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A direct proof of the functional Santaló inequality

Joseph Lehec ∗

June 2008

Abstract

We give a simple proof of a functional version of the Blaschke-
Santaló inequality due to Artstein, Klartag and Milman. The proof is
by induction on the dimension and does not use the Blaschke-Santaló
inequality.

Published in C. R. Acad. Sci. Paris, Sér. I 347 (2009) 55–58.

1 Introduction

For x, y ∈ Rn, we denote their inner product by 〈x, y〉 and the Euclidean
norm of x by |x|. If A is a subset of Rn, we let A◦ = {x ∈ Rn | ∀y ∈
A, 〈x, y〉 ≤ 1} be its polar body. The Blaschke-Santaló inequality states
that any convex body K in Rn with center of mass at 0 satisfies

voln(K) voln(K◦) ≤ voln(D) voln(D◦) = v2n, (1)

where voln stands for the volume, D for the Euclidean ball and vn for its vol-
ume. Let g be a non-negative Borel function on Rn satisfying 0 <

∫
g <∞

and
∫
|x|g(x) dx <∞, then bar(g) =

(∫
g
)−1(∫

g(x)x dx
)

denotes its center
of mass (or barycenter). The center of mass (or centroid) of a measurable
subset of Rn is by definition the barycenter of its indicator function.

Let us state a functional form of (1) due to Artstein, Klartag and Mil-
man [1]. If f is a non-negative Borel function on Rn, the polar function of
f is the log-concave function defined by

f◦(x) = inf
y∈Rn

(
e−〈x,y〉f(y)−1

)
∗LAMA (UMR CNRS 8050) Université Paris-Est.
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Theorem 1 (Artstein, Klartag, Milman). If f is a non-negative integrable
function on Rn such that f◦ has its barycenter at 0, then∫

Rn

f(x) dx

∫
Rn

f◦(y) dy ≤
(∫

Rn

e−
1
2
|x|2 dx

)2
= (2π)n.

In the special case where the function f is even, this result follows from
an earlier inequality of Keith Ball [2]; and in [4], Fradelizi and Meyer prove
something more general (see also [5]). In the present note we prove the
following:

Theorem 2. Let f and g be non-negative Borel functions on Rn satisfying
the duality relation

∀x, y ∈ Rn, f(x)g(y) ≤ e−〈x,y〉. (2)

If f (or g) has its barycenter at 0 then∫
Rn

f(x) dx

∫
Rn

g(y) dy ≤ (2π)n. (3)

This is slightly stronger than Theorem 1 in which the function that has
its barycenter at 0 should be log-concave. The point of this note is not really
this improvement, but rather to present a simple proof of Theorem 1. The-
orem 2 yields an improved Blaschke-Santaló inequality, obtained by Lutwak
in [6], with a completely different approach.

Corollary 3. Let S be a star-shaped (with respect to 0) body in Rn having
its centroid at 0. Then

voln(S) voln(S◦) ≤ v2n. (4)

Proof. Let NS(x) = inf{r > 0 |x ∈ rS} be the gauge of S and φS =
exp
(
−1

2N
2
S

)
. Integrating φS and the indicator function of S on level sets of

NS , it is easy to see that
∫
Rn φS = cn voln(S) for some constant cn depending

only on the dimension. Replacing S by the Euclidean ball in this equality
yields cn = (2π)n/2v−1n . Therefore it is enough to prove that∫

φS

∫
φS◦ ≤ (2π)n. (5)

Similarly, it is easy to see that bar(φS) = c′n bar(S) = 0. Besides, we have
〈x, y〉 ≤ NS(x)NS◦(y) ≤ 1

2NS(x)2 + 1
2NS◦(y)2, for all x, y ∈ Rn. Thus φS

and φS◦ satisfy (2), then by Theorem 2 we get (5).
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2 Main results

Theorem 4. Let f be a non-negative Borel function on Rn having a barycen-
ter. Let H be an affine hyperplane splitting Rn into two half-spaces H+ and
H−. Define λ ∈ [0, 1] by λ

∫
Rn f =

∫
H+

f . Then there exists z ∈ Rn such
that for every non-negative Borel function g(
∀x, y ∈ Rn, f(z + x)g(y) ≤ e−〈x,y〉

)
⇒

∫
Rn

f

∫
Rn

g ≤ 1

4λ(1− λ)
(2π)n.

(6)
In particular, in every median H (λ = 1

2) there is a point z such that for all
g (

∀x, y ∈ Rn, f(z + x)g(y) ≤ e−〈x,y〉
)
⇒

∫
Rn

f

∫
Rn

g ≤ (2π)n. (7)

A similar result concerning convex bodies (instead of functions) was
obtained by Meyer and Pajor in [7].

