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It is shown that the Veldkamp space of the unique generalized quadrangle GQ(2,4) is isomorphic to PG(5,2). Since the GQ(2,4) features only two kinds of geometric hyperplanes, namely point's perp-sets and GQ(2,2)s, the 63 points of PG(5,2) split into two families; 27 being represented by perp-sets and 36 by GQ(2,2)s. The 651 lines of PG(5,2) are found to fall into four distinct classes: in particular, 45 of them feature only perp-sets, 216 comprise two perp-sets and one GQ(2,2), 270 consist of one perp-set and two GQ(2,2)s and the remaining 120 ones are composed solely of GQ(2,2)s, according as the intersection of two distinct hyperplanes determining the (Veldkamp) line is, respectively, a line, an ovoid, a perp-set and a grid (i. e., GQ(2,1)) of a copy of GQ(2,2). A direct "by-hand" derivation of the above-listed properties is followed by their heuristic justification based on the properties of an elliptic quadric of PG(5,2) and complemented by a proof employing combinatorial properties of a 2-(28, 12, 11)-design and associated Steiner complexes. Surmised relevance of these findings for quantum (information) theory and the so-called black hole analogy is also outlined.

Introduction

GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF], the unique generalized quadrangle of order [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF], has recently been found to play a prominent role in the so-called black-hole-analogy context (see, e. g., [START_REF] Borsten | Black holes, qubits and octonions[END_REF] and references therein), by fully encoding the E 6(6) symmetric entropy formula describing black holes and black strings in D = 5 [START_REF] Lévay | Black hole entropy and finite geometry[END_REF]. Its 27 points are in one-to-one correspondence with the black hole/string charges and its 45 lines with the terms in the entropy formula. Different truncations with 15, 11 and 9 charges correspond, respectively, to its two distinct kinds of hyperplanes, namely GQ(2,2)s and perp-sets, and to its subquadrangles GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Borsten | Black holes, qubits and octonions[END_REF]s. An intricate connection between a Hermitian spread of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] and a (distance-3-)spread of the split Cayley hexagon of order two [START_REF] Govaert | Two characterizations of the Hermitian spread in the split Cayley hexagon[END_REF] leads to a remarkable non-commutative labelling of the points of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] in terms of three-qubit Pauli group matrices [START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF], with profound quantum physical implications [START_REF] Lévay | Black hole entropy and finite geometry[END_REF]. Another noteworthy kind of non-commutative labelling stems from the Payne construction [START_REF] Payne | Nonisomorphic generalized quadrangles[END_REF] of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] as derived geometry at a point of the symplectic generalized quadrangle of order three, W (3), since the latter encodes the commutation properties of two-qutrit Pauli group [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-)qudits[END_REF].

Motivated by these facts, we aim here at getting a deeper insight into the structure of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF], which is well-furnished by exploring the properties of its Veldkamp space. Two of us became familiar with the concept of Veldkamp space of a point-line incidence structure [START_REF] Buekenhout | Diagram Geometry (Chapter 10.2[END_REF][START_REF] Shult | On Veldkamp lines[END_REF] some two years ago. It was the Veldkamp space of the smallest thick generalized quadrangle, isomorphic to PG [START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF], whose structure and properties were immediately recognized to be of relevance to quantum physics, underlying the commutation relations between the elements of two-qubit Pauli group [START_REF] Saniga | The Veldkamp space of two-qubits[END_REF]. Very recently [START_REF] Vrana | The Veldkamp space of multiple qubits[END_REF], this construction was generalized for the pointline incidence geometry of an arbitrary multiple-qubit Pauli group. In light of these physical developments, but also from a purely mathematical point of view, it is well-worth having a detailed look at the Veldkamp space of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF].

