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Abstract

We give a simple proof of a functional version of the Blaschke-
Santalé inequality due to Artstein, Klartag and Milman. The proof is
by induction on the dimension and does not use the Blaschke-Santal6
inequality.
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1 Introduction

For z,y € R™, we denote their inner product by (z,y) and the Euclidean
norm of = by |z|. If A is a subset of R", we let A° = {z € R"|Vy €
A, (xz,y) < 1} be its polar body. The Blaschke-Santalé inequality states
that any convex body K in R™ with center of mass at 0 satisfies

vol,, (K) vol,(K°) < vol,(D) vol,(D°) = v2, (1)
where vol,, stands for the volume, D for the Euclidean ball and v,, for its vol-
ume. Let g be a non-negative Borel function on R" satisfying 0 < [ ¢ < oo

and [|z|g(z)dz < oo, then bar(g) = ([ g)_l(f g(z)x dz) denotes its center
of mass (or barycenter). The center of mass (or centroid) of a measurable
subset of R™ is by definition the barycenter of its indicator function.

Let us state a functional form of (1) due to Artstein, Klartag and Mil-
man [1]. If f is a non-negative Borel function on R", the polar function of
f is the log-concave function defined by

f°(x) = inf (e_<xvy>f(y>—1)
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Theorem 1 (Artstein, Klartag, Milman). If f is a non-negative integrable
function on R™ such that f° has its barycenter at 0, then

f@rde [ < ([ o HF d)? = e
R" R" n
In the special case where the function f is even, this result follows from
an earlier inequality of Keith Ball [2]; and in [4], Fradelizi and Meyer prove
something more general (see also [5]). In the present note we prove the
following:

Theorem 2. Let f and g be non-negative Borel functions on R™ satisfying
the duality relation

Vo,y eRY, fla)gly) < e (2)

If f (or g) has its barycenter at O then

[ f@ye [ gy < 2m Q

This is slightly stronger than Theorem 1 in which the function that has
its barycenter at 0 should be log-concave. The point of this note is not really
this improvement, but rather to present a simple proof of Theorem 1. The-
orem 2 yields an improved Blaschke-Santal6 inequality, obtained by Lutwak
in [6], with a completely different approach.

Corollary 3. Let S be a star-shaped (with respect to 0) body in R™ having
its centroid at 0. Then

vol, () vol, (S°) < v2. (4)

Proof. Let Ng(z) = inf{r > 0|z € rS} be the gauge of S and ¢g =
exp(—%N g) Integrating ¢g and the indicator function of S on level sets of
Ng, it is easy to see that fR" s = cp vol,(S) for some constant ¢,, depending
only on the dimension. Replacing S by the Euclidean ball in this equality
yields ¢, = (2m)"/?v; 1. Therefore it is enough to prove that

[os [0 < . (5)

Similarly, it is easy to see that bar(¢g) = ¢}, bar(S) = 0. Besides, we have
(x,y) < Ng(x)Ngo(y) < %Ns(x)Q + %Nso(y)2, for all z,y € R™. Thus ¢g
and ¢go satisfy (2), then by Theorem 2 we get (5). O



2 Main results

Theorem 4. Let f be a non-negative Borel function on R™ having a barycen-
ter. Let H be an affine hyperplane splitting R™ into two half-spaces Hy and
H_. Define X € [0,1] by A [ f = fH+ f. Then there exists z € R™ such
that for every non-negative Borel function g

(Vz,y € R", f(z+x)g(y) < e_<$’y>) = - f - g < m@ﬂ)”.
(6)

In particular, in every median H (A = %) there is a point z such that for all
g

(Vm,y eR", f(z4+2)g(y) < e_<x’y>) = f g < (2m)". (7)
R*  JRn

A similar result concerning convex bodies (instead of functions) was
obtained by Meyer and Pajor in [7].

Let us derive Theorem 2 from the latter. Let f, g satisfy (2). Assume for
example that bar(g) = 0, then 0 cannot be separated from the support of
g by a hyperplane, so there exists z1,...,z,4+1 € R™ such that 0 belongs to
the interior of conv{z;...zp41} and g(x;) > 0 for i = 1...n+ 1. Then (2)
implies that f(z) < Ce~lI*l, for some C' > 0, where ||z|| = max((z,z;)|i <
n+ 1). Assume also that [ f > 0, then f has a barycenter. Apply the
“X =1/2” part of Theorem 4 to f. There exists z € R™ such that (7) holds.
On the other hand, by (2)

f(z 4 z)g(y)e?) < e Eovlelyz) — o= (@w)

for all z,y € R™. Therefore
f@)ds [ gl dy < (2n)" ®)
R n
Integrating with respect to g(y)dy the inequality 1 < e®*) — (y, z) we get

[ owars [ gweay- [ .29 d.

