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Spectrum of Light in a Quantum Fluctuating Periodic Structure

Mauro Antezza and Yvan Castin
Laboratoire Kastler Brossel, École Normale Supérieure, CNRS and UPMC, Paris, France

(Dated: September 16, 2009)

We address the general problem of the excitation spectrum for light coupled to scatterers having
quantum fluctuating positions around the sites of a periodic lattice. In addition to providing an
imaginary part to the spectrum, we show that these quantum fluctuations affect the real part of the
spectrum, in a way that we determine analytically. Our predictions may be observed with ultracold
atoms in an optical lattice, on a J = 0 → J ′ = 1 narrow atomic transition. As a side result, we
resolve a controversy for the occurrence of a spectral gap in a fcc lattice.

PACS numbers: 42.50.Ct, 67.85.-d, 71.36.+c

The investigation of light propagation in a periodic
structure is a fundamental problem in condensed mat-
ter physics [1, 2], ranging from the physics of photonic
crystals [3] to X ray [4] or even γ ray [5, 6] scatter-
ing by a crystal. It recently gained a renewed interest
[7, 8, 9, 10, 11, 12] thanks to the possibility of produc-
ing artificial periodic structures of quantum dots [9] or of
atoms [13], which have a much larger spatial period than
natural crystals, allowing a measurement with a laser of
the excitation spectrum over the whole Brillouin zone.

In reality, strictly periodic structures do not exist: the
quantum (if not thermal) fluctuations of the positions
of the scatterers in the structure are unavoidable. From
general grounds, we know that these fluctuations affect
the spectrum of light in two ways. First, they introduce
a dissipative component: the elementary excitation spec-
trum acquires an imaginary part, a well known effect of
phonon coupling in condensed matter physics. Second,
they introduce a reactive component, modifying the real
part of the excitation spectrum. Whereas the fluctua-
tions of the scatterers positions have indeed been taken
into account in simplified models [12], the only explicit
prediction for the corresponding modification to the ex-
citation spectrum was given in [5].

The problem however is not closed yet: in the limit
of vanishing position fluctuations, Eq.(4.9) of [5] for the
real part of the spectrum does not reduce to the predic-
tion given in [9] for fixed scatterers, a prediction that also
does not coincide with the one of [7]. This problem is not
only formal, it may soon be addressed in current exper-
iments with narrow line cold atoms trapped in optical
lattices [14], where measurements of the spectrum with
a good precision may be performed. Here we provide a
conclusive analytical answer to this problem.

Model: Although our method to come is general, we as-
sume for concreteness that the scatterers are atoms cou-
pled to the electromagnetic field on an electronic tran-
sition between the ground state g of spin 0 and an ex-
cited state e of spin 1. The atoms are trapped at the
nodes of an optical lattice, with nowhere more than one
atom per site [13]. In the deep-lattice limit, tunneling
is negligible and the ith atom is assumed to be harmon-

ically trapped around lattice site Ri, with the potential
Ui(r̂i) = mω2

ho(r̂i−Ri)
2/2. Here m is the atomic mass, r̂i

is the position operator of atom i, and ωho is the atomic
oscillation frequency. In this regime, the fluctuations of
the atomic positions are purely on-site and uncorrelated,
contrarily to the case of phonons in a crystal [5]. The
Hamiltonian of our system [15] may be split in the non-
interacting term H0 and the atom-field dipolar coupling
V , H = H0 + V, with

H0 =

N
∑

i=1

[

p̂2
i

2m
+ Ui(r̂i) +

∑

α

~ω0|i : eα〉〈i : eα|

]

+

∫

D

d3k
∑

ǫ⊥k

~ck â†kǫ
âkǫ. (1)

Here N is the number of atoms, ω0 is the bare atomic res-
onance frequency, the sum

∑

α over the three directions
of space x, y, z accounts for the three-fold degeneracy of
e, D is the three-dimensional Fourier space truncated by
a cut-off k < kM , and the annihilation and creation oper-
ators obey usual bosonic commutation relations such as
[âkǫ, â