2 Generalized Quadrangles, Geometric Hyperplanes and Veldkamp Spaces

We will first highlight the basics of the theory of finite generalized quadrangles [START_REF] Payne | Finite Generalized Quadrangles[END_REF] and then introduce the concept of a geometric hyperplane [START_REF] Ronan | Embeddings and hyperplanes of discrete geometries[END_REF] and that of the Veldkamp space of a point-line incidence geometry [START_REF] Buekenhout | Diagram Geometry (Chapter 10.2[END_REF][START_REF] Shult | On Veldkamp lines[END_REF].

A finite generalized quadrangle of order (s, t), usually denoted GQ(s, t), is an incidence structure S = (P, B, I), where P and B are disjoint (non-empty) sets of objects, called respectively points and lines, and where I is a symmetric point-line incidence relation satisfying the following axioms [START_REF] Payne | Finite Generalized Quadrangles[END_REF]: (i) each point is incident with 1+t lines (t ≥ 1) and two distinct points are incident with at most one line; (ii) each line is incident with 1 + s points (s ≥ 1) and two distinct lines are incident with at most one point; and (iii) if x is a point and L is a line not incident with x, then there exists a unique pair (y, M ) ∈ P × B for which xIM IyIL; from these axioms it readily follows that |P | = (s + 1)(st + 1) and |B| = (t + 1)(st + 1). It is obvious that there exists a point-line duality with respect to which each of the axioms is self-dual. Interchanging points and lines in S thus yields a generalized quadrangle S D of order (t, s), called the dual of S. If s = t, S is said to have order s. The generalized quadrangle of order (s, 1) is called a grid and that of order (1, t) a dual grid. A generalized quadrangle with both s > 1 and t > 1 is called thick.

Given two points x and y of S one writes x ∼ y and says that x and y are collinear if there exists a line L of S incident with both. For any x ∈ P denote x ⊥ = {y ∈ P |y ∼ x} and note that x ∈ x ⊥ ; obviously, x ⊥ = 1 + s + st. Given an arbitrary subset A of P , the perp(-set) of A, A ⊥ , is defined as A ⊥ = {x ⊥ |x ∈ A} and A ⊥⊥ := (A ⊥ ) ⊥ ; in particular, if x and y are two non-collinear points, then {x, y} ⊥⊥ is called a hyperbolic line (through them). A triple of pairwise non-collinear points of S is called a triad; given any triad T , a point of T ⊥ is called its center and we say that T is acentric, centric or unicentric according as |T ⊥ | is, respectively, zero, non-zero or one. An ovoid of a generalized quadrangle S is a set of points of S such that each line of S is incident with exactly one point of the set; hence, each ovoid contains st + 1 points. The dual concept is that of spread; this is a set of lines such that every point of S is on a unique line of the spread.

A geometric hyperplane H of a point-line geometry Γ(P, B) is a proper subset of P such that each line of Γ meets H in one or all points [START_REF] Ronan | Embeddings and hyperplanes of discrete geometries[END_REF]. For Γ = GQ(s, t), it is well known that H is one of the following three kinds: (i) the perp-set of a point x, x ⊥ ; (ii) a (full) subquadrangle of order (s, t ′ ), t ′ < t; and (iii) an ovoid. Finally, we shall introduce the notion of the Veldkamp space of a point-line incidence geometry Γ(P, B), V(Γ) [START_REF] Buekenhout | Diagram Geometry (Chapter 10.2[END_REF]. V(Γ) is the space in which (i) a point is a geometric hyperplane of Γ and (ii) a line is the collection

H 1 H 2 of all geometric hyperplanes H of Γ such that H 1 ∩ H 2 = H 1 ∩ H = H 2 ∩ H or H = H i (i = 1, 2)
, where H 1 and H 2 are distinct points of V(Γ). Following our previous paper [START_REF] Saniga | The Veldkamp space of two-qubits[END_REF], we adopt here the definition of Veldkamp space given by Buekenhout and Cohen [START_REF] Buekenhout | Diagram Geometry (Chapter 10.2[END_REF] instead of that of Shult [START_REF] Shult | On Veldkamp lines[END_REF], as the latter is much too restrictive by requiring any three distinct hyperplanes H 1 , H 2 and H 3 of Γ to satisfy the following condition:

H 1 ∩ H 2 ⊆ H 3 implies H 1 ⊂ H 3 or H 1 ∩ H 2 = H 1 ∩ H 3 .

