. 

As a contribution to phenomenological modelling of shear banding, the present work is a 

first step of a simple approach without including in its present form such non-local effects, 

hence discarding any possibility to predict both band formation and plateau location. Based 

on a simple model for the local shear viscosity η(γ& , φ)  which allows a multivalued flow 

curve, this work is only devoted to discuss (i) some characteristics of this model under shear 

banding conditions, (ii) rheological aspects concerning the general treatment of experimental 

data of shear banded flows in cylindrical Couette cells and (iii) the application of the resulting 

method to some actual rheometrical data.  

This paper is organized as follows. In Sec.2, the Structural Minimal model (hereafter 

called SM-model for convenience) based on a structural viscosity is presented, underlining 

main specific features in comparison with several minimal models recently proposed in the 

literature. SM-model characteristics for shear-banding under steady conditions are discussed 

in Sec.3. After a brief review of the problem related to the determination of the shear rate 

function in monophasic flows, special attention is devoted to the calculation of the torque vs. 

angular velocity under stress-banding conditions, in order to predict more precisely actual 

rheometrical data in a cylindrical Couette cell. This is successfully achieved in Sec.4 using the 

SM-model, allowing to discuss in Sec.5 an example of application to experimental data of 

WMS. Finally, some concluding remarks and comments on future development of this work 

are given in Sec.6. 

 

2 – The SM-model 

2.1 – Foundations of the viscosity equation 

The SM-model has been deduced from minimization of viscous energy dissipation in 

concentrated suspensions [50] that led to a (Krieger-like) viscosity-volume fraction relation, 

η(φ) ∼ (1-φ/φm)− 2. This relation traduces a transition-like behaviour close to maximum 
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packing of particles, φm , with a “critical exponent” 2. For dispersions of aggregating particles, 

forming “Structural Units” (SU), the SU-concept led to generalize this relation to the form 

η(φeff) ∼ (1-φeff /φm)−2, where φeff =(1+CS)φ  is the effective volume fraction of the disperse 

phase, S being the fraction of individual particles within all of SU, and C a factor depending 

on the mean compactness of SU (see [51] for further details on these definitions). 

As a structural variable, S takes into account the volume of suspending fluid immobilized 

within SU [51,52]. Finally, shear-induced structural changes within the system are 

incorporated into the model assuming that S obeys a kinetic equation [53]. It is assumed that, 

when a given shear rate is applied, a sort of order-disorder equilibrium is established, in which 

the forward (Brownian motion) and backward (shear-induced ordering) processes balance. 

This leads to the following form for the structural viscosity  

[ ] 2S)1(1 −
∞ −−= χηη         (1) 

In Eq.(1) η  is a function of S=S(φ, Γ, t), where Γ = Cγγ && is a reduced shear rate, Cγ&  is a 

characteristic shear rate (≈ reciprocal of a structural relaxation time tC) and ( ) 21
0ηηχ ∞= ,  

η∞ and η0 being the limiting viscosities at Γ >> 1 and Γ << 1, respectively. Note that these 

limits correspond to complete rupture and complete building of the structure, taking the 

corresponding values S∞=0 and S0=1 for simplicity (see [53]).  

Applying such a phenomenological model to systems like WMS is tentatively made in 

this work. As this model has been successfully used to describe a very large variety of 

concentrated dispersions [54], it is thought that some details of structural processes at the 

microscale would have a weak influence on rheological properties at the mesoscale. For 

instance, in the special case of WMS, details on reversible scission and recombination of 

chains and/or reptation process in the entangle state will be forgotten, keeping only the 

following picture : (i)  the limiting structure at low shear rate is formed by large entangled 

groups of disordered micelles which immobilize a large amount of suspending fluid, thus 

having a high viscosity η0 ; (ii) as the shear rate increases, these groups are progressively 

broken down with releasing some part of the entrapped fluid; (iii) finally, at high shear, both 

micelle alignment in the flow direction and complete release of entrapped fluid lead to a small 

value for η∞. It is expected that, despite this approach remains approximate, it benefits from a 

very limited number of parameters, moreover having a clear physical significance.  
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2.2 – Prediction of shear-banding 

Under steady conditions, Γ = Cte, the shear stress variations are given by   

Γ
Γχ
Γγηγηγσ

2

C

1
)( 









+
+== ∞ &&&          (2)  

This model exhibits a non-monotonic flow curve σ(Γ) within a range of χ-values, hence leads 

to a multivalued shear rate for a given stress.  Here we will use the variable α = ∞ηη0 = χ −2  

for convenience. Fig.3A displays these variations in terms of a reduced stress Σ = σ /σC  vs. Γ  

(taking σC = η∞ Cγ&  for the sake of simplicity, without reducing the generality of the results). 

