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ABSTRACT
This paper proposes an extension of compressed sensing
that allows to express the sparsity prior in a dictionary of
bases. This enables the use of the universal sampling strat-
egy of compressed sensing together with an adaptive re-
covery process that adapts the basis to the structure of the
sensed signal. A fast greedy scheme is used during recon-
struction to estimate the best basis using an iterative refine-
ment. Numerical experiments on geometrical images show
that adaptivity is indeed crucial to capture the structures of
complex natural signals.
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1 Introduction

1.1 Classical Sampling vs. Compressed
Sensing

The classical sampling theory of Shannon is based on uni-
form smoothness assumptions (low frequency spectral con-
tent). Under band limited condition, finely enough sampled
functions can be recovered from a set ofn pointwise mea-
surements.

However, being bandlimited is not a good model for
natural images and one usually assume that such a function
f has a decomposition with few elements on some fixed or-
thogonal basisB. This kind of assumption is at the heart of
the compression of an image using a wavelet expansion.
Under such sparseness assumption, one can hope to use
a much smaller numbern < N of measurements, which
are linear projectionsΦf = {〈f, φi〉}

n
i=1 on a set of fixed

vectorsφi ∈ R
N . The price to pay for this compressed

sampling strategy is a non-linear reconstruction procedure
to recoverf from the compressed representationΦf . This
theory of compressed acquisition of data has been pushed
forward during last few years conjointly by Candès and Tao
[2] and Donoho [5].

In order for this recovery to be effective, one needs
sensing vectorsφi that are incoherent with the vectors ofB.
A convenient way to achieve this property is to use random
vectorsφi, which cannot be sparsely represented in basisB.

Application in imaging. Compressed sensing acquisi-
tion of data could have an important impact for the design

of imaging devices where data acquisition is expensive. For
instance in seismic or magnetic imaging one could hope
to use few random projections of the object to acquire to-
gether with a high precision reconstruction.

Analogies in physiology. This compressed sampling
strategy could potentially lead to interesting models for var-
ious sensing operations performed biologically. Skarda and
Freeman [12] have proposed a non-linear chaotic dynamic
to explain the analysis of sensory inputs. This chaotic state
of the brain ensures robustness toward unknown events and
unreliable measurements, without using too many comput-
ing resources. While the theory of compressed sensing is
presented here as a random acquisition process, its exten-
sion to deterministic or dynamic settings is a fascinating
area for future research in signal processing.

1.2 The Best Basis Approach

Frames vs. dictionary of bases. Fixed orthogonal bases
are not flexible enough to capture the complex redundancy
of natural images. For instance the orthogonal wavelet
transform [9] lacks of translation and rotation invariance
and is not efficient to compress geometric images [7]. It is
thus useful to consider families of vectors that are redun-
dant but offer a stable decomposition. For instance, frames
of translation invariant wavelets have been used for image
denoising and frames of rotation-invariant Gabor functions
are useful to characterize textures [9].

However, to capture the complex structure of natural
images, one needs a very large number of such elementary
atoms. Frame theory suffers from both theoretical diffi-
culties (lack of stability) and technical problems (compu-
tational complexity) when the number of basis vectors in-
creases too much. To cope with these problems, one can
consider a dictionaryD = {Bλ}λ∈Λ of orthogonal bases
Bλ. Choosing an optimal basis in such a dictionary allows
to adapt the approximation to the complex content of a spe-
cific signal.

Images and geometry. Cartoon images is a simple
model that captures the sketch content of natural images.
Figure 1, (a), shows such a geometrically regular image,
which contains smooth areas surrounded by regular curves.
The curvelet frame of Candès and Donoho [1] can deal
with such a regularity and enjoys a better approximation



rate than traditional isotropic wavelets. This results can be
enhanced using a dictionary of locally elongated functions
that follow the image geometry. Bandelets bases of Le Pen-
nec and Mallat [7] provide such a geometric dictionary to-
gether with a fast optimization procedure to compute a ba-
sis adapted to a given image.

Adaptive biological computation. Hubel and Wiesel
have shown that low level computation done in area V1
of the visual cortex are well approximated by multiscale
oriented linear projections [6]. Olshausen and Field pro-
posed in [10] that redundancy is important to account for
sparse representation of natural inputs. However further
non-linear processings are done by the cortex to remove
high order geometrical correlations present in natural im-
ages. Such computations are thought to perform long range
groupings over the first layer of linear responses [8] and
thus correspond to an adaptive modification of the overall
neuronal response. The best-basis coding strategy could
thus offer a signal-processing counterpart to this neuronal
adaptivity. In this paper we restrict ourselves to orthogo-
nal best basis search. Future extensions of this approach to
dictionaries of redundant transforms are likely to improve
numerical results and better cope with biological computa-
tions.