GQ(2,4) and its Veldkamp Space

The smallest thick generalized quadrangle is obviously the (unique) GQ(2,2), often dubbed the "doily." This quadrangle is endowed with 15 points/lines, with each line containing three points and, dually, each point being on three lines; moreover, it is a self-dual object, i. e., isomorphic to its dual. It features all the three kinds of geometric hyperplanes, of the following cardinalities [START_REF] Buekenhout | Diagram Geometry (Chapter 10.2[END_REF]: 15 perp-sets, x ⊥ , seven points each; 10 grids (i. e. GQ(2,1)s), nine points each; and six ovoids, five points each. The quadrangle also exhibits two distinct kinds of triads, viz. unicentric and tricentric. Its Veldkamp space is isomorphic to PG(4,2) whose detailed description, together with its important physical applications, can be found in [START_REF] Saniga | The Veldkamp space of two-qubits[END_REF].

The next case in the hierarchy is GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF], the unique generalized quadrangle of order (2,4), which possesses 27 points and 45 lines, with lines of size three and five lines through a point. Its full group of automorphisms is of order 51840, being isomorphic to the Weyl group W (E 6 ). Consider a nonsingular elliptic quadric, Q -(5, 2), in PG(5,2); then the points and the lines of such a quadric form a GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]. GQ(2,4) is obviously not a self-dual structure; its dual, GQ(4,2), features 45 points and 27 lines, with lines of size five and three lines through a point. Unlike its dual, which exhibits ovoids and perp-sets, GQ(2,4) is endowed with perps1 (of cardinality 11 each) and GQ(2,2)s, not admitting ovoids [START_REF] Payne | Finite Generalized Quadrangles[END_REF][START_REF] Brouwer | Ovoids and fans in the generalized quadrangle GQ(4,2)[END_REF]. This last property, being a particular case of the general theorem stating that a GQ(s, t) with s > 1 and t > s2 s has no ovoids [START_REF] Payne | Finite Generalized Quadrangles[END_REF], substantially facilitates construction of its Veldkamp space, V(GQ(2,4)). GQ(2,4) features only tricentric triads and contains two distinct types of spreads [START_REF] Brouwer | Ovoids and fans in the generalized quadrangle GQ(4,2)[END_REF][START_REF] De Wispelaere | Unitals in the Hölz-design on 28 points[END_REF]. It is also worth mentioning that the collinearity, or point graph of GQ(2,4), i. e. the graph whose vertices are the points of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] and two vertices are adjacent iff the corresponding points are collinear, is a strongly regular graph with parameters v = (s + 1)(st + 1) = 27, k = s(t + 1) = 10, λ = s -1 = 1 and µ = t + 1 = 5 [START_REF] Payne | Finite Generalized Quadrangles[END_REF]. The complement of this graph is the Schläfli graph, which is intimately connected with the configuration of 27 lines lying on a non-singular complex cubic surface [15]. Moreover, taking any triple of pairwise disjoint GQ(2,1)s and removing their lines from GQ(2,4) one gets a 27 3 configuration whose point-line incidence graph is the Gray graph -the smallest cubic graph which is edge-transitive and regular, but not vertex-transitive [16].