Let us derive Theorem 2 from the latter. Let f, g satisfy (2). Assume for
example that bar(g) = 0, then 0 cannot be separated from the support of
g by a hyperplane, so there exists x1, . . . , xn+1 ∈ Rn such that 0 belongs to
the interior of conv{x1 . . . xn+1} and g(xi) > 0 for i = 1 . . . n+ 1. Then (2)
implies that f(x) ≤ Ce−‖x‖, for some C > 0, where ‖x‖ = max

(
〈x, xi〉 | i ≤

n + 1
)
. Assume also that

∫
f > 0, then f has a barycenter. Apply the

“λ = 1/2” part of Theorem 4 to f . There exists z ∈ Rn such that (7) holds.
On the other hand, by (2)

f(z + x)g(y)e〈y,z〉 ≤ e−〈z+x,y〉e〈y,z〉 = e−〈x,y〉

for all x, y ∈ Rn. Therefore∫
Rn

f(x) dx

∫
Rn

g(y)e〈y,z〉 dy ≤ (2π)n. (8)

Integrating with respect to g(y)dy the inequality 1 ≤ e〈y,z〉 − 〈y, z〉 we get∫
Rn

g(y) dy ≤
∫
Rn

g(y)e〈y,z〉 dy −
∫
Rn

〈y, z〉g(y) dy.

Since bar(g) = 0, the latter integral is 0 and together with (8) we obtain (3).
Observe also that this proof shows that Theorem 4 in dimension n implies
Theorem 2 in dimension n.

In order to prove Theorem 4, we need the following logarithmic form of
the Prékopa-Leindler inequality. For details on Prékopa-Leindler, we refer
to [3].
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Lemma 5. Let φ1, φ2 be non-negative Borel functions on R+. If φ1(s)φ2(t) ≤
e−st for every s, t in R+, then∫

R+

φ1(s) ds

∫
R+

φ2(t) dt ≤
π

2
. (9)

Proof. Let f(s) = φ1(e
s)es, g(t) = φ2(e

t)et and h(r) = exp(−e2r/2)er.
For all s, t ∈ R we have

√
f(s)g(t) ≤ h( t+s2 ), hence by Prékopa-Leindler∫

R f
∫
R g ≤

(∫
R h
)2

. By change of variable, this is the same as
∫
R+
φ1
∫
R+
φ2 ≤(∫

R+
e−u

2/2 du
)2

which is the result.

3 Proof of Theorem 4

Clearly we can assume that
∫
f = 1. Let µ be the measure with density f .

In the sequel we let fz(x) = f(z + x) for all x, z.
We prove the theorem by induction on the dimension. Let f be a non-

negative Borel function on the line, let r ∈ R and λ = µ
(
[r,∞)

)
∈ [0, 1].

Let g satisfy f(r + s)g(t) ≤ e−st, for all s, t. Apply Lemma 5 twice: first to
φ1(s) = f(r+s) and φ2(t) = g(t) then to φ1(s) = f(r−s) and φ2(t) = g(−t).
Then ∫

R+

fr

∫
R+

g ≤ π

2
and

∫
R−

fr

∫
R−

g ≤ π

2
.

Therefore
∫
R+
g ≤ π

2λ and
∫
R− g ≤

π
2(1−λ) , which yields the result in dimen-

sion 1.
Assume the theorem to be true in dimension n− 1. Let H be an affine hy-
perplane splitting Rn into two half-spaces H+ and H− and let λ = µ(H+).
Provided that λ 6= 0, 1 we can define b+ and b− to be the barycenters of
µ|H+

and µ|H− , respectively. Since µ(H) = 0, the point b+ belongs to the
interior of H+, and similarly for b−. Hence the line passing through b+ and
b− intersects H at one point, which we call z. Let us prove that z satisfies
(6), for all g. Clearly, replacing f by fz and H by H − z, we can assume
that z = 0. Let g satisfy

∀x, y ∈ Rn, f(x)g(y) ≤ e−〈x,y〉. (10)

Let e1, . . . , en be an orthonormal basis of Rn such thatH = e⊥n and 〈b+, en〉 >
0. Let v = b+/〈b+, en〉 and A be the linear operator on Rn that maps en to
v and ei to itself for i = 1 . . . n− 1 and let B = (A−1)t. Define

F+ : y ∈ H 7→
∫
R+

f(y+sv) ds and G+ : y′ ∈ H 7→
∫
R+

g(By′+ten) dt.
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By Fubini, and since A has determinant 1,
∫
H F+ =

∫
H+

f ◦A = µ(H+) = λ.
Also, letting P be the projection with range H and kernel Rv, we have

bar(F+) =
1

λ

∫
H+

P (Ax)f(Ax) dx =
1

λ
P
(∫

H+

xf(x) dx
)

= P (b+),

and this is 0 by definition of P . Since 〈Ax,Bx′〉 = 〈x, x′〉 for all x, x′ ∈ Rn,
we have 〈y + sv,By′ + ten〉 = 〈y, y′〉 + st for all s, t ∈ R and y, y′ ∈ H. So
(10) implies

f(y + sv)g(By′ + ten) ≤ e−st−〈y,y
′〉.

Applying Lemma 5 to φ1(s) = f(y + sv) and φ2(t) = g(By′ + ten) we get
F+(y)G+(y′) ≤ π

2 e−〈y,y
′〉 for every y, y′ ∈ H. Recall that bar(F+) = 0, then

by the induction assumption (which implies Theorem 2 in dimension n− 1)∫
H
F+

∫
H
G+ ≤

π

2
(2π)n−1. (11)

hence
∫
H+

g(Bx) dx ≤ 1
4λ(2π)n. In the same way

∫
H−

g(Bx) dx ≤ 1
4(1−λ)(2π)n,

adding these two inequalities, we obtain∫
Rn

g(Bx) dx ≤ 1

4λ(1− λ)
(2π)n

which is the result since B has determinant 1.
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