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Abstract

We give a proof, based on the Poincaré inequality, of the symmetric property (τ) for
the Gaussian measure. If f : Rd → R is continuous, bounded from below and even, we
define Hf(x) = infy f(x+ y) + 1

2 |y|
2 and we have∫

e−f dγd

∫
eHf dγd ≤ 1.

This property is equivalent to a certain functional form of the Blaschke-Santaló inequality,
as explained in a paper by Artstein, Klartag and Milman.
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1 Introduction

The Blaschke-Santaló inequality states that if K is a symmetric convex body of Rd then

|K|d|K◦|d ≤ |D|d|D◦|d = v2d, (1)

where |·|d stands for the volume, K◦ is the polar body of K, D the Euclidean ball and vd
its volume. It was first proved by Blaschke for dimension 2 and 3 and Santaló [15] extended
the result to any dimension. K. Ball in [2] was the first to prove a functional version of this
inequality. Since then, several authors found either improvements or other versions of Ball’s
inequality, for example Lutwak and Zhang [10], Artstein, Klartag and Milman [1], or Fradelizi
and Meyer [7].
Ball’s inequality implies in particular the following: if F is a non negative even measurable
function on Rd then ∫

F (x) dx

∫
F ◦(x) dx ≤ (2π)d, (2)

where F ◦ is the polar function of F :

F ◦(x) = inf
y∈Rd

e−x·y

F (y)
.

Let K be a symmetric convex body and NK the associated norm. Defining FK = e−
1
2
N2

K ,
it is easy to see that (FK)◦ = FK◦ . Besides, a standard computation shows that vd

∫
FK =

∗LAMA (UMR CNRS 8050) Université Paris-Est.
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(2π)d/2|K|d and similarly for K◦. Therefore, applying (2) to FK , we get (1). So (2) is a
functional form of Santaló’s inequality.
In [1], Artstein, Klartag and Milman extend this inequality to the non even setting: they
prove that (2) holds as soon as the barycenter of F ◦ is at 0 (which is true when F is even).
At the end of their paper is an interesting remark on the property (τ). This property was
introduced by Talagrand and named after him by Maurey in [11]. Here is the definition: let
µ be a probability measure on Rd and w a weight (which is a non negative function equal to
0 at 0). We say that (µ,w) satisfies property (τ) if for any non negative continuous function
f , the following inequality holds: ∫

e−f dµ

∫
ef�w dµ ≤ 1, (3)

where f � w is the infimum convolution of f and w:

f � w(x) = inf
y∈Rd

(
f(x+ y) + w(y)

)
.

Clearly, we may replace “f ≥ 0” by “f bounded from below”. Of course f � w(x) ≤ f(x)
(take y = 0). In order to find f � w(x), one is allowed to move from x to some x + y such
that f(x+ y) is smaller than f(x), but the displacement costs w(y).
Let γd be the standard Gaussian measure on Rd. For x ∈ Rd, we let |x| be its Euclidean
norm and we define the quadratic cost c : x 7→ |x|2. Maurey remarked that (γd,

c
4) satisfies

property (τ). It follows from the famous Prékopa-Leindler inequality: let u,v and w be
measurable functions satisfying w(x+y2 ) ≤ 1

2(u(x) + v(y)) for all x and y in Rd, then(∫
e−u dx

) 1
2
(∫

e−v dx
) 1

2 ≤
∫

e−w dx. (4)

This is a reverse form of Hölder’s inequality, we refer to [3] for a proof and selected applications.
Applying this inequality to u = f + c

2 , v = −(f � c
4) + c

2 and w = c
2 yields property (τ) for

the Gaussian measure.
It is pointed out in [1] that there is a strong connection between property (τ) and the functional
version of Santaló’s inequality. Indeed, applying (2) to F = e−f−

c
2 we obtain easily∫

e−f dγd

∫
ef�

c
2 dγd ≤ 1.