Since bar(g) = 0, the latter integral is 0 and together with (8) we obtain (3).
Observe also that this proof shows that Theorem 4 in dimension n implies
Theorem 2 in dimension n.

In order to prove Theorem 4, we need the following logarithmic form of
the Prékopa-Leindler inequality. For details on Prékopa-Leindler, we refer
to [3].



Lemma 5. Let ¢1, ¢2 be non-negative Borel functions on Ry. If ¢1(s)pa(t) <
e st for every s,t in Ry, then

P1(s) ds <Z>2( ) dt (9)
R

M\ﬂ

Proof. Let f(s) = ¢1(e)e”, g(t) = ¢>2( )e and h(r) = exp(—e*/2)e"
For all s,t € R we have /f(s)g(t) < h(*2), hence by Prékopa-Leindler

JefJe9 < (Jg h)2. By change of variable, this is the same as fR+ b1 fR+ ¢ <
(fR+ emu?/2 du)2 which is the result. O

3 Proof of Theorem 4

Clearly we can assume that [ f = 1. Let u be the measure with density f.
In the sequel we let f,(x) = f(z+ z) for all z, 2.

We prove the theorem by induction on the dimension. Let f be a non-
negative Borel function on the line, let 7 € R and A = p([r,00)) € [0,1].
Let g satisfy f(r + s)g(t) < e s, for all s,t. Apply Lemma 5 twice: first to

¢1(s) = f(r+s) and ¢o(t) = g(t) then to ¢1(s) = f(r—s) and ¢a(t) = g(1).

Then
T T
/fr/ g§§ and /fr/ 935
Ry JR4 R JR_

Therefore fR g< g5 and [ g<
sion 1.

Assume the theorem to be true in dimension n — 1. Let H be an affine hy-
perplane splitting R™ into two half-spaces H; and H_ and let A = p(H).
Provided that A # 0,1 we can define b, and b_ to be the barycenters of
tr, and pyg_, respectively. Since pu(H) = 0, the point b, belongs to the
interior of H,, and similarly for b_. Hence the line passing through b, and
b_ intersects H at one point, which we call z. Let us prove that z satisfies
(6), for all g. Clearly, replacing f by f. and H by H — z, we can assume
that z = 0. Let g satisfy

2(1 NE which yields the result in dimen-

Yo,y €RY,  f(z)gly) < e @Y. (10)

Let eq, ..., e, be an orthonormal basis of R” such that H = e;- and (b, , e,) >
0. Let v = b4 /(bs,e,) and A be the linear operator on R™ that maps e, to
v and e; to itself for i = 1...n — 1 and let B = (A™1)%. Define

Fi:ye H— fly+sv)ds and Gy:y € H— g(By'+tey,) dt.
Ry Ry



By Fubini, and since A has determinant 1, [, Fy = fH+ foA=pu(Hy) =M
Also, letting P be the projection with range H and kernel Rv, we have

bar(Fy) = % P(Az) f(Az) dz = %P( /

of(w)dz) = P(bs),
H, Hy

and this is 0 by definition of P. Since (Az, Bx') = (z,2’) for all z,2' € R",
we have (y + sv, By’ + tep) = (y,y) + st for all s,t € R and y,y' € H. So
(10) implies

Fly + sv)g(By + te,) < e sty
Applying Lemma 5 to ¢1(s) = f(y + sv) and ¢2(t) = g(By' + te,) we get
Fi(y)Gi(y) < ZemW¥) for every y,y’ € H. Recall that bar(Fy) = 0, then
by the induction assumption (which implies Theorem 2 in dimension n — 1)

/Hﬂ/HG+ < g(%)“*. (11)

hence [;; g(Bz)dz < £ (2m)". In the same way [;, g(Bz)dz < ﬁ@w)",
adding these two inequalities, we obtain

/n g(Bzx)dx < 4)\(11_)\)(27r)n

which is the result since B has determinant 1.
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