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Atom-Light Elementary Excitations in a Periodic Ensemble of Ultracold Atoms

Mauro Antezza and Yvan Castin
Laboratoire Kastler Brossel, École Normale Supérieure, CNRS and UPMC, Paris, France

(Dated: March 4, 2009)

We derive the excitation spectrum for light coupled to atoms in an optical lattice, close to a
0 → 1 atomic transition, for the branches that are mainly of atomic nature. We explicitly include
the quantum atomic motion, which leads to remarkable features such as a finite lifetime of the
elementary excitations and their energy dependence with the lattice depth, that will show up in
a real experiment as we discuss. It also makes the theory naturally divergence-free and resolves a
controversy for the occurrence of a spectral gap.

PACS numbers: 42.50.Ct, 67.85.-d, 71.36.+c

Light propagation in 3D periodic structures is cur-
rently the subject of intense studies in various domains of
physics, e.g. in photonic crystals where possible opening
of a spectral gap is crucial for applications [1]. Since the
observation of a Mott phase with atoms in an optical lat-
tice [2], this problem can now be addressed experimen-
tally also with atomic gases [3, 4]. Light propagation
in such systems however widely differs from the one in
photonic crystals, since atoms act as resonant point-like
scatterers with a very high quality factor, rather than as
a macroscopically modulated refractive index.

If one includes the vectorial nature of light, this raises
non-trivial questions such as the existence of a spectral
gap, first investigated in [5, 6]. These works consider
point-like atomic dipoles rigidly fixed at periodic posi-
tions and reach opposite conclusions for the presence of
a gap. In particular, [6] points out the necessity of cor-
rectly handling the high frequency divergences appearing
for an infinite size system, but still relies on a heuristic
regularizing procedure, subtracting an atomic self-energy
term which surprisingly depends on the presence of the
lattice. None of the works includes the quantum motion
of the atoms around their periodic equilibrium positions,
which is unavoidable in experiments. Here we provide a
well defined answer to all these issues by including this
quantum motion, as already done for γ ray nuclear scat-
tering in a crystal [7]. First, we show that this eliminates
all needs for regularizing recipes and directly provides a
divergence-free theory allowing to decide between [5] and
[6]. Second, we predict remarkable features, such as the
existence of an imaginary part in the atom-light excita-
tion spectrum, and the dependence of the spectrum on
the confinement strength of the atoms in the lattice. Fi-
nally, we suggest how to prepare and probe the system
in a real experiment.

Model: We consider N atoms with a dipolar coupling to
the electromagnetic field, on an electronic transition be-
tween the ground state g of spin Jg = 0 and an excited
state e of spin Je = 1. The atoms are trapped at the
nodes of an optical lattice with nowhere more than one
atom per site [2]. In the deep-lattice limit, tunneling of
atoms among sites is negligible, and the ith atom is as-

sumed to be harmonically trapped around lattice site Ri,
with the potential Ui(r̂i) = mω2

ho(r̂i − Ri)
2/2. Here m

is the atomic mass, r̂i is the position operator of atom i,
and ωho is the atomic oscillation frequency. The Hamil-
tonian [8] may be split in the non-interacting term H0

and the atom-field coupling V , H = H0 + V, with

H0 =

N
∑

i=1

[

p̂2
i

2m
+ Ui(r̂i) +

∑

α

~ω0|i : eα〉〈i : eα|
]

+

∫

D

d3k
∑

ǫ⊥k

~ck â†kǫ
âkǫ. (1)

Here ω0 is the bare atomic resonance frequency, the sum
∑

α over the three directions of space x, y, z accounts for
the three-fold degeneracy of e, D is the three-dimensional
Fourier space truncated by a cut-off k < kM , and the
annihilation and creation operators obey usual bosonic
commutation relations such as [âkǫ, â

†
k′

ǫ
′ ] = δǫ,ǫ′δ(k−k′),

where ǫ and k are the photon polarization and wavevec-
tor. The dipolar coupling operator is [9]

V = −
N

∑

i=1

D̂i · Ê⊥(r̂i) (2)

where D̂i,α = d|i : eα〉〈i : g|+h.c. is the component along

direction α of the dipole operator D̂i of the ith atom,
proportional to the atomic dipole moment d, Ê⊥(r) =
∫

D
d3k

∑

ǫ⊥k

[

Ekǫ âkǫ e
ik·r + h.c.