As yet underlined above, Eq.(2) defines a (local) reduced steady viscosity 

Η = ∞ηη = Η(Γ, α) as an explicit function (i) of shear rateγ&  through the reduced variable Γ , 

(ii) of volume fraction through the φ−dependent ratio of limiting viscosities, α = ∞ηη0 . Non-

monotonicity of flow curves Σ(Γ) occurs for α > 81 , the higher the α-value, the more 

pronounced the non-monotonicity.  

It is interesting to observe however that the viscosity γγσγη &&& )()( =  related to Eq.(2) is a 

purely monotonic function, even within the region of multivalued shear rate for a given stress. 

In terms of the reduced viscosity Η(Γ) , Fig.3B shows behaviours that are always monotonic: 

shear thinning if α > 1 (thus specially in the multivalued region) and a shear thickening if 

α < 1 .  

 

2.3 – Prediction of vorticity-banding 

An interesting feature of this model is the possibility to use it for modelling vorticity 

banding. Indeed, if the steady viscosity explicitly depends on the stress, the flow curve is 

defined by )(σησγ =& . In this case, one should use a reduced shear stress Σ = σ /σC  instead 

of the reduced shear rate Γ  in Eq.(2), with a characteristic shear stress σC  and keeping Γ 

= Cγγ &&  where Cγ& = σC /η∞ (i.e. still with σC = η∞ Cγ& ), that leads to the flow curve in reduced 

variables, 

( ) ( )[ ] ΓΣχΣΣ 21 ++=         (3) 

Figure 4A displays the reduced flow curves Σ= Σ(Γ)  for different values of β = 0ηη∞ = χ 2.  

A domain of multivalued stress at given shear rate is observed for β  > 81 . Corresponding 

curves for the reduced steady viscosity as a function of Σ 

( ) ( )[ ]21)( ΣχΣηηΣΗ ++== ∞        (4) 
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are shown on Fig.4B. By contrast with the shear-banding case, this multivalued domain 

corresponds to a shear thickening behaviour. Note that in terms of shear rate the reduced 

viscosity Η(Γ) exhibits on Fig.4C a multivalued domain for β  > 81  as expected since a 

multivalued stress is then associated to a given Γ . Similar findings would be obtained for 

Η(Σ)  in the shear banding case.  

 

2.4 – Comparison with several minimal models 

SM-model can be compared to other phenomenological ones recently proposed in the 

literature. In particular, the requirement for a multivalued flow curve has led to ad-hoc 

models, often called “minimal models”, the quality of them being their simple analytical form 

that allows to perform stability analysis of band formation. For instance, still keeping the 

notation Γ for the reduced shear rate, the simplest (trinomial) dependence under steady 

conditions  σ  ~ γ&η0 /(1+Γ 2)  was taken for either the total shear stress (Eq.(9) in [55]) or its 

viscoelastic part only (Eqs.(6) and (7) in [42]). A little less simple expression (also depending 

on η∞), 

σ  ~ 
2

2
0

1 Γ
Γηηγ

+
+ ∞& ,          (5) 

has been used (Eq.(8) in [55] and Eq.(33) in [35]). The nonlinearity in Eq.(5), resulting from 

the shear rate dependence in Γ 2, leads automatically to a trinomial equation under controlled 

stress condition, hence to the possibility of having 3 roots. It is noteworthy that there is not 

other justification for selecting this kind of expression among the simplest ones. By contrast, 

the nonlinearity in Eq.(2) results from the nonlinear φ-dependence of η , η ∼ (1-φ/φm)−2, even 

(as it is considered in this paper) if the shear rate dependence of the ratio of kinetic constants 

remains linear (see [53]). Therefore, using Eq.(2) appears less arbitrary than using Eq.(5). 

