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A direct proof of the functional Santaló inequality

We give a simple proof of a functional version of the Blaschke-Santaló inequality due to Artstein, Klartag and Milman. The proof is by induction on the dimension and does not use the Blaschke-Santaló inequality.

Introduction

For x, y ∈ R n , we denote their inner product by x, y and the Euclidean norm of x by |x|. If A is a subset of R n , we let A • = {x ∈ R n | ∀y ∈ A, x, y ≤ 1} be its polar body. The Blaschke-Santaló inequality states that any convex body K in R n with center of mass at 0 satisfies

vol n (K) vol n (K • ) ≤ vol n (D) vol n (D • ) = v 2 n , (1) 
where vol n stands for the volume, D for the Euclidean ball and v n for its volume. Let g be a non-negative Borel function on R n satisfying 0 < g < ∞ and |x|g(x) dx < ∞, then bar(g) = g -1 g(x)x dx denotes its center of mass (or barycenter). The center of mass (or centroid) of a measurable subset of R n is by definition the barycenter of its indicator function.

Let us state a functional form of (1) due to Artstein, Klartag and Milman [START_REF] Artstein-Avidan | The Santaló point of a function, and a functional form of Santaló inequality[END_REF]. If f is a non-negative Borel function on R n , the polar function of f is the log-concave function defined by

f • (x) = inf y∈R n e -x,y f (y) -1
Theorem 1 (Artstein, Klartag, Milman). If f is a non-negative integrable function on R n such that f • has its barycenter at 0, then

R n f (x) dx R n f • (y) dy ≤ R n e -1 2 |x| 2 dx 2 = (2π) n .
In the special case where the function f is even, this result follows from an earlier inequality of Keith Ball [START_REF] Ball | Isometric problems in p and sections of convex sets[END_REF]; and in [START_REF] Fradelizi | Some functional forms of Blaschke-Santaló inequality[END_REF], Fradelizi and Meyer prove something more general (see also [START_REF] Lehec | Partitions and functional Santaló inequalities[END_REF]). In the present note we prove the following:

Theorem 2. Let f and g be non-negative Borel functions on R n satisfying the duality relation

∀x, y ∈ R n , f (x)g(y) ≤ e -x,y . (2) 
If f (or g) has its barycenter at 0 then

R n f (x) dx R n g(y) dy ≤ (2π) n . (3) 
This is slightly stronger than Theorem 1 in which the function that has its barycenter at 0 should be log-concave. The point of this note is not really this improvement, but rather to present a simple proof of Theorem 1. Theorem 2 yields an improved Blaschke-Santaló inequality, obtained by Lutwak in [START_REF] Lutwak | Extended affine surface area[END_REF], with a completely different approach.

Corollary 3. Let S be a star-shaped (with respect to 0) body in R n having its centroid at 0. Then

vol n (S) vol n (S • ) ≤ v 2 n . (4) 
Proof. Let N S (x) = inf{r > 0 | x ∈ rS} be the gauge of S and φ S = exp -1 2 N 2 S . Integrating φ S and the indicator function of S on level sets of N S , it is easy to see that R n φ S = c n vol n (S) for some constant c n depending only on the dimension. Replacing S by the Euclidean ball in this equality yields

c n = (2π) n/2 v -1
n . Therefore it is enough to prove that

φ S φ S • ≤ (2π) n . (5) 
Similarly, it is easy to see that bar(φ S ) = c n bar(S) = 0. Besides, we have

x, y ≤ N S (x)N S • (y) ≤ 1 2 N S (x) 2 + 1 2 N S • (y) 2
, for all x, y ∈ R n . Thus φ S and φ S • satisfy (2), then by Theorem 2 we get (5).

Main results

Theorem 4. Let f be a non-negative Borel function on R n having a barycenter. Let H be an affine hyperplane splitting R n into two half-spaces H + and H -. Define λ ∈ [0, 1] by λ R n f = H + f . Then there exists z ∈ R n such that for every non-negative Borel function g

∀x, y ∈ R n , f (z + x)g(y) ≤ e -x,y ⇒ R n f R n g ≤ 1 4λ(1 -λ) (2π) n .
(6) In particular, in every median H (λ = 1 2 ) there is a point z such that for all g

∀x, y ∈ R n , f (z + x)g(y) ≤ e -x,y ⇒ R n f R n g ≤ (2π) n . (7) 
A similar result concerning convex bodies (instead of functions) was obtained by Meyer and Pajor in [START_REF] Meyer | On the Blaschke Santaló inequality[END_REF].