]

is the transverse elec-

tric field operator, and Ek = i(2π)−3/2[~kc/(2ε0)]
1/2.

Method: We treat the coupling V to second order of per-
turbation theory, to calculate atom-field elementary exci-
tations mainly of atomic nature. In practice for a lattice
spacing ∼ 1/k0, where k0 = ω0/c is the resonant wavevec-
tor, this requires Γ ≪ ωho, where Γ = d2k3

0/(3πε0~) is
the free space atomic spontaneous emission rate. The
energies of the system up to second order in V are eigen-
values of the effective Hamiltonian

Heff = PHP + PV Q
Q

E(0)Q−QH0Q
QV P, (3)

where E(0) is an eigenenergy of H0, P projects orthog-
onally onto the corresponding eigenspace of H0, and
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Q = I − P . We now obtain the excitation energies of
the system as the difference between excited states ener-
gies and the ground state energy.

For the perturbative calculation of the ground state
energy Eg, we take for P the projector over the state
with all the atoms in the electronic and motional ground

states, and the field in vacuum, so that E
(0)
g = N 3

2~ωho.
We obtain Eg = Nǫg, with [10]

ǫg =
3

2
~ωho −

d2

ε0

∫

D

d3k

(2π)3
~ck

~ω0 + ~ck
. (4)

For the excited state energies, we take for P the projector
Pe over all the states ||i : eα〉, where ||i : eα〉 represents
the atom i in the electronic state eα, the N − 1 other
atoms in the ground electronic state, all the atoms in the
motional ground state, and the field in vacuum. Then
P projects over a subspace of dimension 3N . Since this
excited subspace is coupled by V to the continuous part

of the spectrum of H0, one has to replace E(0) by E
(0)
e +

i0+ in (3), with E
(0)
e = E

(0)
g + ~ω0, which gives rise to a

complex excited state energy Ee, eigenvalue of

He
eff = [(N − 1)ǫg + ǫe]Pe

+
∑

i6=j

∑

α,β

ḡαβ(Ri − Rj)||i : eα〉〈j : eβ||. (5)

Here ǫe is the complex energy of a single atom [10]

ǫe = ~ω0 +
3

2
~ωho +

d2

3ε0

∫

D

d3k

(2π)3
~ck

~ω0 + i0+ − ~ck
. (6)

To obtain the excitation energies of the system we sub-
tract the ground state energy Eg from (5). In this sub-
traction, the dangerous terms proportional to the num-
ber of atoms N disappear and the interatomic distance
independent term gives the excitation energy for a single
atom, that we split in a real part and an imaginary part:

ǫe − ǫg ≡ ~ωA − i
~Γ

2
. (7)

As expected, Γ is the free space spontaneous emission
rate, and the effective atomic resonance frequency ωA

deviates from ω0 by Lamb shift type terms.
Most interesting are the position dependent terms

in (5), which contain the effective coupling amplitude
ḡαβ(r) for the transfer of the atomic excitation in be-
tween two different sites separated by r. This cou-
pling amplitude appears as the inverse Fourier transform
ḡαβ(r) =

∫

D
[d3k/(2π)3]eik·r ˇ̄gαβ(k) of the function

ˇ̄gαβ(k) =
3π~Γ

k3
0

k2δαβ − kαkβ

k2
0 − k2 + i0+

e−k2a2

ho . (8)

The effect of the quantum motion on the intersite cou-
pling here enters through the size of the harmonic oscil-
lator ground state aho = [~/(2mωho)]

1/2.

