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Partitions and functional Santaló inequalities

Joseph Lehec∗

September 2008

Abstract

We give a direct proof of a functional Santaló inequality due to
Fradelizi and Meyer. This provides a new proof of the Blaschke-
Santaló inequality. The argument combines a logarithmic form of
the Prékopa-Leindler inequality and a partition theorem of Yao and
Yao.

Introduction

If A is a subset of Rn we let A◦ be the polar of A:

A◦ = {x ∈ Rn | ∀y ∈ A, x · y ≤ 1},

where x · y denotes the scalar product of x and y. We denote the Euclidean
norm of x by |x| =

√
x · x. Let K be a subset of Rn with finite measure. The

Blaschke-Santaló inequality states that there exists a point z in Rn such that

voln(K) voln(K − z)◦ ≤ voln(Bn
2 ) voln(Bn

2 )◦ = v2n, (1)

where voln stands for the Lebesgue measure on Rn, Bn
2 for the Euclidean

ball and vn for its volume. It was first proved by Blaschke in dimension 2
and 3 and Santaló [7] extended the result to any dimension. We say that an
element z of Rn satisfying (1) is a Santaló point for K.
Throughout the paper a weight is an measurable function ρ : R+ → R+ such
that for any n, the function x ∈ Rn 7→ ρ(|x|) is integrable.
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Definition 1. Let f be a non-negative integrable function on Rn, and ρ be
a weight. We say that c ∈ Rn is a Santaló point for f with respect to ρ if
the following holds: for all non-negative Borel function g on Rn, if

∀x, y ∈ Rn, x · y ≥ 0 ⇒ f(c+ x)g(y) ≤ ρ
(√

x · y
)2
, (2)

then ∫
Rn

f(x) dx

∫
Rn

g(y) dy ≤
(∫

Rn

ρ(|x|) dx
)2
. (3)

Heuristically, the choice of the weight ρ gives a notion of duality (or
polarity) for non-negative functions. Our purpose is give a new proof of the
following theorem, due to Fradelizi and Meyer [4].

Theorem 2. Let f be non-negative and integrable. There exists c ∈ Rn such
that c is a Santaló point for f with respect to any ρ. Moreover, if f is even
then 0 is a Santaló point for f with respect to any weight.

The even case goes back to Keith Ball in [2], this was the first example
of a functional version of (1). Later on, Artstein, Klartag and Milman [1]
proved that any integrable f admits a Santaló point with respect to the
weight t 7→ e−t

2/2. Moreover in this case the barycenter of f suits (see [5]).
Unfortunately this is not true in general; indeed, taking

f = 1(−2,0) + 41(0,1)

g = 1(−0.5,0] + 1
4
1(0,1)

ρ = 1[0,1],

it is easy to check that f has its barycenter at 0, and that f(s)g(t) ≤ ρ
(√

st
)2

as soon as st ≥ 0. However∫
R
f(s) ds

∫
R
g(t) dt =

9

2
> 4 =

(∫
R
ρ(|r|) dr

)2
.

To prove the existence of a Santaló point, the authors of [4] use a fixed point
theorem and the usual Santaló inequality (for convex bodies). Our proof is
direct, in the sense that it does not use the Blashke Santaló inequality; it is
based on a special form of the Prékopa-Leindler inequality and on a partition
theorem due to Yao and Yao [8].
Lastly, the Blaschke-Santaló inequality follows very easily from Theorem 2:
we let the reader check that if c is a Santaló point for 1K with respect to the
weight 1[0,1] then c is a Santaló point for K.
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1 Yao-Yao partitions

In the sequel we consider real affine spaces of finite dimension. If E is such
a space we denote by ~E the associated vector space. We say that P is a
partition of E if ∪P = E and if the interiors of two distinct elements of P do
not intersect. For instance, with this definition, the set {(−∞, a], [a,+∞)} is
a partition of R. We define by induction on the dimension a class of partitions
of an n-dimensional affine space.