†
k′

ǫ
′ ] = δǫ,ǫ′δ(k−k′), where ǫ and k are the photon

polarization and wavevector. The coupling V is [16]

V = −

N
∑

i=1

D̂i · Ê⊥(r̂i) (2)

where D̂i,α = d|i : eα〉〈i : g|+h.c. is the component along

direction α of the dipole operator D̂i of the ith atom,
proportional to the atomic dipole moment d, Ê⊥(r) =
∫

D
d3k

∑

ǫ⊥k

[

Ekǫ âkǫ e
ik·r + h.c.

]

is the transverse elec-

tric field operator, and Ek = i(2π)−3/2[~kc/(2ε0)]
1/2.

Method: We treat the coupling V to second order of per-
turbation theory, to calculate atom-field elementary exci-
tations mainly of atomic nature. In practice for a lattice
spacing ∼ 1/k0, where k0 = ω0/c is the resonant wavevec-
tor, this requires Γ ≪ ωho, where Γ = d2k3

0/(3πε0~) is
the free space atomic spontaneous emission rate. The
energies of the system up to second order in V are eigen-
values of the effective Hamiltonian

Heff = PHP + PV Q
Q

E(0)Q−QH0Q
QV P, (3)
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where E(0) is an eigenenergy of H0, P projects orthog-
onally onto the corresponding eigenspace of H0, and
Q = I − P . We now obtain the excitation energies of
the system as the difference between excited states ener-
gies and the ground state energy.

For the perturbative calculation of the ground state
energy Eg, we take for P the projector over the state
with all the atoms in the electronic and motional ground

states, and the field in vacuum, so that E
(0)
g = N 3

2~ωho.
We obtain Eg = Nǫg, with [17]

ǫg =
3

2
~ωho −

d2

ε0

∫

D

d3k

(2π)3
~ck

~ω0 + ~ck
. (4)

For the excited state energies, we take for P the projector
Pe over all the states ||i : eα〉, where ||i : eα〉 represents
the atom i in the electronic state eα, the N − 1 other
atoms in the ground electronic state, all the atoms in the
motional ground state, and the field in vacuum. Then
P projects over a subspace of dimension 3N . Since this
excited subspace is coupled by V to the continuous part

of the spectrum of H0, one has to replace E(0) by E
(0)
e +

i0+ in (3), with E
(0)
e = E

(0)
g + ~ω0, which gives rise to a

complex excited state energy Ee, eigenvalue of

He
eff = [(N − 1)ǫg + ǫe]Pe

+
∑

i6=j

∑

α,β

ḡαβ(Ri − Rj)||i : eα〉〈j : eβ||. (5)

Here ǫe is the complex energy of a single atom [17]

ǫe = ~ω0 +
3

2
~ωho +

d2

3ε0

∫

D

d3k

(2π)3
~ck

~ω0 + i0+ − ~ck
. (6)

To obtain the excitation energies of the system we sub-
tract the ground state energy Eg from (5). In this sub-
traction, the dangerous terms proportional to the num-
ber of atoms N disappear and the interatomic distance
independent term gives the excitation energy for a single
atom, that we split in a real part and an imaginary part:

ǫe − ǫg ≡ ~ωA − i
~Γ

2
. (7)

As expected, Γ is the free space spontaneous emission
rate, and the effective atomic resonance frequency ωA

deviates from ω0 by Lamb shift type terms.
Most interesting are the position dependent terms

in (5), which contain the effective coupling amplitude
ḡαβ(r) for the transfer of the atomic excitation in be-
tween two different sites separated by r. This cou-
pling amplitude appears as the inverse Fourier transform
ḡαβ(r) =

∫

D
[d3k/(2π)3]eik·r ˇ̄gαβ(k) of the function

ˇ̄gαβ(k) =
3π~Γ

k3
0

k2δαβ − kαkβ

k2
0 − k2 + i0+

e−k2a2

ho . (8)