Hence, if we restrict to even functions we have property (τ) for (γd,
c
2) (we gain a factor 2 in

the cost). This is what we call the symmetric property (τ), and our purpose is to prove it
directly. We will show that it is related to the eigenvalues of the Laplacian in Gauss space.
This will provide a new proof of the functional Santaló inequality, and this proof avoids using
the usual Santaló inequality (for convex sets), which was not the case of Ball’s proof.
From now on we denote by Hf the function f � c

2 :

Hf(x) = inf
y∈Rd

(
f(x+ y) + 1

2 |y|
2
)
.

We restate the theorem we want to prove:

Theorem 1. Let f be an even, bounded from below and continous function on Rd. Then∫
e−f dγd

∫
eHf dγd ≤ 1.
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2 A “small ε” inequality

Definition 2. Let C > 0 and ε ∈ (0, 1]. Let F(C, ε) be the class of functions on Rd satisfying
the following properties:

(i) f is lipschitz with constant Cε

(ii) for any x and h in Rd:

f(x+ h) + f(x− h)− 2f(x) ≤ Cε2|h|2.

This class F(C, ε) is stable under various operations. For example it is clearly a convex set,
and, if f is in F(C, ε) and u ∈ Rd then x 7→ f(x+ u) and x 7→ f(−x+ u) are also in F(C, ε).
Besides, if (fi)i∈I is a family of functions in F(C, ε) and if for some x0, infi∈I fi(x0) > −∞,
then f = infi fi is still in F(C, ε). Indeed, it is then clear that f is nowhere equal to −∞ and
that it is Cε-lipschitz. Let x, h ∈ Rd and let i0 satisfy fi0(x) ≤ f(x) + η ; we have

f(x+ h) + f(x− h)− 2f(x) ≤ fi0(x+ h) + fi0(x− h)− 2fi0(x) + 2η.

Applying property (ii) for fi0 and letting η go to 0, we get the result.
Let X be a standard Gaussian vector on Rd, the expectation of a random variable will be
denoted by E .

Lemma 3. Let C > 0, for every ε ∈ (0, 1], for every even function f ∈ F(C, ε) we have

E e−f(X)E eHf(X) ≤ 1 +Kε3,

with a constant K depending on C solely.

The proof of this lemma is based on a Taylor expansion and on a symmetric Poincaré
inequality.

Lemma 4. Let f be a smooth function in L2(Rd, γd). Assume that f is orthogonal to constants
and to linear functions:

E f(X) = 0 and EXf(X) = 0. (5)

Then
E f(X)2 ≤ 1

2E |∇f(X)|2. (6)

It is a well-known result, we recall its proof for completeness, the reader can also have a
look at [6] where a more general statement is proved.

Proof. We consider the sequence (Hα)α∈Nd of the Hermite polynomials on Rd. It is an or-
thonormal basis of L2(γd) in which the (unbounded) operator

L : f 7→ ∆f − x · ∇f

is diagonal: for all α we have −LHα = |α|Hα, where |α| =
∑
αi. We refer to [13, chapter 2]

for details. Moreover, we have the following integration by parts formula:

−ELf(X)g(X) = E∇f(X) · ∇g(X).
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Let us write f =
∑
fαHα. We have −Lf =

∑
|α|fαHα and (5) implies that fα = 0 when

|α| = 0 or 1. Therefore

E |∇f(X)|2 = −ELf(X)f(X) =
∑
|α|≥2

|α|f2α ≥ 2E f(X)2,

which concludes the proof.

Proof of Lemma 3. In what follows, K1,K2, . . . are constants that depend only on C. Let
ε ∈ (0, 1] and f ∈ F(C, ε), even. Replace f by its convolution by some even regular Dirac
approximation (ρn) (Gaussian for example). Clearly ρn ∗ f is even and belongs to F(C, ε).
On the other hand, since f is lipschitz, ρn ∗ f → f uniformly, which implies H(ρn ∗ f)→ Hf .
Moreover, being lipschitz, f is bounded by a multiple of 1 + |x|, and the same holds for
Hf . Then e−ρn∗f and eH(ρn∗f) are both dominated by some function x → AeB|x|. By the
dominated convergence theorem, we obtain

E e−(ρn∗f)(X)E eH(ρn∗f)(X) → E e−f(X)E eHf(X),

when n goes to infinity. Hence it is enough to prove the inequality when f is C2. Moreover,
the inequality does not change if we add a constant to f . Hence we can also assume that
E f(X) = 0. When f is C2, property (ii) implies that Hessf(x) ≤ Cε2Id for any x. Hence by
Taylor’s formula

(ii’) for any x and h, f(x+ h) ≤ f(x) +∇f(x) · h+ C
2 ε

2|h|2.

