A direct proof of the functional Santaló inequality

Joseph Lehec *

June 2008

Abstract

We give a simple proof of a functional version of the Blaschke-Santaló inequality due to Artstein, Klartag and Milman. The proof is by induction on the dimension and does not use the Blaschke-Santaló inequality.

Published in C. R. Acad. Sci. Paris, Sér. I 347 (2009) 55–58.

1 Introduction

For $x, y \in \mathbb{R}^n$, we denote their inner product by $\langle x, y \rangle$ and the Euclidean norm of x by |x|. If A is a subset of \mathbb{R}^n , we let $A^{\circ} = \{x \in \mathbb{R}^n \mid \forall y \in A, \langle x, y \rangle \leq 1\}$ be its polar body. The Blaschke-Santaló inequality states that any convex body K in \mathbb{R}^n with center of mass at 0 satisfies

$$\operatorname{vol}_n(K)\operatorname{vol}_n(K^\circ) \le \operatorname{vol}_n(D)\operatorname{vol}_n(D^\circ) = v_n^2, \tag{1}$$

where vol_n stands for the volume, D for the Euclidean ball and v_n for its volume. Let g be a non-negative Borel function on \mathbb{R}^n satisfying $0 < \int g < \infty$ and $\int |x|g(x)\,dx < \infty$, then $\operatorname{bar}(g) = \left(\int g\right)^{-1}\left(\int g(x)x\,dx\right)$ denotes its center of mass (or barycenter). The center of mass (or centroid) of a measurable subset of \mathbb{R}^n is by definition the barycenter of its indicator function.

Let us state a functional form of (1) due to Artstein, Klartag and Milman [1]. If f is a non-negative Borel function on \mathbb{R}^n , the polar function of f is the log-concave function defined by

$$f^{\circ}(x) = \inf_{y \in \mathbb{R}^n} \left(e^{-\langle x, y \rangle} f(y)^{-1} \right)$$

^{*}LAMA (UMR CNRS 8050) Université Paris-Est.

Theorem 1 (Artstein, Klartag, Milman). If f is a non-negative integrable function on \mathbb{R}^n such that f° has its barycenter at 0, then

$$\int_{\mathbb{R}^n} f(x) \, dx \int_{\mathbb{R}^n} f^{\circ}(y) \, dy \le \left(\int_{\mathbb{R}^n} e^{-\frac{1}{2}|x|^2} \, dx \right)^2 = (2\pi)^n.$$

In the special case where the function f is even, this result follows from an earlier inequality of Keith Ball [2]; and in [4], Fradelizi and Meyer prove something more general (see also [5]). In the present note we prove the following:

Theorem 2. Let f and g be non-negative Borel functions on \mathbb{R}^n satisfying the duality relation

$$\forall x, y \in \mathbb{R}^n, \qquad f(x)g(y) \le e^{-\langle x, y \rangle}.$$
 (2)

If f (or g) has its barycenter at 0 then

$$\int_{\mathbb{R}^n} f(x) \, dx \int_{\mathbb{R}^n} g(y) \, dy \le (2\pi)^n. \tag{3}$$

This is slightly stronger than Theorem 1 in which the function that has its barycenter at 0 should be log-concave. The point of this note is not really this improvement, but rather to present a simple proof of Theorem 1. Theorem 2 yields an improved Blaschke-Santaló inequality, obtained by Lutwak in [6], with a completely different approach.

Corollary 3. Let S be a star-shaped (with respect to 0) body in \mathbb{R}^n having its centroid at 0. Then

$$\operatorname{vol}_n(S)\operatorname{vol}_n(S^\circ) \le v_n^2. \tag{4}$$

Proof. Let $N_S(x) = \inf\{r > 0 \mid x \in rS\}$ be the gauge of S and $\phi_S = \exp\left(-\frac{1}{2}N_S^2\right)$. Integrating ϕ_S and the indicator function of S on level sets of N_S , it is easy to see that $\int_{\mathbb{R}^n} \phi_S = c_n \operatorname{vol}_n(S)$ for some constant c_n depending only on the dimension. Replacing S by the Euclidean ball in this equality yields $c_n = (2\pi)^{n/2} v_n^{-1}$. Therefore it is enough to prove that

$$\int \phi_S \int \phi_{S^{\circ}} \le (2\pi)^n. \tag{5}$$

Similarly, it is easy to see that $\operatorname{bar}(\phi_S) = c'_n \operatorname{bar}(S) = 0$. Besides, we have $\langle x, y \rangle \leq N_S(x) N_{S^{\circ}}(y) \leq \frac{1}{2} N_S(x)^2 + \frac{1}{2} N_{S^{\circ}}(y)^2$, for all $x, y \in \mathbb{R}^n$. Thus ϕ_S and $\phi_{S^{\circ}}$ satisfy (2), then by Theorem 2 we get (5).