Definition 3. If E = {c} is an affine space of dimension 0, the only possible
partition P = {c} is a Yao-Yao partition of E, and its center is defined to be
c.
Let E be an affine space of dimension n ≥ 1. A set P is said to be a Yao-Yao
partition of E if there exists an affine hyperplane F of E, a vector v ∈ ~E\~F
and two Yao-Yao partitions P+ and P− of F having the same center c such
that

P =
{
A+ R−v |A ∈ P−

}
∪
{
A+ R+v |A ∈ P+

}
,

The center of P is then x.

If A is a subset of ~E we denote by pos(A) the positive hull of A, that is
to say the smallest convex cone containing A.
A Yao-Yao partition P of an n-dimensional space E has 2n elements and for
each A in P there exists a basis v1, . . . , vn of ~E such that

A = c+ pos(v1, . . . , vn), (4)

where c is the center of P . Indeed, assume that P is defined by F, v,P+ and
P− (see Definition 3). Let A ∈ P+ and assume inductively that there is a

basis v1, . . . , vn−1 of ~F such that A = c+ pos(v1, . . . , vn−1). Then A+R+v =
c+ pos(v, v1, . . . , vn−1).

A fundamental property of this class of partitions is the following

Proposition 4. Let P be a Yao-Yao partition of E and c its center. Let `
be an affine form on E such that `(c) = 0. Then there exists A ∈ P such
that `(x) ≥ 0 for all x ∈ A. Moreover there is at most one element A of P
such that `(x) > 0 for all x ∈ A\{c}.

Proof. By induction on the dimension n of E. When n = 0 it is obvious, we
assume that n ≥ 1 and that the result holds for all affine spaces of dimension
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n − 1. Let ` be an affine form on E such that `(c) = 0. We introduce
F, v,P+,P− given by Definition 3. By the induction assumption, there exists
A+ ∈ P+ and A− ∈ P− such that

∀y ∈ A+ ∪ A− `(y) ≥ 0.

If `(c + v) ≥ 0 then `(x + tv) ≥ 0 for all x ∈ A+ and t ∈ R+, thus `(x) ≥ 0
for all x ∈ A+ + R+v. If on the contrary `(c + v) ≤ 0 then `(x) ≥ 0 for all
x ∈ A− + R−v, which proves the first part of the proposition. The proof of
the ‘moreover’ part is similar.

The latter proposition yields the following corollary, which deals with
dual cones: if C is cone of Rn the dual cone of C is by definition

C∗ = {y ∈ Rn | ∀x ∈ C, x · y ≥ 0}.

Corollary 5. Let P be a Yao-Yao partition of Rn centered at 0. Then

P∗ := {A∗ |A ∈ P}

is also a partition of Rn.

Actually the dual partition is also a Yao-Yao partition centered at 0 but
we will not use this fact.

Proof. Let x ∈ Rn and ` : y ∈ Rn 7→ x · y. By the previous proposition there
exists A ∈ P such that `(y) ≥ 0 for all y ∈ A. Then x ∈ A∗. Thus ∪P∗ = Rn.
Moreover if x belongs to the interior of A∗, then for all y ∈ A\{0} we have
`(y) > 0. Again by the proposition above there is at most one such A. Thus
the interiors of two distinct elements of P∗ do not intersect.

We now let M(E) be the set of Borel measure µ on E which are finite
and which satisfy µ(F ) = 0 for any affine hyperplane F .

Definition 6. Let µ ∈M(E), a Yao-Yao equipartition P for µ is a Yao-Yao
partition of E satisfying

∀A ∈ P , µ(A) = 2−nµ(E). (5)

We say that c ∈ E is a Yao-Yao center of µ if c is the center of a Yao-Yao
equipartition for µ.
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Here is the main result concerning those partitions.

Theorem 7. Let µ ∈ M(Rn), there exists a Yao-Yao equipartition for µ.
Moreover, if µ is even then 0 is a Yao-Yao center for µ.