The integral defining ḡαβ(r) is cut at large k by the
Gaussian factor of momentum width 1/aho ≪ kM . Hence
we can evaluate the coupling amplitude ḡαβ(Ri −Rj) by
extending the integral over k to the whole space. In
this limit, the coupling amplitude is the average over the
harmonic oscillator ground state probability distributions
of ri and rj of the function gαβ(ri − rj), where [9]

gαβ(r) = −3~Γ

4k3
0

[

k2
0δαβ + ∂rα

∂rβ

] eik0r

r
(9)

is proportional to the component along α of the classical
electric field radiated by a point-like dipole of frequency
ω0 oriented along direction β [8]. A crucial consequence
of the average is that, whereas gαβ(r) has the electro-
static 1/r3 divergence at the origin, the function ḡαβ(r)
is regular even in r = 0, with a value

ḡαβ(0) =
~Γ

2
δαβ

[

Erfi (k0aho) − i

e(k0aho)2
− 1 + 2(k0aho)

2

2π1/2(k0aho)3

]

(10)
where Erfi (x) = 2π−1/2

∫ x

0 dy exp(y2) is the imaginary
error function. For large r, the average over the atomic
motion does not suppress the long range nature of the
radiated dipolar field ∝ exp(ik0r)/r. From (17) one has
indeed ḡαβ(r) ≃ gαβ(r) exp(−k2

0a
2
ho) as soon as r ≫ aho.

Periodic case: We now take the limit N → +∞ with one
atom per lattice site, realizing for the light field a periodic
potential, here an arbitrary Bravais lattice. To diagonal-
ize He

eff we rely on Bloch theorem: The eigenvectors |ψq〉
depend on the lattice site position Ri as

〈i : eα||ψq〉 = dαe
iq·Ri , (11)

where the Bloch vector q is chosen in the first Brillouin
zone of the lattice. I.e. the “dipole” carried by atom i
differs from the one d carried by the atom in R = 0

by a global phase factor. Thus the infinite dimension
eigenvalue problem on the excitation spectrum εq,

[He
eff − EgPe]|ψq〉 = εq|ψq〉, (12)

reduces to the diagonalization of the 3 × 3 matrix M ,
Md = εqd, with matrix elements

Mαβ =

(

~ωA − i
~Γ

2

)

δαβ +
∑

R∈L∗

ḡαβ(R)eiq·R, (13)

where the sum runs over the lattice L excluding the ori-
gin. By adding and subtracting ḡαβ(0) and using Pois-
son’s summation formula we convert this sum into a sum
over the reciprocal lattice RL:

Mαβ =

(

~ωA − i
~Γ

2

)

δαβ−ḡαβ(0)+
1

VL

∑

K∈RL

ˇ̄gαβ(K−q)

(14)
where VL is the primitive unit cell volume of the lattice.



3

Since the imaginary part of the symmetric matrix M
is scalar, see (14), the imaginary part of the excitation
spectrum can be calculated explicitly:

Im εq = −~Γ

2

(

1 − e−k2

0
a2

ho

)

. (15)

Such a non-zero value seems to contradict the classical
result of [11], also obtained in [5, 6], that light has a real
spectrum in a periodic atomic structure. This is due to
the lack of the atomic motion in [5, 6], that, if included,
adds new degrees of freedom similar to the phonons in
a crystal. These phonons, invoked as a possible source
of dissipation in [11], lead to a residual linewidth in the
γ ray nuclear scattering in a crystal where an expression
analogous to Eq.(15) was derived [7].

The non-zero imaginary part of εq is indeed due to
the decay of the system out of the subspace where all
the atoms are in their motional ground state. When
an excited atom eα in its motional ground state |0〉ho

spontaneously emits a photon of polarization ǫ and mo-
mentum k0n, |n| = 1, its probability density to fall in
g with an excited motional state is [12] (3Γ/2)|ǫα|2[1 −
|ho〈0| exp(−ik0n · r̂)|0〉ho|2], which after sum over ǫ ⊥ n

and average over the direction n, exactly gives the de-
cay rate −2Im εq/~. This process conserves the quasi-
momentum q. If the emitted photon carries away the
quasi-momentum qph, the resulting g atom in the mo-
tional excited state is coherently delocalized over the
whole lattice, with a probability amplitude ∝ eiqat·R of
being in site R, and a quasi-momentum qat = q − qph.
Since qph belongs to a continuum, this spontaneous emis-
sion process opens up a continuum of final states, hence
the possibility to have for a fixed q a continuous spec-
trum for H and a complex εq. Experimentally, to obtain
long lived elementary excitations, one may operate in the
so-called Lamb-Dicke regime, k0aho ≪ 1, where the loss
rate −2Im εq/~ ≃ Γ(k0aho)