Very similar comments can be given in the case of vorticity banding, with a constitutive 

equation containing an ad-hoc third order polynomial R(σ), leading to a trinomial equation in 

σ  under controlled shear rate condition (see for instance Eqs.(1) and (2) in [47], discarding 

time and non-local effects, i.e. in steady homogeneous conditions). Such an equation 

corresponds to the one deduced from the relation γσησ &=)(  with  η(σ) /η∞ given by Eq.(4).  

 

3 - SM-Model characteristics under steady shear-banding conditions. 
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In order to predict the stress plateau associated to shear banding, the top-jumping concept 

have been at first introduced. Although this was done on the basis of satisfactory agreement 

between model predictions [41,56] and WMS data [57], stress startup behaviour under 

constant γ&  shows clearly that flow curve determination requires to perform measurements 

exceedingly slowly. Transient stress responses obtained using startup experiments showed 

indeed two different behaviours. Below the plateau regime (γ&  < 1γ& ) the stress grows rapidly 

(in times ≤  Maxwell time τM ) up to a stationary value and remains constant. Above 1γ&  , in 

the plateau region, the transient stress exhibits the same rapid increase at short times followed 

by a slow relaxation on very longer times τR >> τM , fairly described by a stretched 

exponential [5,33]. Such findings have demonstrated that reaching steady conditions requires 

very long delay in the plateau regime, likely due to the development of structures associated 

with band formation. Therefore, it appears that number of “steady” measurements, which 

under (up and down) imposed stress yield flow curves similar to hysteresis cycles [59,60], 

actually correspond to unsteady behaviour. Indeed, a flow-curve resembling top-jumping can 

be recorded by fast stress-controlled scans (roughly one data point per time ≈ 10τM ) [2]. In 

some extent, the SM-model may predict such a unsteady behaviour, as follows.  

Considering a fluid governed by Eq.(2) with χ < 9 , one may discuss the predicted shear 

rate if the stress is increased fast enough (with a scanning time τS  such as τM < τS << τR ) to 

assume that structural changes are delayed, i.e. keeping approximatively the viscosity value of 

the previous step. Such an assumption is acceptable if τS  is of same order than1
C
−γ& , the SM-

model characteristic time for structural changes, that seems plausible from startup 

experiments. Hence, for a given set of successive stress values σ n , the corresponding set of 

shear rate values are )( 1−= nnn γησγ && , where the subindex n stands for the n-th data point.  

Fig.5A displays the resulting variations of Σ  vs. Γ (same variables yet introduced in the 

previous section) under controlled stress conditions. A top-jumping-like behaviour is clearly 

observed after reaching the flow curve maximum Σmax . However, as shown on Fig.5B, details 

of variations Σ(Γ) close to the maximum of the flow curve show two main characteristics :  

(i)  Σ  reaches progressively the apparent plateau, with a “Σjump-value” clearly above Σmax  

(ii) the successive data points in response to identical stress increments dΣ correspond to a  

series Γn which exhibits successive jumps with an increasing increment dΓn= (Γn − Γn-1).  

These predictions are in fair agreement with several experiments (see Figs.3a-7 in [2]) 

which exhibit both the smooth transition to an apparent plateau (well above the “true” plateau 
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for shear banding) and data points with increasing dΓ. This confirms that stress controlled 

flow curves displayed on Fig.5 are definitely nonequilibrium curves and concern successive 

structural states which could be considered as points of some “metastable extension” of the 

low shear monophasic branch. 

Lastly, Fig.6 shows that decreasing Σ  from the high shear branch of the flow curve leads 

to a bottom-jumping-like behaviour hence, with the previous Σ-increase, to the formation of 

an hysteresis cycle very similar to the ones observed experimentally [59,60].  

As yet discussed in Sec.1, top or bottom jumpings thus do not give the good criterion for 

selecting σ∗ . This can be only achieved by using theories which involve constitutive 

equations with nonlocal terms. Therefore, we do not proceed to further development of the 

SM-model before introduction of such non-local effects. In the next sections, the discussion 

will be limited to the applicability of this model to the prediction of some data. 

 

4- Equations of Couette rheometry 

 After a brief review of the problem related to the determination of the shear rate function 

in monophasic flows, a special attention is devoted to the calculation of the torque vs. angular 

velocity under stress-banding conditions, in order to predict more precisely actual 

rheometrical data in a cylindrical Couette cell. This is successfully achieved using the SM-

model. 