Let us derive Theorem 2 from the latter. Let f, g satisfy (2). Assume for example that bar(g) = 0, then 0 cannot be separated from the support of g by a hyperplane, so there exists x 1 , . . . , x n+1 ∈ R n such that 0 belongs to the interior of conv{x 1 . . . x n+1 } and g(x i ) > 0 for i = 1 . . . n + 1. Then (2) implies that f (x) ≤ Ce -x , for some C > 0, where x = max x, x i | i ≤ n + 1 . Assume also that f > 0, then f has a barycenter. Apply the "λ = 1/2" part of Theorem 4 to f . There exists z ∈ R n such that (7) holds. On the other hand, by [START_REF] Ball | Isometric problems in p and sections of convex sets[END_REF] f (z + x)g(y)e y,z ≤ e -z+x,y e y,z = e -x,y for all x, y ∈ R n . Therefore

R n f (x) dx R n g(y)e y,z dy ≤ (2π) n . (8) 
Integrating with respect to g(y)dy the inequality 1 ≤ e y,z -y, z we get

R n g(y) dy ≤ R n g(y)e y,z dy - R n
y, z g(y) dy.

Since bar(g) = 0, the latter integral is 0 and together with (8) we obtain [START_REF] Ball | An elementary introduction to modern convex geometry[END_REF]. Observe also that this proof shows that Theorem 4 in dimension n implies Theorem 2 in dimension n.

In order to prove Theorem 4, we need the following logarithmic form of the Prékopa-Leindler inequality. For details on Prékopa-Leindler, we refer to [START_REF] Ball | An elementary introduction to modern convex geometry[END_REF].

Lemma 5. Let φ 1 , φ 2 be non-negative Borel functions on R + . If φ 1 (s)φ 2 (t) ≤ e -st for every s, t in R + , then

R + φ 1 (s) ds R + φ 2 (t) dt ≤ π 2 . ( 9 
)
Proof. Let f (s) = φ 1 (e s )e s , g(t) = φ 2 (e t )e t and h(r) = exp(-e 2r /2)e r . For all s, t ∈ R we have f (s)g(t) ≤ h( t+s 2 ), hence by Prékopa-Leindler

R f R g ≤ R h 2 .
By change of variable, this is the same as

R + φ 1 R + φ 2 ≤
R + e -u 2 /2 du 2 which is the result.

Proof of Theorem 4

Clearly we can assume that f = 1. Let µ be the measure with density f . In the sequel we let f z (x) = f (z + x) for all x, z. We prove the theorem by induction on the dimension. Let f be a nonnegative Borel function on the line, let r ∈ R and λ

= µ [r, ∞) ∈ [0, 1]. Let g satisfy f (r + s)g(t) ≤ e -st ,
for all s, t. Apply Lemma 5 twice: first to φ 1 (s) = f (r+s) and φ 2 (t) = g(t) then to φ 1 (s) = f (r-s) and φ 2 (t) = g(-t). Then

R + f r R + g ≤ π 2 and R - f r R - g ≤ π 2 . Therefore R + g ≤ π 2λ and R -g ≤ π 2(1-λ)
, which yields the result in dimension 1. Assume the theorem to be true in dimension n -1. Let H be an affine hyperplane splitting R n into two half-spaces H + and H -and let λ = µ(H + ). Provided that λ = 0, 1 we can define b + and b -to be the barycenters of µ |H + and µ |H -, respectively. Since µ(H) = 0, the point b + belongs to the interior of H + , and similarly for b -. Hence the line passing through b + and b -intersects H at one point, which we call z. Let us prove that z satisfies [START_REF] Lutwak | Extended affine surface area[END_REF], for all g. Clearly, replacing f by f z and H by H -z, we can assume that z = 0. Let g satisfy ∀x, y ∈ R n , f (x)g(y) ≤ e -x,y .

Let e 1 , . . . , e n be an orthonormal basis of R n such that H = e ⊥ n and b + , e n > 0. Let v = b + / b + , e n and A be the linear operator on R n that maps e n to v and e i to itself for i = 1 . . . n -1 and let B = (A -1 ) t . Define

F + : y ∈ H → R + f (y+sv) ds and G + : y ∈ H → R + g(By +te n ) dt.
By Fubini, and since A has determinant 1,

H F + = H + f • A = µ(H + ) = λ.
Also, letting P be the projection with range H and kernel Rv, we have bar

(F + ) = 1 λ H + P (Ax)f (Ax) dx = 1 λ P H + xf (x) dx = P (b + ),
and this is 0 by definition of P . Since Ax, Bx = x, x for all x, x ∈ R n , we have y + sv, By + te n = y, y + st for all s, t ∈ R and y, y ∈ H. So (10) implies f (y + sv)g(By + te n ) ≤ e -st-y,y .

Applying Lemma 5 to φ 1 (s) = f (y + sv) and φ 2 (t) = g(By + te n ) we get F + (y)G + (y ) ≤ π 2 e -y,y for every y, y ∈ H. Recall that bar(F + ) = 0, then by the induction assumption (which implies Theorem 2 in dimension n -1)

H F + H G + ≤ π 2 (2π) n-1 . (11) 
hence H + g(Bx) dx ≤ 1 4λ (2π) n . In the same way H -g(Bx) dx ≤ 1 4(1-λ) (2π) n , adding these two inequalities, we obtain

R n g(Bx) dx ≤ 1 4λ(1 -λ) (2π) n
which is the result since B has determinant 1.