2 is much smaller than Γ.
We now turn to the real part of the excitation spec-

trum. In (14) we replace ḡαβ(0) and ˇ̄gαβ by their explicit
expressions (10) and (8). Then Re εq − ~ωA is an eigen-
value of the 3 × 3 real symmetric matrix

δMαβ =
~Γ

2
δαβ

[

1 + 2(k0aho)
2

2π1/2(k0aho)3
− Erfi (k0aho) e

−k2

0
a2

ho

]

+
3π~Γ

k3
0VL

∑

K∈RL

δαβK
′2 −K ′

αK
′
β

k2
0 −K ′2

e−K′2a2

ho (16)

where K′ ≡ K − q. Clearly, divergences appear in the
spectrum when q is at a distance k0 from a vector K

of the reciprocal lattice. E.g. if q approaches k0n where
|n| = 1, a divergent contribution appears in δMαβ , pro-
portional to the projector δαβ−nαnβ on the plane orthog-
onal to n. Since this projector is of rank two, generically
two eigenvalues of δM diverge, to +∞ for q < k0 and
to −∞ for q > k0, the third eigenvalue remaining finite.

Γ X M R Γ

-2

-1

0

1

2

R
e 

ε q- / hω
A

  [
/ hΓ

] (a)

(b)
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R
e 

ε q- / hω
A

  [
/ hΓ

]

FIG. 1: Atom-light elementary excitation spectrum in a peri-
odic atomic structure, as a function of the Bloch vector along
the standard irreducible path in the first Brillouin zone. (a)
Simple cubic lattice, with a lattice constant a (VL = a3).
(b) Face-centered cubic lattice, with a lattice constant 2a
(VL = 2a3). Here k0a = 2 and k0aho = 1/

√
30, which leads

to aho/a ≃ 0.09. In both cases the band structure is gapless.

This gives rise to five continuous energy bands, as ex-
pected from the coupling of the three atomic states |eα〉
to the two polarizations of light. The present order of
perturbation theory is actually meaningful in the inter-
val |Re εq − ~ωA| ≪ ~ωho. In non-perturbative theories
(for fixed atomic positions) [5, 6], the vertical asymptotes
are replaced by the oblique ones of the free light disper-
sion relation εq = ~cq. The slope ~c is in practice infinite
as compared to the typical slope ~Γa that one obtains for
|εq − ~ωA| ∼ ~Γ and for 1/k0 ∼ the lattice period a.
Band structures: We illustrate (16) by calculating the
band structure in the two lattice geometries of [5, 6]: In
Fig.1 we show Re εq − ~ωA as a function of the Bloch
vector along the standard irreducible path in the first
Brillouin zone, for the simple cubic (Fig.1a) and for the
face-centered cubic (fcc) (Fig.1b) lattices [13]. The figure
reveals the lack of an omnidirectional gap. In the simple
cubic case, for k0a < π

√
3, this may be understood by

considering the segment between the center Γ and the
corner R of the first Brillouin zone: The cubic symmetry
leads to a three-fold degeneracy of εq in R and in Γ; the
band which continuously crosses the sphere of radius k0

thus closes the energy gap between the (here twofold de-
generate) diverging bands. In the fcc case, an important
element for the absence of a gap is the crossing of two en-
ergy bands at the W point. This crossing is related to the
existence of a dimension two irreducible representation of
the W point symmetry group [14]. This essential degen-
eracy is also present in Fig.2 of [6]. We also explored the
bcc and several generic less symmetric Bravais lattices
without finding an omnidirectional gap.
Dependence with aho: We now determine the dependence
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of the real part of the spectrum with the size of the har-
monic oscillator ground state, starting from (13). The

idea is to multiply ḡαβ(R) by ek2

0
a2

ho and then to take the
derivative with respect to a2

ho. In the Fourier represen-
tation (8), this pulls out a factor k2

0 − k2 which exactly
cancels the denominator. The resulting Fourier integral is
now essentially Gaussian and can be directly calculated:

uαβ(r) ≡ ∂a2

ho

[

ek2

0
a2

ho ḡαβ(r)
]