 

4.1 - Monophasic flows 

Determining the flow curve )(γσ &  of non-Newtonian fluids requires the knowledge of 

both the shear stress σ  and the shear rate γ&  at one place in the flow domain of the cell. In 

rheometry between concentric cylinders (discarding end effects), it is worth to observe that 

velocity vector v and shear stress tensor σ  in cylindrical coordinates [r, θ, z] reduce [61] to 

their components vθ = v(r,t) and σrθ = σ(r,t), leading to the balance condition σ(r,t) 

= )t,r(γη & , where η  is the shear viscosity and γ&  the shear rate function, defined 

as r)r/v(r)t,r( ∂∂=γ& . Under steady conditions, the functions of interest, σ and γ& , are 

related to measured quantities, angular velocity Ω and torque M, through the following 

equations (for example, [62,54]), 

Lr

M
r

22
)(

π
σ = ,          (6) 
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∫=
R

R
dr

r

r
Ω

κ

γ )(&
,          (7) 

where R and κR are the radii of outer and inner cylinder, respectively (0 < κ < 1), and L is the 

cylinders height. While σ(r) is obtained straightforwardly from Eq. (1), extracting )(rγ&  

requires inverting the integral of Eq.(7), the solution of which is not unique due to the 

scattering present in experimental data. This inverse problem is also designated ill-posed in 

the literature [64,65]. Indeed, direct estimations of γ&  can be achieved only when the gap 

between inner and outer cylinders is very small, say 0.99 < κ < 1. Under these circumstances, 

)(rγ&  is considered nearly uniform throughout the flow domain, and thus Eq.(7) can be 

replaced by )1( κκΩγ −≈ng& , which is known as the narrow-gap solution for Couette 

viscometry [62,54].  

For wider gap widths, an approach commonly used in practice consists in estimating the 

shear rate at the inner wall, )( RR κγγκ && = , by using the following asymptotic expression [66],  

...
lnd

d

3

)/1ln(

lnd

d

)/1ln( 2
R

2

R
R +++=

κκ
κ σ

Ωκ
σ
Ω

κ
Ωγ& ,      (8) 

where )2( 22 LRMR πκσκ =  is the shear stress at the inner cylinder. This equation is 

recommended in rheology books (for instance, [54]) to be used for 0.5 < κ < 1. It is relevant 

to mention that the error in terminating the series at the second term is lower than [ ]2)/1ln( κ . 

As an interesting alternative to estimate Rκγ& , finite difference formulas that avoid the 

numerical differentiation of raw data were recently proposed [67].  

 

4.2 - Shear-banding flows 

Shear-banding flows involve an additional complexity: abrupt changes in the function 

)(rγ&  arise when two or more phases coexist in the flow domain of the cell. As described in 

the introduction, different theoretical models aimed to predict the occurrence of shear-

banding, with a general consensus that the underlying constitutive curve of shear-banding 

fluids has the form shown in Fig.2.  

Although the observed robust selection of the stress plateau σ = σ ∗ is only obtained with 

theories including non-local (diffusive) terms in the constitutive model, we intend to show 

that it is possible to limit the modelling of stress controlled measurements to these outside 



 11 

bands, considering the plateau value σ*  as a model variable to be adjusted together with the 

SM-model parameters, η∞ , η0  and tC ≡ Cγ& − 1 . 

In Couette cells, the shear stress is maximum at the inner cylinder ( Rκσ ), and decreases 

smoothly as 2)/()( rRr R κσσ κ= , to give the minimum value at the outer cylinder 

( RR κσκσ 2= ). The simple (generally accepted) scenario considered here is that, when the 

stress Rκσ  reaches the value *σ , a new phase with lower flow resistance develops from the 

inner cylinder, and consequently Rκγ&  jumps from 1γ&  to 2γ&  (Fig. 2). Further increase in Rκσ  

results in the growth of this new phase, with a thickness enhancement of the associated band, 

up to complete development of the same phase in the whole gap, as Rκσ  reaches 2/* κσ .  

For the purpose of describing our rheometric problem, we start with the following 

assumptions  

(i) shear-bands are stable and can coexist in steady state conditions;  

(ii) the bands present a localized, flat and sufficiently narrow interface at a certain *rr = , 

where the shear stress is *σσ = ;  

(iii) both shear stress )(rσ  and fluid velocity u(r) are continuous at the interface.  

