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Partitions and functional Santaló inequalities

We give a direct proof of a functional Santaló inequality due to Fradelizi and Meyer. This provides a new proof of the Blaschke-Santaló inequality. The argument combines a logarithmic form of the Prékopa-Leindler inequality and a partition theorem of Yao and Yao.

Introduction

If A is a subset of R n we let A • be the polar of A:

A • = {x ∈ R n | ∀y ∈ A, x • y ≤ 1},
where x • y denotes the scalar product of x and y. We denote the Euclidean norm of x by |x| = √ x • x. Let K be a subset of R n with finite measure. The Blaschke-Santaló inequality states that there exists a point z in R n such that

vol n (K) vol n (K -z) • ≤ vol n (B n 2 ) vol n (B n 2 ) • = v 2 n , (1) 
where vol n stands for the Lebesgue measure on R n , B n 2 for the Euclidean ball and v n for its volume. It was first proved by Blaschke in dimension 2 and 3 and Santaló [START_REF] Santaló | Un invariante afin para los cuerpos convexos del espacio de n dimensiones[END_REF] extended the result to any dimension. We say that an element z of R n satisfying (1) is a Santaló point for K. Throughout the paper a weight is an measurable function ρ : R + → R + such that for any n, the function x ∈ R n → ρ(|x|) is integrable. Definition 1. Let f be a non-negative integrable function on R n , and ρ be a weight. We say that c ∈ R n is a Santaló point for f with respect to ρ if the following holds: for all non-negative Borel function

g on R n , if ∀x, y ∈ R n , x • y ≥ 0 ⇒ f (c + x)g(y) ≤ ρ √ x • y 2 , (2) 
then

R n f (x) dx R n g(y) dy ≤ R n ρ(|x|) dx 2 . (3) 
Heuristically, the choice of the weight ρ gives a notion of duality (or polarity) for non-negative functions. Our purpose is give a new proof of the following theorem, due to Fradelizi and Meyer [START_REF] Fradelizi | Some functional forms of Blaschke-Santaló inequality[END_REF].

Theorem 2. Let f be non-negative and integrable. There exists c ∈ R n such that c is a Santaló point for f with respect to any ρ. Moreover, if f is even then 0 is a Santaló point for f with respect to any weight.

The even case goes back to Keith Ball in [START_REF] Ball | Isometric problems in p and sections of convex sets[END_REF], this was the first example of a functional version of (1). Later on, Artstein, Klartag and Milman [START_REF] Artstein | The Santaló point of a function, and a functional form of Santaló inequality[END_REF] proved that any integrable f admits a Santaló point with respect to the weight t → e -t 2 /2 . Moreover in this case the barycenter of f suits (see [START_REF] Lehec | A simple proof of the functional Santaló inequality[END_REF]). Unfortunately this is not true in general; indeed, taking

f = 1 (-2,0) + 41 (0,1) g = 1 (-0.5,0] + 1 4 1 (0,1) ρ = 1 [0,1] ,
it is easy to check that f has its barycenter at 0, and that f (s)g(t) ≤ ρ √ st 2 as soon as st ≥ 0. However

R f (s) ds R g(t) dt = 9 2 > 4 = R ρ(|r|) dr 2 .
To prove the existence of a Santaló point, the authors of [START_REF] Fradelizi | Some functional forms of Blaschke-Santaló inequality[END_REF] use a fixed point theorem and the usual Santaló inequality (for convex bodies). Our proof is direct, in the sense that it does not use the Blashke Santaló inequality; it is based on a special form of the Prékopa-Leindler inequality and on a partition theorem due to Yao and Yao [START_REF] Yao | A general approach to d-dimensional geometric queries[END_REF]. Lastly, the Blaschke-Santaló inequality follows very easily from Theorem 2: we let the reader check that if c is a Santaló point for 1 K with respect to the weight 1 [0,1] then c is a Santaló point for K.