Diagrammatic Construction of V(GQ(2,4))

Obviously, there are 27 distinct perps in GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]. Since GQ(2,4) is rather small, its diagrams/drawings given in [START_REF] Polster | A Geometrical Picture Book[END_REF] were employed to check by hand that it contains 36 different copies of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF]. It thus follows that V(GQ(2, 4)) is endowed with 63 points. As the only projective space having this number of points is the five-dimensional projective space over GF(2), PG [START_REF] Payne | Nonisomorphic generalized quadrangles[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF], one is immediately tempted to the conclusion that V(GQ(2,4)) ∼ = PG(5,2). To demonstrate that this is really the case we only have to show that V(GQ(2,4)) features 651 lines as well, each represented by three hyperplanes.

This task was first accomplished by hand. That is, we took the pictures of all the 63 different copies of geometric hyperplanes of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] and looked for every possible intersection between pairs of them. We have found that the intersection of two perps is either a line or an ovoid of GQ(2,2) according as their centers are collinear or not, whereas that of two GQ(2,2)s is a perp-set or a grid -as sketchily illustrated in Figure 1 and Figure 2, respectively. 2 This enabled us to verify that: a) the complement of the symmetric difference of any two geometric hyperplanes is also a geometric hyperplane and, so, the hyperplanes indeed form a GF(2)-vector space; b) that the total number of lines is 651; and c) that they split into four qualitatively distinct classes, as summarized in Table 1. The cardinality of type I class is obviously equal to the number of lines of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]. The number of Veldkamp lines of type II stems from the fact Figure 1: A pictorial illustration of the structure of the Veldkamp lines of V(GQ(2,4)). Left: -A line of Type I, comprising three distinct perps (distinguished by three different colours) having collinear centers (encircled). Right: -A line of Type II, featuring two perps with non-collinear centers (orange and purple) and a doily (blue). In both the cases the black bullets represent the common elements of the three hyperplanes. ) and three GQ(2,2)s through a grid, we arrive at 36 × 10/3 = 120 lines of type IV. We also note in passing that the fact that three GQ(2,2)s share a grid is closely related with the property that there exist triples of pairwise disjoint grids partitioning the point set of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]; the number of such triples is 40 [START_REF] Payne | Finite Generalized Quadrangles[END_REF].

3.2 Construction of V(GQ(2,4)) Based on Q -(5, 2)
The above-given chain of arguments can be recast into a more rigorous and compact form as follows. We return to the representation of GQ(2, 4) as an elliptic quadric Q -(5, 2) in PG [START_REF] Payne | Nonisomorphic generalized quadrangles[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF] and let H be a hyperplane (i. e., PG(4,2)) of PG [START_REF] Payne | Nonisomorphic generalized quadrangles[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF]. Then there are two cases:

a) H is not tangent to Q -(5, 2). Then H ∩ Q -(5, 2
) is a (parabolic) quadric of H. Such a quadric has 15 points and these 15 points generate the geometric hyperplane isomorphic to GQ(2, 2). b) H is tangent to Q -(5, 2) at a point P , say. Then H ∩ Q -(5, 2) is a quadratic cone with vertex P whose "base" is an elliptic quadric in a PG [START_REF] Govaert | Two characterizations of the Hermitian spread in the split Cayley hexagon[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF] contained in H and not containing P . The "base" has 5 points, so that the cone has 2 × 5 + 1 = 11 points. These 11 points generate the hyperplane isomorphic to a perp-set. (The base cannot by a hyperbolic quadric, since on such a quadric there are lines and the join of such a line with P would be a plane contained in Q -(5, 2), a contradiction.) By the above, two distinct hyperplanes H, H ′ of PG(5,2) have distinct intersections

H ∩ Q -(5, 2), H ′ ∩ Q -(5, 2
). These intersections are therefore distinct geometric hyperplanes of the GQ(2, 4). There are 63 hyperplanes in PG [START_REF] Payne | Nonisomorphic generalized quadrangles[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF], so that we obtain 63 geometric hyperplanes of the GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] or, in other words, all its geometric hyperplanes. Now we turn to the Veldkamp space. Its points are the hyperplanes of PG(5,2), as we use the one-one correspondence from above for an identification. Given distinct hyperplanes H, H ′ we have to ask for all hyperplanes containing H ∩ H ′ ∩ Q -(5, 2) to get all points of the Veldkamp line joining H and H ′ . Clearly, the third hyperplane