In principle, these assumptions agree with hypothesis and experimental data reported in the 

literature ([6,7,56,68] for instance). However, in relation with the interface (ii), very recent 

theoretical [46] and experimental [69] works suggest the existence of a region of instability 

between the bands in the vorticity direction. As a first approximation, here we assume a 

sufficiently narrow and flat interface between the bands. 

Under these conditions, and considering the SM-model, Eq.(2), defining )(γσ &  as that 

plotted in Fig. 2, the expressions of Ω as a function of σκR  in the different stress domains are 

given as follows (see also [68]),  

*σσκ ≤R ,   ∫
<

−=
R

R

dΩ

σ

σκ

σ
σ

σγ )(

2

1 &
;      (9a) 

RR σσσκ ≥≥ * , 








+−= ∫ ∫
><*

*

)()(

2

1 σ

σ

σ

σκ

σ
σ

σγσ
σ

σγ
R

R

ddΩ
&&

;    (9a) 

*σσ ≥R ,   ∫
>

−=
R

R

dΩ

σ

σκ

σ
σ

σγ )(

2

1 &
.      (9c) 
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In these equations, <γ&  and >γ&  indicate shear rate values 1γγ && <  and 2γγ && > , respectively. To 

handle the inverse problem given by Eqs.(9a)-(9c), we need to introduce the constitutive 

equation )(γσ &  characterizing the fluid under study. 

 

4.3 - Calculations proposed for shear-banding flows 

4.3.1 - Direct and inverse calculations 

For a given fluid, if the parameters (η0 , η∞ , tc) entering the SM-model are known, Eqs. 

(2) and(9a)-(9c) predict the values Ω  vs. σ (or M) to be obtained in an experiment in which 

the requirements to accomplish a viscometric flow are satisfied (steady state, no-slip at the 

walls, end effects negligible, isothermal flow), as well as the assumptions (i-iii) made above. 

This possibility, designated ‘direct calculation’, will be illustrated in detail in Section 5.  

On the other hand, a more challenging problem is the inverse calculation: determining the 

values of the parameters (η0 , η∞ , tc) from the curve of raw data Ω  vs. σ (or M), and then 

using them to plot the flow curve )(γσ &  in the appropriate range of shear rates. The 

implementation of this task requires further efforts, because the minimization problem 

involved cannot be solved with standard mathematical software (for instance, [70]). 

 

4.3.2 - Numerical procedure for the direct calculation 

The values )(σγ <
&  and )(σγ >

&  entering Eqs.(9a)-(9c) are obtained from Eq.(2), as 

numerical roots )(σγ&  for a given set of known parameters (η0, η∞, tc). This task is carried out 

through a Newton-Raphson subroutine [71], for around 104 discrete values of σ  in the range 

RR κσσσ ≤≤ . Then Eqs.(9a)-(9c) are integrated numerically by using the trapezoidal rule, 

also with 104 discrete intervals. This is carried out for an initial, tentative value *σ  (normally 

inferred from the experimental curve), which is then adjusted to provide the best 

representation of data.  

One should underline that the present calculation takes into account the variations of 

)(σγ <
&  and )(σγ >

&  (i.e. spatial variations) in each band. Hence, it differs notably from current 

assumptions made in several works [6,34,58,72,73]. In these studies, <γ&  and >γ&  are taken as 

the limits 1γ&  and 2γ&  of the plateau σ* , hence are the constants entering the "lever rule" 

2211 eee γγγ &&& += , where e1 and e2 are the respective band thickness, RRe κ−=  being the gap 

width, and γ&  being the “measured” shear rate. Such constant values are not observed in 
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measured velocity profiles (see, for example, Fig.2 in [6]). Moreover, it is evident that the 

larger the gap thickness e, the higher the differences from constant values of γ& . 

 

5 - Examples of application 

This section illustrates the applicability of the SN-model to represent rheometric data of 

shear-banding fluids. The first step consists in confronting Eq.(2) to data σ  vs. γ&  from real 

systems. For this purpose, experimental data of WMS published in the literature are 

considered: CTAB [6] and CPCl-NaSal [7]. These data, which were reported as Rκσ  vs. ngγ& , 

are presented in Fig.7 as Rκσ  vs. κκγΩ /ng )1( −= & , by using the corresponding values of κ  

(0.94 and 0.96, respectively).  