First we estimate E e−f(X). We write

E e−f(X) =
∞∑
k=0

(−1)k
k! E f(X)k.

To estimate the moments of f(X), we use the concentration property of the Gaussian measure:
if φ is a real valued, mean 0 and 1-lipschitz function on Rd, then φ(X) is closed to 0 with
high probability. More precisely, for any t > 0, we have

Prob
{
|φ(X)| ≥ t

}
≤ 2e−t

2/2.

We refer to [9, theorem 2.5] for a proof of this statement. This yields that there exists a
universal constant M such that for any p ≥ 1(

E |φ(X)|p
)1/p

≤M√p.

Since f is Cε-lipschitz, f
Cε is 1-lipschitz, and it has mean 0 so the preceding inequality applies.

Thus, for k ≥ 3, we can bound |(−1)kE f(X)k| from above by (MC
√
k)kε3. We obtain

E e−f(X) ≤ 1 + 1
2E f(X)2 +K1ε

3. (7)

In the same way, we have

E ef(X) ≤ 1 + 1
2E f(X)2 +K1ε

3 and E
∣∣ef(X) − 1

∣∣ ≤ K2ε
2. (8)
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We now deal with Hf . Trying y = −∇f(x) in the definition of Hf , we get

Hf(x) ≤ f(x−∇f(x)) + 1
2 |∇f(x)|2.

Applying (ii’) to x and h = −∇f(x), we obtain

Hf(x) ≤ f(x)− |∇f(x)|2 + 1
2 |∇f(x)|2 + C

2 ε
2|∇f(x)|2.

Remark that since f is Cε-lipschitz, we have |∇f(x)| ≤ Cε for any x. We obtain

Hf(x) ≤ f(x)− 1
2 |∇f(x)|2 + 1

2C
3ε4.

Taking the exponential, and using |∇f | ≤ Cε again, we get

eHf(x) ≤ ef(x)
(
1− 1

2 |∇f(x)|2 +K3ε
4
)(

1 +K4ε
4
)

≤ ef(x) − 1
2 |∇f(x)|2 + 1

2(1− ef(x))|∇f(x)|2 +K5e
f(x)ε4.

We take the expectation and we use (8), we obtain

E eHf(X) ≤ 1 + 1
2E f(X)2 − 1

2E |∇f(X)|2 +K6ε
3. (9)

Multiplying (7) and (9) we get

E e−f(X)E eHf(X) ≤ 1 + E f(X)2 − 1
2E |∇f(X)|2 +Kε3. (10)

Now we use Lemma 4: since f has mean 0 and is even, it satisfies (5), hence E f(X)2 ≤
1
2E |∇f(X)|2, which concludes the proof.

Remark. Without the assumption “f even” the Poincaré inequality would only say

E f(X)2 ≤ E |∇f(X)|2,

and we would be able to prove

E e−f(X)E e(f�
c
4 )(X) ≤ 1 +Kε3.

In order to prove the symmetric property (τ), we need to tensorize Lemma 3. This requires
various technical tools, most of which are well known to specialists. We begin with a very
simple property of the class F(C, ε).

Lemma 5. Let E1 and E2 be Euclidean spaces, and µ a probability measure on E1. Let
f : E1 × E2 → R be such that for any x ∈ E1 the function y 7→ f(x, y) is in F(C, ε). We
define φ by

e−φ(y) =

∫
E1

e−f(x,y) dµ(x).

Then, unless φ = −∞, φ belongs to F(C, ε).