2 Main results

Theorem 4. Let f be a non-negative Borel function on \mathbb{R}^n having a barycenter. Let H be an affine hyperplane splitting \mathbb{R}^n into two half-spaces H_+ and H_- . Define $\lambda \in [0,1]$ by $\lambda \int_{\mathbb{R}^n} f = \int_{H_+} f$. Then there exists $z \in \mathbb{R}^n$ such that for every non-negative Borel function g

$$(\forall x, y \in \mathbb{R}^n, \ f(z+x)g(y) \le e^{-\langle x, y \rangle}) \quad \Rightarrow \quad \int_{\mathbb{R}^n} f \int_{\mathbb{R}^n} g \le \frac{1}{4\lambda(1-\lambda)} (2\pi)^n.$$
(6)

In particular, in every median H ($\lambda = \frac{1}{2}$) there is a point z such that for all g

$$(\forall x, y \in \mathbb{R}^n, f(z+x)g(y) \le e^{-\langle x, y \rangle}) \quad \Rightarrow \quad \int_{\mathbb{R}^n} f \int_{\mathbb{R}^n} g \le (2\pi)^n.$$
 (7)

A similar result concerning convex bodies (instead of functions) was obtained by Meyer and Pajor in [7].

Let us derive Theorem 2 from the latter. Let f,g satisfy (2). Assume for example that $\operatorname{bar}(g)=0$, then 0 cannot be separated from the support of g by a hyperplane, so there exists $x_1,\ldots,x_{n+1}\in\mathbb{R}^n$ such that 0 belongs to the interior of $\operatorname{conv}\{x_1\ldots x_{n+1}\}$ and $g(x_i)>0$ for $i=1\ldots n+1$. Then (2) implies that $f(x)\leq C\mathrm{e}^{-\|x\|}$, for some C>0, where $\|x\|=\max(\langle x,x_i\rangle\,|\,i\leq n+1)$. Assume also that $\int f>0$, then f has a barycenter. Apply the " $\lambda=1/2$ " part of Theorem 4 to f. There exists $z\in\mathbb{R}^n$ such that (7) holds. On the other hand, by (2)

$$f(z+x)g(y)e^{\langle y,z\rangle} \le e^{-\langle z+x,y\rangle}e^{\langle y,z\rangle} = e^{-\langle x,y\rangle}$$

for all $x, y \in \mathbb{R}^n$. Therefore

$$\int_{\mathbb{R}^n} f(x) \, dx \int_{\mathbb{R}^n} g(y) e^{\langle y, z \rangle} \, dy \le (2\pi)^n. \tag{8}$$

Integrating with respect to g(y)dy the inequality $1 \leq e^{\langle y,z \rangle} - \langle y,z \rangle$ we get

$$\int_{\mathbb{R}^n} g(y) \, dy \le \int_{\mathbb{R}^n} g(y) e^{\langle y, z \rangle} \, dy - \int_{\mathbb{R}^n} \langle y, z \rangle g(y) \, dy.$$

Since bar(g) = 0, the latter integral is 0 and together with (8) we obtain (3). Observe also that this proof shows that Theorem 4 in dimension n implies Theorem 2 in dimension n.

In order to prove Theorem 4, we need the following logarithmic form of the Prékopa-Leindler inequality. For details on Prékopa-Leindler, we refer to [3].

Lemma 5. Let ϕ_1, ϕ_2 be non-negative Borel functions on \mathbb{R}_+ . If $\phi_1(s)\phi_2(t) \leq e^{-st}$ for every s, t in \mathbb{R}_+ , then

$$\int_{\mathbb{R}_+} \phi_1(s) \, ds \int_{\mathbb{R}_+} \phi_2(t) \, dt \le \frac{\pi}{2}. \tag{9}$$

Proof. Let $f(s) = \phi_1(e^s)e^s$, $g(t) = \phi_2(e^t)e^t$ and $h(r) = \exp(-e^{2r}/2)e^r$. For all $s, t \in \mathbb{R}$ we have $\sqrt{f(s)g(t)} \le h(\frac{t+s}{2})$, hence by Prékopa-Leindler $\int_{\mathbb{R}} f \int_{\mathbb{R}} g \le \left(\int_{\mathbb{R}} h\right)^2$. By change of variable, this is the same as $\int_{\mathbb{R}_+} \phi_1 \int_{\mathbb{R}_+} \phi_2 \le \left(\int_{\mathbb{R}_+} e^{-u^2/2} du\right)^2$ which is the result.

3 Proof of Theorem 4

Clearly we can assume that $\int f = 1$. Let μ be the measure with density f. In the sequel we let $f_z(x) = f(z+x)$ for all x, z.