Applying Eq.(2) firstly requires the estimation of accurate values Rκσ  vs. Rκγ&  from data 

Rκσ  vs. Ω . Thus we selected intervals of experimental data of Fig.7 where the fluid is 

monophasic only. The low and high shear zones were analysed independently one another to 

find Rκγ&  by means of Eq.(6). Results are presented in Fig.8 (symbols).  

Afterwards, Eq.(2) is adjusted to data Rκσ  vs. Rκγ&  (full lines in Fig.8), leading to the 

following parameter values:  

CPCl/NaSal : η0 = 63.6 Pa.s , η∞ = 0.64 Pa.s , tc = 32 ms ;  

CTAB : η0 = 7.8 Pa.s , η∞ = 25 mPa.s , tc = 2.7 ms.  

It is observed that the model describes satisfactorily the flow curve in the full range of shear 

rates, by predicting an intermediate multivalued zone. 

In order to cross-check these results, and having the parameters η0 , η∞ , and tc that 

characterize the fluid, we finally carried out the direct calculation, defined in Sec. 4.3. That is, 

Eqs.(9a-c)-(2) were calculated numerically, and the resulting function )( RκσΩ  was matched 

to the respective experimental curve. This is actually done in Fig.9, where full lines are the 

numerical predictions with the adjusted values of *σ  indicated in the figure caption. A 

remarkable agreement is observed in the full range of experimental data. Furthermore, it is 

worthy of note that the values of *σ  obtained are in close agreement with those previously 

reported [6,7].  
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6 - Concluding remarks and perspectives 

A phenomenological (structural) model has been introduced in order to improve 

rheological modelling of complex fluids under shear banding conditions. In contrast with the 

majority of other minimal models already developed in the literature for shear banding 

description, this model has a “structural origin” (a kinetic description which accounts for 

shear induced changes of the internal structure of the material) which seems to bring forwards 

a better physical basis. Simplest assumptions on structure kinetics lead to a Strucural Minimal 

(SM-) model. Existence of a flow curve, multivalued in shear rate −a necessary requirement 

for the presence of shear banding−, has been found depending only on the ratio of the limiting 

viscosities at very high and very low shear.  

Under controlled (increasing) stress conditions, the SM-model predicts a top-jumping-like 

behaviour with a smooth transition to an apparent plateau. The later cannot represent the true 

plateau associated to shear banding since such predictions concern nonequilibrium responses 

as those that could result from too fast measurements. Similarly, for decreasing stress, a 

bottom-jumping is predicted, forming with top-jumping a loop which resembles a hysteresis 

cycle. However, such findings have not been further discussed in the paper since many works 

have demonstrated a lack of stability in the vicinity of the stress plateau if non-local effects 

are absent from the model used, as it is the case in this work. 

Prediction of given rheometric data of shear-banding fluids has been a test for this 

constitutive model of the flow curve. It may be remarked that the success of calculations 

suggested relies on both the introduction of a suitable model for the fluid, and the adequate 

computation of the shear rate function in the rheometric cell. Indeed, determining the true 

shear rate attained in Couette flows is a non-trivial task, except if the gap between cylinders is 

very small. When fluids presenting strong shear-thinning behaviour are studied, an 

inappropriate estimation of the shear rate leads to considerable errors, notably when two 

phases coexist in the flow domain. In this work, although the absence of non-local terms in 

the SM-model impedes the stress plateau value σ* to be determined, successfully testing of 

the model has been nevertheless obtained by adding σ* to the three model variables η∞ , η0  

and Cγ&   to be adjusted by data fitting. 

A crucial aspect in complex fluids like WMS, and more generally systems exhibiting 

shear banding phenomena, is the modelling of unsteady rheometric data, specially stress 

relaxation after the sudden inception of a given shear rate. A stress overshoot is observed, 

followed by dumped oscillations and either or not Maxwellian relaxation to the steady state 
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[4,5,33]. Theoretical descriptions of these experiments are rather demanding, as different 

time-dependent phenomena are involved, mainly fluid microstructure relaxation and fluid 

viscoelasticity, even the transient characteristics of the apparatus in some studies [74]. The 

structural model from which Eq.(2) derives also includes shear induced kinetic processes 

involved in structural changes (see [53]). A nonlinear Maxwell model based on Eq.(2) 

allowed to interpret unsteady curves on the basis of such kinetic processes [54,75], hence to 

predict transient responses like those observed in WMS. This work is in progress. 