Proof. Property (i) is simple. We check (ii): multiplying by −1
2 the inequality f(x, y + h) +

f(x, y−h) ≤ 2f(x, y) +Cε2|h|2, taking the exponential and integrating with respect to µ, we
obtain ∫

E1

e−f(x,y) dµ(x)e−
Cε2

2 |h|
2

≤
∫
E1

e−
1
2f(x,y+h)e−

1
2f(x,y−h) dµ(x).

Then we use Cauchy-Schwarz to bound the right hand side, we take the log and we end up
with the desired inequality for φ.
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3 Symmetrisation

An important tool in geometry is Steiner’s symmetrisation, see [4] for definition, properties
and applications. In particular, it is the main idea behind Meyer and Pajor’s proof of the
Blashke-Santaló inequality. It is thus natural, and as far as we know this idea dates back to
[1] to introduce functional analogues of this symmetrisation.

Definition 6. Let E be a Euclidean space and f : E → R be continuous. We define

Sf : x 7→ inf
u∈E

(
1
2

(
f(u+ x) + f(u− x)

)
+ 1

2 |u|
2
)
.

The function Sf is even.
Let E1, E2 be Euclidean spaces and g : E1 × E2 → R. We define S1g and S2g to be the
symmetrisations of g with respect to the first and the second variable, respectively:

S1g : x, y 7→ inf
u∈E1

(
1
2

(
f(u+ x, y) + f(u− x, y)

)
+ 1

2 |u|
2
)
,

and similarly for S2.

Lemma 7. Let γ be the normal distribution on E. For any continuous f on E, we have∫
E

e−fdγ ≤
∫
E

e−Sfdγ. (11)

Let γ1, γ2 be the normal distributions on E1 and E2, respectively. Any continuous g on E1×E2

satisfies ∫
E1×E2

eHgdγ1 ⊗ dγ2 ≤
∫
E1×E2

eHS2gdγ1 ⊗ dγ2. (12)

Proof. Set f̃ : x→ f(−x). By definition of Sf , we have for every z and u ∈ Rd

Sf(z) + 1
2 |z|

2 ≤ 1
2f(u+ z) + 1

2f(−z + u) + 1
2 |u|

2 + 1
2 |z|

2

= 1
2

(
f(u+ z) + 1

2 |u+ z|2) + 1
2

(
f̃(z − u) + 1

2 |z − u|
2
)
.

Let x, y ∈ Rd, we apply this inequality to z = x+y
2 and u = x−y

2 . We obtain

Sf(
x+ y

2
) + 1

2

∣∣x+ y

2

∣∣2 ≤ 1
2

(
f(x) + 1

2 |x|
2) + 1

2

(
f̃(y) + 1

2 |y|
2
)
.

Applying the Prékopa-Leindler inequality we get (11).
Inequality (12) is the functional version of the following: if K is a centrally symmetric convex
body and Ku its Steiner symmetral with respect to some direction u then |(Ku)◦| ≥ |K◦|. This
is the key argument in Meyer and Pajor’s proof of the symmetric Santaló inequality, see [12].
Actually this idea dates back to Saint-Raymond [14] although he considered a symmetrisation
of his own instead of Steiner’s. Let us prove (12). It follows from

−S1(−Hg) ≤ HS2g. (13)

Indeed, combining it with (11) we get for every y ∈ E2∫
eHg(x,y) dγ1(x) =

∫
e−(−Hg)(x,y) dγ1(x)

≤
∫

e−S1(−Hg(x,y)) dγ1(x) ≤
∫

eHS2g(x,y) dγ1(x),

6



which implies (12). Proof of (13): notations are heavy but it is straightforward.

2HS2g(x, y) = inf
u,v

{
2S2g(x+ u, y + v) + |u|2 + |v|2

}
= inf

u,v,w

{
g(x+ u,w + y + v) + g(x+ u,w − y − v)

+ |u|2 + |v|2 + |w|2
}
.

Since g is even, the latest is the same as

inf
u,v,w

{
g(x+ u,w + y + v) + g(−x− u,−w + y + v) + |u|2 + |v|2 + |w|2

}
.