H ′′ through H ∩ H ′ is of this kind. If H ∩ H ′ ∩ Q -(5, 2) generates the three-dimensional subspace H ∩ H ′ , then the Veldkamp line is {H, H ′ , H ′′ }. This is the case whenever H ∩ H ′ ∩ Q -(5, 2
) is an elliptic quadric, a hyperbolic quadric, or a quadratic cone of H ∩ H ′ (that is, an ovoid, a grid, or a perp-set of GQ(2, 4), respectively). In general, H ∩ H ′ ∩ Q -(5, 2) need not generate H ∩ H ′ but it still may be a Veldkamp line (obviously of Type I). In this case the argument from above cannot be applied, but one can check by hand that the corresponding Veldkamp line has indeed only three elements.

All in all, one finds that the V(GQ(2,4)) is just the dual space of PG(5,2). Let us assume now that our PG(5,2) is provided with a non-degenerate elliptic quadric Q -(5, 2) [START_REF] Hirschfeld | General Galois Geometries[END_REF]; then the 27/36 points lying on/off such a quadric correspond to 27 perps/36 doilies of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]. If, instead, one assumes PG(5,2) to be equipped with a preferred hyperbolic quadric, Q + (5, 2), which induces an orthogonal O + (6, 2) polarity in it [START_REF] Shaw | Finite geometry, Dirac groups and the table of real Clifford algebras[END_REF], then under this polarity the set of 651 lines decomposes into 315 isotropic and 336 hyperbolic ones. The former are readily found to be made of the Veldkamp lines of Type I and III (odd number of perpssee Table 1), whilst the latter consist of those of Type II and IV (odd number of GQ(2,2)s).

V(GQ(2,4)) from a 2-(28, 12, 11)-Design and Steiner Complexes

Our third proof of the isomorphism V(GQ(2,4)) ∼ = PG(5,2) rests on a very intricate relation between properties of the positive roots of type E 7 , the configuration of 28 bitangents to a generic plane quartic curve and the so-called Steiner complexes.

The simple Lie algebra over C of type E 7 has a unique 56-dimensional irreducible representation with one-dimensional weight spaces. The Weyl group W (E 7 ) ∼ = Sp(6, 2) × Z 2 acts on these weights in a natural way, described in detail in [20, §4]. Considering the group W (E 7 ) as a reflection group, we find that each reflection acts as a product of 12 disjoint transpositions on the 56 weights. The 56 weights fall into 28 positive-negative pairs. Any two weights, regarded as points in Euclidean space, lie at a mutual distance of 0, 1, √ 2 and √ 3 in suitable units. Furthermore, if we take three distinct pairs of opposite weights, then either (a) the resulting six points contain three points forming an equilateral triangle of side 1, or (b) the resulting six points contain three points forming an equilateral triangle of side √ 2, but not both. If we identify each of the 56 weights with its negative, we obtain a (doubly transitive) action of Sp(6, 2) on 28 objects, which can be identified with the set X of the 28 bitangents to the plane quartic curve; see [21, §4] and [22, §6.1] for full details. The 63 reflections in W (E 7 ), which correspond to the 63 positive roots in the type E 7 root system, correspond under these identifications to subsets of 12 bitangents. These 63 12-tuples are known as Steiner complexes. The image of each reflection in Sp(6, 2) acts as a product of six transpositions on the Steiner complex.