The effect of the quantum fluctuations of the atomic
positions on the intersite coupling here enters through

the size of the harmonic oscillator ground state aho =
[~/(2mωho)]

1/2.
The integral defining ḡαβ(r) is cut at large k by the

Gaussian factor of momentum width 1/aho ≪ kM . Hence
we can evaluate the coupling amplitude ḡαβ(Ri −Rj) by
extending the integral over k to the whole space. In
this limit the coupling amplitude is the average, over the
harmonic oscillator ground state probability distributions
of ri and rj , of the function gαβ(ri − rj), where [16]

gαβ(r) = −
3~Γ

4k3
0

[

k2
0δαβ + ∂rα

∂rβ

] eik0r

r
(9)

is proportional to the component along α of the classical
electric field radiated by a point-like dipole of frequency
ω0 oriented along direction β [15]. A crucial consequence
of the average is that, whereas gαβ(r) has the electro-
static 1/r3 divergence at the origin, the function ḡαβ(r)
is regular even in r = 0, with a value

ḡαβ(0) =
~Γ

2
δαβ

[

Erfi (k0aho) − i

e(k0aho)2
−

1 + 2(k0aho)
2

2π1/2(k0aho)3

]

(10)
where Erfi (x) = 2π−1/2

∫ x

0
dy exp(y2) is the imaginary

error function. For large r, the average over the atomic
motion does not suppress the long range nature of the
radiated dipolar field ∝ exp(ik0r)/r. From (17) one has
indeed ḡαβ(r) ≃ gαβ(r) exp(−k2

0a
2
ho) remarkably as soon

as r ≫ aho.
Periodic case: We now take the limit N → +∞ with one
atom per lattice site, realizing for the light field a periodic
potential, here an arbitrary Bravais lattice. To diagonal-
ize He

eff we rely on Bloch theorem: The eigenvectors |ψq〉
depend on the lattice site position Ri as

〈i : eα||ψq〉 = d̄αe
iq·Ri , (11)

where the Bloch vector q is chosen in the first Brillouin
zone of the lattice. I.e. the “dipole” carried by atom i
differs from the one d̄ carried by the atom in R = 0

by a global phase factor. Thus the infinite dimension
eigenvalue problem on the excitation spectrum εq,

[He
eff − EgPe]|ψq〉 = εq|ψq〉, (12)

reduces to the diagonalization of the 3 × 3 matrix M ,
M d̄ = εqd̄, with matrix elements

Mαβ =

(

~ωA − i
~Γ

2

)

δαβ +
∑

R∈L∗

ḡαβ(R)eiq·R, (13)

where the sum runs over the lattice L excluding the ori-
gin. By adding and subtracting ḡαβ(0) and using Pois-
son’s summation formula we convert this sum into a sum
over the reciprocal lattice RL:

Mαβ =

(

~ωA − i
~Γ

2

)

δαβ−ḡαβ(0)+
1

VL

∑

K∈RL

ˇ̄gαβ(K−q)

(14)
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where VL is the primitive unit cell volume of the lattice.
Imaginary part: Since each term of the sum over K in
(14) is real, the imaginary part of the excitation spectrum
can be calculated explicitly:

Im εq = −
~Γ

2

(

1 − e−k2

0
a2

ho

)

. (15)

As already mentioned, this non-zero value is a direct con-
sequence of the fluctuating scatterers positions. This is
why an expression analogous, but not equal to (15) was
derived in [5] in the different context of γ ray nuclear
scattering in a crystal.