Yao-Yao partitions

In the sequel we consider real affine spaces of finite dimension. If E is such a space we denote by E the associated vector space. We say that P is a partition of E if ∪P = E and if the interiors of two distinct elements of P do not intersect. For instance, with this definition, the set {(-∞, a], [a, +∞)} is a partition of R. We define by induction on the dimension a class of partitions of an n-dimensional affine space.

Definition 3. If E = {c} is an affine space of dimension 0, the only possible partition P = {c} is a Yao-Yao partition of E, and its center is defined to be c.

Let E be an affine space of dimension n ≥ 1. A set P is said to be a Yao-Yao partition of E if there exists an affine hyperplane F of E, a vector v ∈ E\ F and two Yao-Yao partitions P + and P -of F having the same center c such that

P = A + R -v | A ∈ P -∪ A + R + v | A ∈ P + ,
The center of P is then x.

If A is a subset of E we denote by pos(A) the positive hull of A, that is to say the smallest convex cone containing A. A Yao-Yao partition P of an n-dimensional space E has 2 n elements and for each A in P there exists a basis v 1 , . . . , v n of E such that

A = c + pos(v 1 , . . . , v n ), ( 4 
)
where c is the center of P. Indeed, assume that P is defined by F, v, P + and P -(see Definition 3). Let A ∈ P + and assume inductively that there is a basis

v 1 , . . . , v n-1 of F such that A = c + pos(v 1 , . . . , v n-1 ). Then A + R + v = c + pos(v, v 1 , . . . , v n-1 ).
A fundamental property of this class of partitions is the following Proposition 4. Let P be a Yao-Yao partition of E and c its center. Let be an affine form on E such that (c) = 0. Then there exists A ∈ P such that (x) ≥ 0 for all x ∈ A. Moreover there is at most one element A of P such that (x) > 0 for all x ∈ A\{c}.

Proof. By induction on the dimension n of E. When n = 0 it is obvious, we assume that n ≥ 1 and that the result holds for all affine spaces of dimension n -1. Let be an affine form on E such that (c) = 0. We introduce F, v, P + , P -given by Definition 3. By the induction assumption, there exists A + ∈ P + and A -∈ P -such that

∀y ∈ A + ∪ A -(y) ≥ 0.
If (c + v) ≥ 0 then (x + tv) ≥ 0 for all x ∈ A + and t ∈ R + , thus (x) ≥ 0 for all x ∈ A + + R + v. If on the contrary (c + v) ≤ 0 then (x) ≥ 0 for all x ∈ A -+ R -v, which proves the first part of the proposition. The proof of the 'moreover' part is similar.

The latter proposition yields the following corollary, which deals with dual cones: if C is cone of R n the dual cone of C is by definition

C * = {y ∈ R n | ∀x ∈ C, x • y ≥ 0}.
Corollary 5. Let P be a Yao-Yao partition of R n centered at 0. Then

P * := {A * | A ∈ P} is also a partition of R n .
Actually the dual partition is also a Yao-Yao partition centered at 0 but we will not use this fact.

Proof. Let x ∈ R n and : y ∈ R n → x • y. By the previous proposition there exists A ∈ P such that (y) ≥ 0 for all y ∈ A. Then x ∈ A * . Thus ∪P * = R n . Moreover if x belongs to the interior of A * , then for all y ∈ A\{0} we have (y) > 0. Again by the proposition above there is at most one such A. Thus the interiors of two distinct elements of P * do not intersect.

We now let M(E) be the set of Borel measure µ on E which are finite and which satisfy µ(F ) = 0 for any affine hyperplane F . Definition 6. Let µ ∈ M(E), a Yao-Yao equipartition P for µ is a Yao-Yao partition of E satisfying

∀A ∈ P, µ(A) = 2 -n µ(E).
(

) 5 
We say that c ∈ E is a Yao-Yao center of µ if c is the center of a Yao-Yao equipartition for µ.

Here is the main result concerning those partitions.

Theorem 7. Let µ ∈ M(R n ), there exists a Yao-Yao equipartition for µ. Moreover, if µ is even then 0 is a Yao-Yao center for µ.