Manivel [START_REF] Manivel | Configurations of lines and models of Lie algebras[END_REF] explains that two distinct Steiner complexes S α and S β (corresponding to positive roots α and β respectively) can have two different relative positions. One possibility is that S α and S β are syzygetic, which means that |S α ∩ S β | = 4. In this case, there is a unique Steiner complex S γ that is syzygetic to both of the first two and has the property that S α ∪ S β ∪ S γ = X. If we denote the set of positive roots orthogonal to both α and β by S α,β , then γ can be characterized as the unique element of S α,β that is orthogonal to all other members of S α,β . The only other possibility is that S α and S β are azygetic, which means that S α ∩ S β = 6. In this case, the symmetric difference S α ∆ S β = (S α ∪ S β )\(S α ∩ S β ) is also a Steiner complex, which we will denote by S δ . These three roots satisfy δ = α + β.

Since the group Sp(6, 2) acts doubly transitively on the set X, it follows that any bitangent is contained in 63×12/28 = 27 Steiner complexes, and that any pair of bitangents are contained in 63 × 12 2 28 2

= 11

Steiner complexes. It follows that the Steiner complexes form the blocks of a 2- [START_REF] Saniga | Some distinguished graphs associated with the split Cayley hexagon of order two and its dual[END_REF][START_REF] Ronan | Embeddings and hyperplanes of discrete geometries[END_REF][START_REF] Payne | Finite Generalized Quadrangles[END_REF] design, which we will call D. Although the number of designs with these parameters is very large [START_REF] Ding | Quasi-symmetric 2-(28, 12, 11)-designs with an automorphism of order 7[END_REF], it seems that the Steiner complex design D agrees with the one described in [START_REF] Crnkovic | Block designs constructed from the group U (3, 3)[END_REF].

Using this design, we can construct the Veldkamp space V(GQ(2,4)) as an explicit subset of the power set of the points of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]. The construction proceeds as follows. Choose an element p ∈ X, and define a new set, D p , of subsets of X consisting of: Note that the sets in (a) have size 12, the sets in (b) have size 16, and that every element of D p contains the point p. A key property of the set D p is that it is closed under the operation of Veldkamp sum, * , which we define by

A 1 * A 2 := A 1 ∆ A 2 = A 1 ∆ A 2 = A 1 ∆ A 2 ,
where ¯denotes set theoretic complement in X. This can be proved using a case analysis applied to the following two observations. If S α and S β are syzygetic, and S γ is as defined earlier, then the element p lies in an odd number of the Steiner complexes {S α , S β , S γ }, and we have S γ = S α * S β . On the other hand, if S α and S β are azygetic, and S δ is as defined earlier, then the element p lies in an even number of the Steiner complexes {S α , S β , S δ }, and we have S δ = S α ∆ S β .

We can now form a set D ′ p of subsets of X\{p} whose elements are obtained from the elements of D p after removing the point p. It follows that every element of D ′ p has size 11 or size 15. The set D ′ p inherits the property of being closed under Veldkamp sum from D p . The elements of X\{p} have a natural graph structure: we install an edge between the two distinct elements q, r ∈ X\{p} if and only if the triple {p, q, r} corresponds to six points containing an equilateral triangle of side √ 2 (as opposed to side 1). This graph is the Schläfli graph, and the 3-cliques in the graph are the lines of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]. Suppose that B is one of the 27 blocks of the design D satisfying p ∈ B. Recall that each Steiner complex can be canonically decomposed into the product of six pairs. If q is the point of B that is paired with p, then it turns out that the set B\{p} of size 11 is the perp set of q. The other possibility is that B is one of the 36 blocks of D with p ∈ B. In this case, the 12 elements of B form a Schläfli double six in X\{p}, whose complement is a copy of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF]. It follows that the elements of D ′ p are the precisely the geometric hyperplanes of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF].

We have established a bijection between V(GQ(2,4)) and the positive roots of type E 7 . Suppose that A α and A β are elements of the Veldkamp space corresponding to positive roots α and β respectively. We can define an F 2 -valued function B(A α , A β ) to be 0 if S α and S β are syzygetic, and to be 1 otherwise. This endows V(GQ(2,4)) with a symplectic structure. With respect to this symplectic structure, there are 315 isotropic lines; these correspond to the lines of types I and III. The other 336 lines are not isotropic, and they correspond to the lines of types II and IV.