It is due to Yao and Yao [8]. They have some extra hypothesis on the
measure and their paper is very sketchy, so we refer to [6] for a proof of this
very statement.

2 Proof of the Fradelizi-Meyer inequality

In this section, all integrals are taken with respect to the Lebesgue measure.
Let us recall the Prékopa-Leindler inequality, which is a functional form of
the famous Brunn-Minkowski inequality, see for instance [3] for a proof and
selected applications. If ϕ1, ϕ2, ϕ3 are non-negative and integrable functions
on Rn satisfying ϕ1(x)λϕ2(y)1−λ ≤ ϕ3(λx + (1 − λ)y) for all x, y in Rn and
for some fixed λ ∈ (0, 1), then(∫

Rn

ϕ1

)λ(∫
Rn

ϕ2

)1−λ
≤
∫
Rn

ϕ3.

The following lemma is a useful (see [4, 2]) logarithmic version of Prékopa-
Leindler. We recall the proof for completeness.

Lemma 8. Let f1, f2, f3 be non-negative Borel functions on Rn
+ satisfying

f1(x)f2(y) ≤
(
f(
√
x1y1, . . . ,

√
xnyn)

)2
.

for all x, y in Rn
+. Then ∫

Rn
+

f1

∫
Rn
+

f2 ≤
(∫

Rn
+

f3

)2
. (6)

Proof. For i = 1, 2, 3 we let

gi(x) = fi(e
x1 , . . . , exn)ex1+···+xn .

Then by change of variable we have∫
Rn

gi =

∫
Rn
+

fi.
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On the other hand the hypothesis on f1, f2, f3 yields

g1(x)g2(y) ≤ g3(
x+y
2

),

for all x, y in Rn. Then by Prékopa-Leindler∫
Rn

g1

∫
Rn

g2 ≤
(∫

Rn

g3

)2
.

Theorem 9. Let f be a non-negative Borel integrable function on Rn, and
let c be a Yao-Yao center for the measure with density f . Then c is a Santaló
point for f with respect to any weight.

Combining this result with Theorem 7 we obtain a complete proof of the
Fradelizi-Meyer inequality.

Proof. It is enough to prove that if 0 is a Yao-Yao center for f then 0 is a
Santaló point. Indeed, if c is a center for f then 0 is a center for

fc : x 7→ f(c+ x).

And if 0 is a Santaló point for fc then c is a Santaló point for f .
Let P be a Yao-Yao equipartition for f with center 0. Let g and ρ be such
that (2) holds (with c = 0). Let A ∈ P , by (4), there exists an operator
T on Rn with determinant 1 such that A = T

(
Rn

+

)
. Let S = (T−1)∗, then

S
(
Rn

+

)
= A∗. Let f1 = f ◦T , f2 = g ◦S and f3(x) = ρ(|x|). Since for all x, y

we have T (x) · S(y) = x · y, we get from (2)

f1(x)f2(y) ≤ ρ(
√
x · y)2 = f3(

√
x1y1, . . . ,

√
xnyn)2,

for all x, y in Rn
+. Applying the previous lemma we get (6). By change of

variable it yields ∫
A

f

∫
A∗
g ≤

(∫
Rn
+

ρ(|x|) dx
)2
.

Therefore ∑
A∈P

∫
A

f

∫
A∗
g ≤ 2n

(∫
Rn
+

ρ(|x|) dx
)2
. (7)

Since P is an equipartition for f we have for all A ∈ P∫
A

f = 2−n
∫
Rn

f.
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By Corollary 5, the set {A∗, A ∈ P} is a partition of Rn, thus∑
A∈P

∫
A∗
g =

∫
Rn

g.

Inequality (7) becomes∫
Rn

f

∫
Rn

g ≤ 4n
(∫

Rn
+

ρ(|x|) dx
)2
,

and of course the latter is equal to
(∫

Rn ρ(|x|) dx
)2

.
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