It is due to Yao and Yao [START_REF] Yao | A general approach to d-dimensional geometric queries[END_REF]. They have some extra hypothesis on the measure and their paper is very sketchy, so we refer to [START_REF] Lehec | 0n the Yao-Yao partition theorem[END_REF] for a proof of this very statement.

Proof of the Fradelizi-Meyer inequality

In this section, all integrals are taken with respect to the Lebesgue measure. Let us recall the Prékopa-Leindler inequality, which is a functional form of the famous Brunn-Minkowski inequality, see for instance [START_REF] Ball | An elementary introduction to modern convex geometry[END_REF] for a proof and selected applications. If ϕ 1 , ϕ 2 , ϕ 3 are non-negative and integrable functions on R n satisfying ϕ 1 (x) λ ϕ 2 (y) 1-λ ≤ ϕ 3 (λx + (1 -λ)y) for all x, y in R n and for some fixed λ ∈ (0, 1), then

R n ϕ 1 λ R n ϕ 2 1-λ ≤ R n ϕ 3 .
The following lemma is a useful (see [START_REF] Fradelizi | Some functional forms of Blaschke-Santaló inequality[END_REF][START_REF] Ball | Isometric problems in p and sections of convex sets[END_REF]) logarithmic version of Prékopa-Leindler. We recall the proof for completeness. Lemma 8. Let f 1 , f 2 , f 3 be non-negative Borel functions on R n + satisfying

f 1 (x)f 2 (y) ≤ f ( √ x 1 y 1 , . . . , √ x n y n ) 2 .
for all x, y in R n + . Then

R n + f 1 R n + f 2 ≤ R n + f 3 2 . ( 6 
)
Proof. For i = 1, 2, 3 we let

g i (x) = f i (e x 1 , . . . , e xn )e x 1 +•••+xn .
Then by change of variable we have

R n g i = R n + f i .
On the other hand the hypothesis on f 1 , f 2 , f 3 yields

g 1 (x)g 2 (y) ≤ g 3 ( x+y 2 ),
for all x, y in R n . Then by Prékopa-Leindler

R n g 1 R n g 2 ≤ R n g 3 2 .
Theorem 9. Let f be a non-negative Borel integrable function on R n , and let c be a Yao-Yao center for the measure with density f . Then c is a Santaló point for f with respect to any weight.

Combining this result with Theorem 7 we obtain a complete proof of the Fradelizi-Meyer inequality.

Proof. It is enough to prove that if 0 is a Yao-Yao center for f then 0 is a Santaló point. Indeed, if c is a center for f then 0 is a center for

f c : x → f (c + x).
And if 0 is a Santaló point for f c then c is a Santaló point for f . Let P be a Yao-Yao equipartition for f with center 0. Let g and ρ be such that (2) holds (with c = 0). Let A ∈ P, by (4), there exists an operator T on R n with determinant 1 such that A = T R n + . Let S = (T -1 ) * , then S R n + = A * . Let f 1 = f • T , f 2 = g • S and f 3 (x) = ρ(|x|). Since for all x, y we have T (x) • S(y) = x • y, we get from (2)

f 1 (x)f 2 (y) ≤ ρ( √ x • y) 2 = f 3 ( √ x 1 y 1 , . . . , √ x n y n ) 2 ,
for all x, y in R n + . Applying the previous lemma we get [START_REF] Lehec | 0n the Yao-Yao partition theorem[END_REF]. By change of variable it yields

A f A * g ≤ R n + ρ(|x|) dx 2 . Therefore A∈P A f A * g ≤ 2 n R n + ρ(|x|) dx 2 . ( 7 
)
Since P is an equipartition for f we have for all

A ∈ P A f = 2 -n R n f.
By Corollary 5, the set {A * , A ∈ P} is a partition of R n , thus

A∈P A * g = R n
g.

Inequality [START_REF] Santaló | Un invariante afin para los cuerpos convexos del espacio de n dimensiones[END_REF] becomes

R n f R n g ≤ 4 n R n + ρ(|x|) dx 2 ,
and of course the latter is equal to R n ρ(|x|) dx 2 .