Discussion and Conclusion

We have demonstrated -in three distinct ways differing by a degree of rigour -that V(GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]) is isomorphic to PG(5,2), i. e., to the projective space where GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] itself lives as an elliptic quadric, and features two different kinds of points (of cardinality 27 and 36) and four distinct types of lines (of cardinality 45, 120, 216, and 270). There are at least a couple of physical instances where these findings may be very useful.

The first one is the fact that the already-mentioned three-qubit and two-qutrit noncommutative labellings of the points of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] rest on just one of the two kinds of its spreads, viz. a classical (or Hermitian) one. In the former case, one starts with a (distance-3-)spread of the split Cayley hexagon of order two, i. e., a set of 27 points located on 9 lines that are pairwise at maximum distance from each other, and construct GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] as follows [START_REF] Govaert | Two characterizations of the Hermitian spread in the split Cayley hexagon[END_REF]. The points of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] are the 27 points of the spread and its lines are the 9 lines of the spread and another 36 lines each of which comprises three points of the spread which are collinear with a particular off-spread point of the hexagon; the spread of the hexagon becomes a classical spread of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]. In the latter case, one takes a(ny) point of W (3), say x, and defines GQ(2,4) as follows [START_REF] Payne | Nonisomorphic generalized quadrangles[END_REF]. The points of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] are all the points of W (3) not collinear with x, and the lines of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] are, on the one hand, the lines of W (3) not containing x and, on the other hand, the (nine) hyperbolic lines of W (3) through x, with natural incidence; and again, the nine hyperbolic lines form a classical spread of GQ(2,4). 3 Does it exist a distinguished non-trivial point-line incidence structure linked to GQ(2,4) through its non-classical spread(s)? If so, what kind of a non-commutative labelling (i. e., generalized Pauli group) does it give rise to and what are its implications for the black hole analogy? By comparing the structure of V(GQ(2,4)) with that of the Veldkamp spaces of both W (3) and the split Cayley hexagon of order two should help us answer these questions.

The second physical instance is linked with the construction of V(GQ(2,4)) as described in Section 3.3. The groups of automorphisms of 27 lines on a smooth cubic surface and 28 bitangents to a plane quartic have already gained a firm footing in theoretical physics. This is, however, not the case with the third, closely-related configuration that also goes back to classics, namely that of the 120 tritangent planes to a space sextic curve of genus four (see, e. g., [START_REF] Coble | Algebraic Geometry and Theta Functions[END_REF]). As this configuration is tied to the root system of E 8 [START_REF] Manivel | Configurations of lines and models of Lie algebras[END_REF], we surmise that one of generalized Pauli groups behind this geometry must be that of four-qubits. Here, the 120 antisymmetric generalized Pauli matrices are in a bijection with the 120 tritangent planes in much the same way as the 28 antisymmetric operators of three-qubit Pauli group are associated with the 28 bitangents of the plane quartic [START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]. A generalization to multiple qubits seems to be a straightforward task, as on a smooth curve of genus g there are 2 g-1 (2 g + 1) even characteristics and 2 g-1 (2 g -1) odd ones [START_REF] Coble | Algebraic Geometry and Theta Functions[END_REF], which exactly matches the factorization of the elements of the real g-qubit Pauli group into symmetric and antisymmetric, respectively.