Whereas

−2S1(−Hg)(x, y) = − inf
t

{
(−Hg)(t+ x, y) + (−Hg)(t− x, y) + |t|2

}
= sup

t

{
Hg(t+ x, y) +Hg(t− x, y)− |t|2

}
.

Hence we have to prove that for any t, u, v, w

Hg(t+ x, y) +Hg(t− x, y) ≤ g(x+ u,w + y + v) + g(−x− u,−w + y + v)

+ |u|2 + |v|2 + |w|2 + |t|2,

which is clear: use twice Hg(a)− g(b) ≤ 1
2 |b− a|

2.

4 Tensorisation

Definition 8. Let n ∈ N∗, we define the class Fn(C, ε) by induction on n: let f be a function
on (Rd)n, we say that f belongs to Fn(C, ε) if

- for every y ∈ Rd, the function x ∈ (Rd)n−1 7→ f(x, y) is in Fn−1(C, ε)

- for every x ∈ (Rd)n−1, the function y ∈ Rd 7→ f(x, y) is in F(C, ε).

In other words Fn(C, ε) is the class of functions on Rd × · · · × Rd that belong to F(C, ε)
with respect to each coordinate separately. The crucial point is that the class Fn(C, ε) is
stable under symmetrisation.

Lemma 9. Let f belong to Fn(C, ε), set E1 = (Rd)n−1 and E2 = Rd. Then S2f also belongs
to Fn(C, ε).

Proof. It follows from the stability properties of the class F(C, ε) that we mentionned earlier:
for every x ∈ E1 and u ∈ E2, the function

y 7→ 1
2

(
f(x, u+ y) + f(x, u− y)

)
+ 1

2 |u|
2

is in F(C, ε) so the same is true for the infimum over u, provided that this infimum is not
−∞, which is clear, since 1

2

(
f(x, u + y) + f(x, u − y)

)
is lipschitz in u. Similarly, for any

y, u ∈ E2, the function

x 7→ 1
2

(
f(x, u+ y) + f(x, u− y)

)
+ 1

2 |u|
2

is in Fn−1(C, ε) and the same is true for the infimum over u.
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The next lemma is a tensorisation of Lemma 3, with the same constant K.

Lemma 10. Let X1, . . . , Xn be independent copies of X and let f be even and in Fn(C, ε).
Then

E e−f(X1,...,Xn)E eHf(X1,...,Xn) ≤ (1 +Kε3)n.

Proof. It is done by induction. When n = 1, it is Lemma 3. Let n ≥ 2, we assume that
the resluts holds for n − 1. Let f : (Rd)n → R be even and in Fn(C, ε). Set E1 = (Rd)n−1,
E2 = Rd and X̃ = (X1, . . . , Xn−1), it is a normal vector on E1. We have to prove

E e−f(X̃,Xn)E eHf(X̃,Xn) ≤ (1 +Kε)n.

Let g = S2f . We use Lemma 7, for every x ∈ E1 we have: E e−f(x,Xn) ≤ E e−S2f(x,Xn), which
implies that

E e−f(X̃,Xn) ≤ E e−S2f(X̃,Xn).

On the other hand, the second part of Lemma 7 gives

E eHf(X̃,Xn) ≤ E eHS2f(X̃,Xn).

Hence it is enough to prove that

E e−g(X̃,Xn)E eHg(X̃,Xn) ≤ (1 +Kε)n. (14)

By Lemma 9, we have g ∈ Fn(C, ε). By definition of S2, for every x ∈ E1, the function
y 7→ g(x, y) is even. But as g is globally even we have also g(−x, y) = g(x,−y) = g(x, y).
Hence, for any y ∈ E2, the function gy : x → g(x, y) is even and in Fn−1(C, ε). By the
induction assumption

E e−(g
y)(X̃)E eH(gy)(X̃) ≤ (1 +Kε3)n−1. (15)

The following computation can be found in [11], we recall it for the sake of completeness. We
define the operator H1 by

H1g(x, y) = H(gy)(x) = inf
u∈E1

(
g(x+ u, y) + 1

2 |u|
2
)
.

We define a new function φ by

e−φ(y) = E e−g(X̃,y).