The non-zero imaginary part of εq is indeed due to
the decay of the system out of the subspace where all
the atoms are in their motional ground state. When
an excited atom eα in its motional ground state |0〉ho

spontaneously emits a photon of polarization ǫ and mo-
mentum k0n, |n| = 1, its probability density to fall in
g with an excited motional state is [18] (3Γ/2)|ǫα|

2[1 −
|ho〈0| exp(−ik0n · r̂)|0〉ho|

2], which after sum over ǫ ⊥ n

and average over the direction n, exactly gives the de-
cay rate −2Im εq/~. This process conserves the quasi-
momentum q. If the emitted photon carries away the
quasi-momentum qph, the resulting g atom in the mo-
tional excited state is coherently delocalized over the
whole lattice, with a probability amplitude ∝ eiqat·R of
being in site R, and a quasi-momentum qat = q − qph.
Since qph belongs to a continuum, this spontaneous emis-
sion process opens up a continuum of final states, hence
the possibility to have for a fixed q a continuous spec-
trum for H and a complex εq. Experimentally, to obtain
long lived elementary excitations, one may operate in the
so-called Lamb-Dicke regime, k0aho ≪ 1, where the loss
rate −2Im εq/~ ≃ Γ(k0aho)

2 is much smaller than Γ.
Real part: In (14) we replace ḡαβ(0) and ˇ̄gαβ by their
explicit expressions (10) and (8). Then Re εq−~ωA is an
eigenvalue of the 3 × 3 real symmetric matrix

δMαβ =
~Γ

2
δαβ

[

1 + 2(k0aho)
2

2π1/2(k0aho)3
− Erfi (k0aho) e

−k2

0
a2

ho

]

+
3π~Γ

k3
0VL

∑

K∈RL

δαβK
′2 −K ′

αK
′
β

k2
0 −K ′2

e−K′2a2

ho (16)

where K′ ≡ K − q [19]. Eq.(16) is useful for a numeri-
cal calculation of the spectrum, see Fig.1. Remarkably,
one can even derive analytically the dependence of the
spectrum with aho from (13): one multiplies ḡαβ(R) by

ek2

0
a2

ho and one takes the derivative with respect to a2
ho.

In the Fourier representation (8), this pulls out a factor
k2
0 − k2 which exactly cancels the denominator. The re-

sulting Fourier integral is now essentially Gaussian and
can be directly calculated:

uαβ(r) ≡ ∂a2

ho

[

ek2

0
a2

ho ḡαβ(r)
]

=
3~Γ ek2

0
a2

ho

8π1/2(k0aho)3

×
(

−δαβ∆r + ∂rα
∂rβ

)

e−r2/(4a2

ho
). (17)
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FIG. 1: Spectrum of light in a quantum fluctuating periodic
atomic structure. (a) For a simple cubic lattice, with a lattice
constant a (VL = a3), comparison of the analytical prediction
(19) (solid lines) with the numerical solution of (16) (sym-
bols), for two values of k0a and of the Bloch vector (×: point
R and ◦: point Γ of the first Brillouin zone). (b) and (c):
Real part of the spectrum as a function of the Bloch vector
along the standard irreducible path in the first Brillouin zone,
for (b) a simple cubic lattice, and for (c) a face-centered cubic
lattice with a lattice constant 2a (VL = 2a3); here k0a = 2
and k0aho = 1/

√
30, which leads to aho/a ≃ 0.09. In both

cases the band structure is gapless.

From (13) one then obtains a sum excluding the origin:

∂a2

ho

[

ek2

0
a2

ho δMαβ

]

=
∑

R∈L∗

uαβ(R) eiq·R. (18)

It is apparent that each term of the sum is exponentially
small since, in the deep lattice limit, the harmonic length
aho is much smaller than the lattice spacing. Keeping
these terms is actually beyond accuracy of our Hamil-
tonian (see [16]). One can thus set the right-hand side

of (18) to zero, which leads to δMαβ = e−k2

0
a2

ho δM0
αβ,

where δM0
αβ is independent of aho and is simply the limit

of δMαβ when aho → 0. This shows that the real part of
the excitation spectrum is a Gaussian function of aho:

Re εq − ~ωA = e−k2

0
a2

ho

(

ε0q − ~ωA

)