=
3~Γ ek2

0
a2

ho

8π1/2(k0aho)3

×
(

−δαβ∆r + ∂rα
∂rβ

)

e−r2/(4a2

ho
). (17)

From (13) one then obtains a sum excluding the origin:

∂a2

ho

[

ek2

0
a2

ho δMαβ

]

=
∑

R∈L∗

uαβ(R) eiq·R. (18)

It is apparent that each term of the sum is exponentially
small since, in the deep lattice limit, the harmonic length
aho is much smaller than the lattice spacing. Keeping
these terms is actually beyond accuracy of our Hamil-
tonian (see [9]). We can thus set the right-hand side of

(18) to zero, which leads to δMαβ = e−k2

0
a2

ho δM0
αβ, where

δM0
αβ is independent of aho and is simply the limit of

δMαβ when aho → 0. This shows that the real part of
the excitation spectrum is a Gaussian function of aho:

Re εq − ~ωA = e−k2

0
a2

ho

(

ε0q − ~ωA

)

, (19)

where ε0q is the limit of the excitation energy for aho →
0. Eq.(19) allows an extremely efficient evaluation of ε0q
which, when applied to the self-consistent Eq.(6) of [5],
allowed us to reproduce the numerical results of [6] and
hence to disprove the ones of [5]. Eq.(19) shows that
changing aho amounts to a mere rescaling of the vertical
axis of Fig.1 and cannot open or close an energy gap. The
situation may be different for anisotropic microtraps.
Experimental issues: The perturbative regime Γ ≪ ωho

may be reached with alkaline-earth atoms: e.g. 88Sr was
recently trapped in a deep 3D lattice, with aho ∼ 0.05a ∼
20nm [4], and it has a narrow line 5s2 1S0 → 5s5p 3P1

realizing the needed Jg = 0 → Je = 1 transition, with
Γ ∼ 0.05ωho. To produce and spectroscopically probe
elementary excitations with q 6= k0, one cannot use the
direct g → e coupling with resonant light, but one can
use an indirect Raman coupling [15].

In Wigner ion crystals [16], e and g experience the same
Coulomb shift. On the contrary, for neutral atoms, the
lattice potential is a lightshift, that may deviate from
one of the two assumptions of (1), (i) e experiences a
scalar lightshift, and (ii) the lightshifts of e and g are
equal. For a lattice obtained by incoherent superposition
of laser standing waves along x, y, z linearly polarized
along y, z and x respectively, violation of (i) breaks the
harmonic oscillator isotropy: the sublevel ex (resp. ey, ez)
has an oscillator length ηeaho along z (resp. x, y) differ-
ent from the one aho along the other two directions. This

does not break the three-fold degeneracy of the motional
ground state in e but it reduces the overlap between the
motional ground state of eα and that of g. Hence after
spontaneous emission, even if one neglects the atom re-
coil (k0aho → 0), the atom in g can populate an excited
motional state, giving a non-zero decay rate to the ele-
mentary excitations. Similarly, violation of condition (ii)
leads to an oscillator length in g equal to ηgaho, ηg 6= 1,
which also increases the decay rate. For k0aho → 0, com-
bining both violations gives

Im εq = −~Γ

2

(

1 − 8

[ηeηg + (ηeηg)−1](ηg + η−1
g )2

)

.

(20)
E.g. if one has achieved ηe ≃ 1 at the expense of having
an optical lattice depth in g twice as small/large as in e,
one still finds a small decay rate ≃ 0.04Γ.

In conclusion, the quantum nature of the atomic mo-
tion leads to several key features for light propagation in
a periodic atomic ensemble: the excitation spectrum has
a non-zero imaginary part and its real part significantly
depends on the harmonic oscillator length aho, as may
be observed with alkaline-earth atoms such as strontium.
It also naturally provides a divergence-free theory in the
limit aho → 0, which confirms the results of [6] against
the ones of [5] for fixed atomic positions.
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