For any x ∈ E1, the function y → g(x, y) is even and belongs to F(C, ε). By Lemma 5, the
same is true for φ. Hence we can apply Lemma 3 to get

E e−φ(Xn)E eHφ(Xn) ≤ 1 +Kε3. (16)

On the other hand, inequality (15) implies that for any y and u in Rd we have

E eH1g(X̃,y+u)+
1
2
|u|2 ≤ eφ(y+u)+

1
2
|u|2(1 +Kε3)n−1. (17)

Let (x, y) ∈ E1 × E2. For any u ∈ Rd we have H1g(x, y + u) + 1
2 |u|

2 ≥ Hg(x, y). Hence,
taking the infimum over u in (17), we get

E eHg(X̃,y) ≤ eHφ(y)
(
1 +Kε3

)n−1
, (18)

which of course implies that

E eHg(X̃,Xn) ≤ E eHφ(Xn)
(
1 +Kε3

)n−1
. (19)

Combining (19) with (16) yields (14) and the proof is complete.
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5 Proof of Theorem 1

Let n ∈ N, and f be an even function from Rd to R belonging to F(C, 1). Set

g : (x1, . . . , xn) ∈ (Rd)n 7→ f
(

1√
n

(x1 + · · ·+ xn)
)
.

It is clear that g is even and belongs to Fn(C, 1√
n

). Applying Lemma 10, we obtain

E e−g(X1,...,Xn)E eHg(X1,...,Xn) ≤ (1 +K 1
n3/2 )n ≤ 1 + K′√

n
. (20)

The convexity of the square of the norm implies that

Hg(x1, . . . , xn) = inf
u1,...,un

f
(

1√
n

∑
(xi + ui)

)
+ 1

2

∑
|ui|2

≥ inf
u1,...,un

f
(

1√
n

∑
xi + 1√

n

∑
ui
)

+ 1
2

∣∣ 1√
n

∑
ui
∣∣2,

= Hf
(

1√
n

∑
xi
)
.

We combine this inequality with (20), since the random vector 1√
n

∑
Xi has the same law as

X, we obtain
E e−f(X)E eHf(X) ≤ 1 + K′√

n
.

Now we let n→∞ and we get the result for f . Hence we have the inequality for any even f
in F(C, 1). But this holds for any C, so we can take C as big as we want. In particular, we
get the result for any even and C2 function with compact support. And a density argument
shows that the inequality is valid for any function that is even, continuous and bounded from
below.

Remarks

It is also possible to derive the usual property (τ) for the Gaussian measure from the Poincaré
inequality. The function f is not assumed to be even anymore, we use the non-symmetric
version of Lemma 3 and then perform the tensorisation (just as in Section 4 but without the
symmetrisation). Of course, this is a bit more complicated than the usual proof (using the
Prékopa-Leindler inequality) but we find it interesting to see that property (τ) has to do with
the first eigenvalue of the Laplacian whereas its symmetric version has to do with the second
eigenvalue.
Unfortunately we are not able to go farther: what happens if f is orthogonal to constants,
linear functionals and polynomials of degree 2? Actually even in the case of a function that
is orthogonal to constants and linear functionals our method does not give the result: we had
to suppose that our function was even, which is stronger.
Lastly, following Klartag [8], we explain how to extend the symmetric property (τ) to measures
that are even and log-concave with respect to the Gaussian. It is well known that property (τ)
is stable under 1-Lipschitz image. Clearly, the symmetric property (τ) will have the following
stable under pushforward by a 1-Lipschitz odd map. For example, it was proved by Caffarelli
(see [5]) that if a probability measure µ is log-concave with respect to the Gaussian measure –
meaning that dµ = e−V dγ for some V convex – then the Brenier map transporting the Gaus-
sian measure to µ is 1-Lipschitz. Now suppose additionally that µ is even, then the Brenier
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map is automatically odd so µ is the pushfoward of the Gaussian measure by a 1-Lipschitz
odd map. Therefore, probability measures that are even and log-concave with respect to the
Gaussian measure, in particular restrictions of the Gaussian measure to symmetric convex
bodies, satisfy the symmetric property (τ).
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