, (19)

where ε0q is the limit of the excitation energy for aho → 0.
Eq.(19) is the main result of this work, it gives in a very
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explicit way the influence of the fluctuations of the atomic
positions on the real part of the light spectrum. It is in
excellent agreement with the numerics, see Fig.1a.
Band structures: We illustrate (16) by numerically cal-
culating the band structure in the two lattice geometries
of [7, 9]: In Fig.1 we show Re εq − ~ωA as a function of
the Bloch vector along the standard irreducible path in
the first Brillouin zone, for the simple cubic (Fig.1b) and
for the face-centered cubic (fcc) (Fig.1c) lattices. The
figure reveals the lack of an omnidirectional gap, which
confirms the prediction of [9] against the one of [7] for
fixed atomic positions [20]. We also explored the bcc

and several generic less symmetric Bravais lattices with-
out finding an omnidirectional gap. On the contrary,
the non-Bravais atomic diamond lattice may support an
omnidirectional gap [20]. Note that, according to (19),
changing aho amounts to a mere rescaling of the vertical
axis of Fig.1b,c and cannot open or close an energy gap.
The situation may be different for anisotropic microtraps.
Experimental issues: The perturbative regime Γ ≪ ωho

considered here was not usual in atomic lattice experi-
ments. It is now available in experiments using very nar-
row transitions for atomic clock purposes: e.g. 88Sr was
recently trapped in a deep 3D lattice, with aho ∼ 0.05a ∼
20nm [14], and it has a narrow line 5s2 1S0 → 5s5p 3P1

realizing the needed J = 0 → J ′ = 1 transition, with
Γ ∼ 0.05ωho. To produce and spectroscopically probe
elementary excitations with q 6= k0, one cannot use the
direct g → e coupling with resonant light, but one can
use an indirect Raman coupling [21].

We also assumed that g and the three sublevels of e
experience the same trapping potential. This is the case
in Wigner ion crystals [22], where e and g experience the
same Coulomb shift. For neutral atoms, the lattice po-
tential is a lightshift, that may deviate from one of the
two assumptions of (1), (i) e experiences a scalar light-
shift, and (ii) the lightshifts of e and g are equal. For
a lattice obtained by incoherent superposition of laser
standing waves along x, y, z linearly polarized along y,
z and x respectively, violation of (i) breaks the harmonic
oscillator isotropy: the sublevel ex (resp. ey, ez) has an
oscillator length ηeaho along z (resp. x, y) different from
the one aho along the other two directions. This does not
break the three-fold degeneracy of the motional ground
state in e but it reduces the overlap between the mo-
tional ground state of eα and that of g. Hence after
spontaneous emission, even if one neglects the atom re-
coil (k0aho → 0), the atom in g can populate an excited
motional state, giving a non-zero decay rate to the ele-
mentary excitations. Similarly, violation of condition (ii)
leads to an oscillator length in g equal to ηgaho, ηg 6= 1,
which also increases the decay rate. For k0aho → 0, com-
bining both violations gives

Im εq = −
~Γ

2

(

1 −
8

[ηeηg + (ηeηg)−1](ηg + η−1
g )2

)

.

E.g. if one has achieved ηe ≃ 1 at the expense of having

an optical lattice depth in g twice as small/large as in e,
one still finds a small decay rate ≃ 0.04Γ.

Conclusion: Quantum fluctuations of the positions of the
scatterers in a periodic structure very generally give rise
to an imaginary part in the spectrum of light and affect
its real part. For scatterers tightly trapped in a periodic
potential, we derived an expression for this spectrum. We
showed that, amazingly, its dependence on the amplitude
of the fluctuations of the positions is a Gaussian, not only
for the imaginary part [5] but also for the real part. This
effect on the real part can be large and may be observed
in recent atomic lattice clock experiments. An intriguing
perspective is the extension of this work to the disordered
case and to localized states of light.
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