We prove the theorem by induction on the dimension. Let f be a non-negative Borel function on the line, let $r \in \mathbb{R}$ and $\lambda = \mu([r, \infty)) \in [0, 1]$. Let g satisfy $f(r+s)g(t) \leq e^{-st}$, for all s,t. Apply Lemma 5 twice: first to $\phi_1(s) = f(r+s)$ and $\phi_2(t) = g(t)$ then to $\phi_1(s) = f(r-s)$ and $\phi_2(t) = g(-t)$. Then

$$\int_{\mathbb{R}_+} f_r \int_{\mathbb{R}_+} g \le \frac{\pi}{2} \quad \text{and} \quad \int_{\mathbb{R}_-} f_r \int_{\mathbb{R}_-} g \le \frac{\pi}{2}.$$

Therefore $\int_{\mathbb{R}_+} g \leq \frac{\pi}{2\lambda}$ and $\int_{\mathbb{R}_-} g \leq \frac{\pi}{2(1-\lambda)}$, which yields the result in dimension 1.

Assume the theorem to be true in dimension n-1. Let H be an affine hyperplane splitting \mathbb{R}^n into two half-spaces H_+ and H_- and let $\lambda = \mu(H_+)$. Provided that $\lambda \neq 0, 1$ we can define b_+ and b_- to be the barycenters of $\mu_{|H_+}$ and $\mu_{|H_-}$, respectively. Since $\mu(H)=0$, the point b_+ belongs to the interior of H_+ , and similarly for b_- . Hence the line passing through b_+ and b_- intersects H at one point, which we call z. Let us prove that z satisfies (6), for all g. Clearly, replacing f by f_z and H by H-z, we can assume that z=0. Let g satisfy

$$\forall x, y \in \mathbb{R}^n, \qquad f(x)g(y) \le e^{-\langle x, y \rangle}.$$
 (10)

Let e_1, \ldots, e_n be an orthonormal basis of \mathbb{R}^n such that $H = e_n^{\perp}$ and $\langle b_+, e_n \rangle > 0$. Let $v = b_+/\langle b_+, e_n \rangle$ and A be the linear operator on \mathbb{R}^n that maps e_n to v and e_i to itself for $i = 1 \ldots n - 1$ and let $B = (A^{-1})^t$. Define

$$F_+:y\in H\mapsto \int_{\mathbb{R}_+}f(y+sv)\,ds\qquad\text{and}\qquad G_+:y'\in H\mapsto \int_{\mathbb{R}_+}g(By'+te_n)\,dt.$$

By Fubini, and since A has determinant 1, $\int_H F_+ = \int_{H_+} f \circ A = \mu(H_+) = \lambda$. Also, letting P be the projection with range H and kernel $\mathbb{R}v$, we have

$$bar(F_{+}) = \frac{1}{\lambda} \int_{H_{+}} P(Ax) f(Ax) \, dx = \frac{1}{\lambda} P\left(\int_{H_{+}} x f(x) \, dx\right) = P(b_{+}),$$

and this is 0 by definition of P. Since $\langle Ax, Bx' \rangle = \langle x, x' \rangle$ for all $x, x' \in \mathbb{R}^n$, we have $\langle y + sv, By' + te_n \rangle = \langle y, y' \rangle + st$ for all $s, t \in \mathbb{R}$ and $y, y' \in H$. So (10) implies

$$f(y+sv)g(By'+te_n) \le e^{-st-\langle y,y'\rangle}$$
.

Applying Lemma 5 to $\phi_1(s) = f(y + sv)$ and $\phi_2(t) = g(By' + te_n)$ we get $F_+(y)G_+(y') \leq \frac{\pi}{2}e^{-\langle y,y'\rangle}$ for every $y,y' \in H$. Recall that $bar(F_+) = 0$, then by the induction assumption (which implies Theorem 2 in dimension n-1)

$$\int_{H} F_{+} \int_{H} G_{+} \le \frac{\pi}{2} (2\pi)^{n-1}. \tag{11}$$

hence $\int_{H_+} g(Bx) dx \leq \frac{1}{4\lambda} (2\pi)^n$. In the same way $\int_{H_-} g(Bx) dx \leq \frac{1}{4(1-\lambda)} (2\pi)^n$, adding these two inequalities, we obtain

$$\int_{\mathbb{R}^n} g(Bx) \, dx \le \frac{1}{4\lambda(1-\lambda)} (2\pi)^n$$

which is the result since B has determinant 1.

References

- [1] S. Artstein-Avidan, B. Klartag, and V. Milman, *The Santaló point of a function, and a functional form of Santaló inequality*, Mathematika **51** (2005) 33–48.
- [2] K. Ball, Isometric problems in ℓ_p and sections of convex sets, doctoral thesis, University of Cambridge, 1986.
- [3] K. Ball, An elementary introduction to modern convex geometry, in *Flavors of geometry*, edited by S. Levy, Cambridge University Press, 1997.
- [4] M. Fradelizi and M. Meyer, Some functional forms of Blaschke-Santaló inequality, Math. Z. **256** (2007) (2) 379–395.
- [5] J. Lehec, Partitions and functional Santaló inequalities, Arch. Math. 92 (2009) (1) 89–94.

- [6] E. Lutwak, Extended affine surface area, Adv. Math. $\bf 85$ (1991) (1) 39-68.
- [7] M. Meyer and A. Pajor, On the Blaschke Santaló inequality, Arch. Math. (Basel) **55** (1990) 82–93.