Finally, we shall briefly point out the most interesting properties of the complements of geometric hyperplanes of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]. The complement of a GQ(2,2) is, as already mentioned above, the Schläfli double-six and that of a perp-set is the Clebsch graph. As the former is very well known, its descriptions can be found by the interested reader in any standard textbook on classical algebraic geometry. The Clebsch graph, also known as the folded 5-cube, deserves, however, some more explicit attention [START_REF] Cameron | Designs, Graphs, Codes and their Links[END_REF]. This graph has as vertices all subsets of {1, 2, 3, 4, 5} of even cardinality, with two vertices being adjacent whenever their symmetric difference (as subsets) is of cardinality four; it is a strongly regular graph with parameters (16, 5, 0, 2). It contains three remarkable subgraphs: the Petersen graph (the subgraph on the set of non-neighbours of a vertex), the four-dimensional cube, Q 4 (after, e. g., removal a particular 1-factor), and the Möbius-Kantor graph. Interestingly enough, the Möbius-Kantor graphs are also found to sit in the complements of two different kinds of geometric hyperplanes of the dual of the split Cayley hexagon of order two [START_REF] Saniga | Some distinguished graphs associated with the split Cayley hexagon of order two and its dual[END_REF]. Being associated with a polarity of a 2-(16, 6, 2) design, the Clebsch graph is a close ally of other two distinguished graphs, namely the L 2 (4) and Shrikhande graphs, which are linked with other two polarities of the same design (a biplane of order four) [START_REF] Cameron | Designs, Graphs, Codes and their Links[END_REF]. The graph that has the triangles of the Shrikhande graph as vertices, adjacent when they share an edge, is the Dyck graph; remarkably, the latter is found to be isomorphic to the complement of a particular kind of geometric hyperplane of the split Cayley hexagon of order two that is generated by the points at maximum (graph-theoretical) distance from a given point [START_REF] Saniga | Some distinguished graphs associated with the split Cayley hexagon of order two and its dual[END_REF].

Further explorations along these borderlines between finite geometry, combinatorics and graph theory are exciting not only in their own mathematical right, but also in having potential to furnish us with a new powerful tool for unravelling further intricacies of the relation between quantum information theory and black hole analogy.
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 2 Figure 2: Left: -A line of Type III, endowed with two doilies (blue and green) and a perp (purple). Right: -A line of Type IV, composed of three doilies (blue, green and gray).

  (a) all blocks B of D for which p ∈ B; and (b) all complements X\B of blocks B for which p ∈ B.

Table 1 :

 1 The properties of the four different types of the lines of V(GQ[START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]) in terms of the common intersection and the types of geometric hyperplanes featured by a generic line of a given type. The last column gives the total number of lines per the corresponding type. ) and that an ovoid sits in a unique GQ[START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF]. Since each copy of GQ(2,2) contains 15 perp-sets and any of them is shared by two GQ(2,2)s, we have 36 × 15/2 = 270 Veldkamp lines of type III. Finally, with 10 grids per a GQ[START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF]

	Type Intersection Perps Doilies (Ovoids) Total
	I	Line	3	0	(-)	45
	II	Ovoid	2	1	(-)	216
	III	Perp-set	1	2	(-)	270
	IV	Grid	0	3	(-)	120
	that GQ(2,4) contains (number of GQ(2,2)s) × (number of ovoids per a GQ(2,2)) = 36 × 6 = 216 ovoids (of GQ(2,2)

In what follows, the perp-set of a point of GQ[START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] will simply be referred to as a perp in order to avoid any confusion with the perp-set of a point of GQ[START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF].

In both the figures, each picture depicts all 27 points (circles) but only 19 lines (line segments and arcs of circles) of GQ[START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF], with the two points located in the middle of the doily being regarded as lying one above and the other below the plane the doily is drawn in. 16 out of the missing 26 lines can be obtained in each picture by its successive rotations through 72 degrees around the center of the pentagon. For the illustration of the remaining 10 lines, half of which pass through either of the two points located off the doily's plane, and further details about this pictorial representation of GQ[START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Lévay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF], see[START_REF] Polster | A Geometrical Picture Book[END_REF].

It is worth noting here that the Gray graph mentioned in Section 3 is the edge residual of W (3)[START_REF] Pisanski | Yet another look at the Gray graph[END_REF].
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