Future work will be devoted to investigate if the SM-model predictions after including 

non-local terms will make possible selecting the σ*-value and further would provide some 

new physical argument in the debate on the origin of shear banding (i.e. formation and 

robustness of the stress plateau) in favour of either a mechanical instability or a shear-induced 

phase transition [34]. Moreover, these model predictions will be aimed to be compared with 

those from Johnson-Segalman model, which is nowadays the most employed constitutive 

relation to describe shear-banding fluids [39,43−47,68,72], as well as the so-called BMP 

model [32].  
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Figure captions 

 

Figure 1: 

Curve of rheometric data (arbitrary drawing) typically found in WMS studied by Couette 

flow. The insets are highly schematic representations of the solution structure in different 

shear rates zones. At a given shear stress, a new fluid phase (band) develops as micelles align 

in the flow direction. 

 

Figure 2: 

Shear stress as a function of shear rate (arbitrary units) for shear-banding fluids.  

 

Figure 3: 

A  – Reduced stress Σ  vs. reduced shear-rate Γ   from Eq.(2) for different values of the 

limiting viscosity ratio α = ∞ηη0 . The non-monotonicity disappears if α  <  81.  

B  – Reduced viscosity Η = ∞ηη  vs. reduced shear-rate Γ   for the same values of α . 
 

(from top to bottom : α =  1000; 200; 81; 50; 10; 1; 0.1; 0.01). 

 

Figure 4: 

A  – Reduced stress Σ  vs. reduced shear-rate Γ , defined in Eq.(3), for different values of the 

limiting viscosities ratio β = 0ηη∞ . The non-monotonicity disappears if β  <  81. 

B  – Reduced viscosity Η = ∞ηη  vs. reduced shear-stress Σ   for the same values of β . 

C  – Reduced viscosity Η = ∞ηη  vs. reduced shear-rate Γ   for the same values of β . 
 

 (from top to bottom : β  =  1000; 200; 81; 50; 10; 1; 0.1; 0.01). 

 

Figure 5: 

A- Reduced stress vs. reduced shear rate under controlled stress conditions, showing a top-

jumping –like behaviour (△) (Stress increment :  dΣ = 4.10-2),  in comparaison with the 

flow curve (····) under controlled shear rate conditions.  

B- Details of Fig.5A: the linear scale for Γ  allows one to appreciate the increasingly 

successive jumps dΓ . 

Model parameters: η0 = 103 Pa.s, η∞ = 0.1 Pa.s, tc = 1 ms ( Cγ&  = 103 s-1)      �    χ = 0.01; σc =  102 Pa 



 22 

 

Figure 6: 

Idem Fig.5, showing top- and bottom- jumpings, leading to a hysteresis cycle. 

 

Figure 7: 

Angular velocity as a function of controlled shear stress for different WMS. Symbols 

represent two examples of experimental data reported in the literature: CTAB [6], and 

CPCl/NaSal [7].  

 

Figure 8: 

Shear stress as a function of shear rate, corresponding to the systems presented in Fig.7. 

Symbols are the values obtained from experimental data )(ΩσκR  in the shear zones where the 

fluid is monophasic (see text for details). Full lines are the predictions of Eq.(2), with the 

parameter values reported in the text.  

 

Figure 9: 

Shear stress as a function of angular velocity for different WMS. Symbols represent two 

examples of experimental data reported in the literature: CTAB [6], and CPCl/NaSal [7]. Full 

lines are the predictions of Eqs.(9a-c)-(2), with the values of η0, η∞, and tc reported in the text. 

In addition, *σ  = 62 Pa for CPCl/NaSal, and *σ  = 32.5 Pa for CTAB. 
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Figure 1       Quemada and Berli 2008 
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Figure 2       Quemada and Berli 2008 
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Figure 3       Quemada and Berli 2008 
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Figure 4       Quemada and Berli 2008 
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Figure 5       Quemada and Berli 2008 
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Figure 6       Quemada and Berli 2008 
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Figure 7       Quemada and Berli 2008  
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Figure 8       Quemada and Berli 2008 
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Figure 9       Quemada and Berli 2008 

 
 
 
 
 
 
 
 
 
 

 