1.3 Best Basis Computation

In the following we use the norms||f ||pℓp =
∑

i |f [i]|p and
||f ||ℓ0 = # {i \ f [i] 6= 0}. A dictionaryDΛ = {Bλ}λ∈Λ

is a set of orthogonal basesBλ = {ψλ
m}m of R

N . We asso-
ciate a costpen(λ) which is a prior complexity measure on
each basisBλ that satisfies

∑

λ∈Λ 2− pen(λ) = 1. A fixed
weightpen(λ) = log2(M) can be used if the sizeM of D
is finite. The parameterpen(λ) can be interpreted as the
number of bits needed to specify a basisBλ. Following the
construction of Coifman and Wickerhauser [3], a best basis
Bλ∗

adapted to a signal minimizes a LagrangianL

λ∗ = argmin
λ∈Λ

L(f, λ, t) (1)

where L(f, λ, t) = ||Ψλf ||ℓ1 + C0 t pen(λ),

whereΨλ = [ψλ
0 , . . . , ψλ

N−1]
T

is the transform matrix de-
fined byBλ. This best basisBλ∗

is thus the one that gives
the sparsest description off as measured by theℓ1 norm.

The Lagrange multiplierC0 t weights the penalization
pen(λ) associated to the complexity of a basisBλ. The
parametert is the level of deterministic noise caused by not
having a perfectlyk-sparse function but rather a function
whose coefficients in basisBλ∗

decay fast. This parameter
is not available since it depends on the decay speed and on
k (which in turn depends on the number of sensed vectors).
However the recovery algorithm presented in section 2.3
does not need the exact value oft since an upper boundts
is estimated during iterations.

For a dictionaryD that enjoys a multiscale structure,
the optimization ofL is carried out with a fast procedure,
see [3, 7] for practical examples of this process.

2 Compressed Sensing Reconstruction

In this paper, the sampling matrixΦ = [φ0, . . . , φn−1]
T

is defined by random points{φi}i of unit length although
other random sensing schemes can be used, see [2].

2.1 Basis Pursuit Formulation

Searching for the sparsest signalf∗ in some basisB =
{ψm}m that matches the sensed valuesy = Φf leads to
consider a penalized variational problem

f∗ = argmin
g∈RN

(1

2
||Φg − y||2ℓ2 + t||Ψg||ℓ1

)

. (2)

whereΨ = [ψ0, . . . , ψN−1]
T is the transform matrix de-

fined byB. The Lagrange multipliert accounts both for sta-
bilisation against noise and for approximate sparsity, which
is common in practical applications.

Candès and Tao in [2] and Donoho in [5] have shown
that, if f is sparse enough in some basisB, f can be recov-
ered from the sensed datay = Φf . More precisely, they
show that it exists a constantC such that if||Ψf ||ℓ0 ≤ k
then ifn ≥ C log(N) k one recoversf∗ = f .

2.2 Best Basis Pursuit

The compressed sensing machinery is extended to a dictio-
nary of basesDΛ by imposing that the recovered signal is
sparse in at least one basis ofDΛ. To avoid using too com-
plex basis the recovery process from noisy measurements
takes into account a complexitypen(λ) of the optimal ba-
sisBλ. The original recovery procedure (2) is replaced by
the following minimization

f∗ = argmin
g∈RN

min
λ∈Λ

(

1
2 ||Φg − y||2

ℓ2
+ t ||Ψλ g||ℓ1

+ C0 t2 pen(λ)
)

,
(3)

where the penalizationC0 t2 pen(λ) is the same as in equa-
tion (1).

2.3 Iterative Thresholding For Sparsity Min-
imization

The recovery procedure suggested by equation (3) corre-
sponds to the inversion of the operatorΦ under sparsity
constraints on the observed signalf . In this paper we ex-
tends the algorithm of Daubechies et al. [4] to the setting
of a dictionnary of bases. Searching in the whole dictio-
nary D for the best basis that minimizes formulation (3)



is not feasible for large dictionaries, which typically con-
tain of the order of2N bases. Instead we propose a greedy
search for the best basis during the recovery process. We
make repeated use of the soft thresholding operator de-
fined in an orthogonal basisB = {ψm}m by St(g) =
∑

m st(〈g, ψm〉)ψm wherest(x) = sign(x)(|x| − t)+ in
the following algorithm

• Initialization. Sets = 0, f0 = 0 and chooseλ0 ∈ Λ
at random or using some default choice (such as a DCT
basis in 1D or a wavelet basis in 2D).

• Step 1: Updating the estimate. Enforce conditiony =
Φfs+1 usingfs+1 = fs + ΦT(y − Φ fs).

• Step 2: Denoising the estimate. Compute the value of
the current thresholdts = 3σs using the estimator of the
noise levelσs = median(|Ψfs+1|)/0.6745. Perform the
denoisingfs+1 = Sts

(fs+1) whereSts
is the threshold

operator atts in the basisBλs .
• Step 3: Update best basis. Update the best basis using

λs+1 = argminλ L(fs+1, λ, ts). For typical dictionar-
ies such as the ones considered in this paper, this mini-
mization is carried out with a fast procedure, as seen in
subsection 1.3.

• Stopping criterion. If s < smax, go to step 1, other-
wise stop iterations. In all our experiments, the number
of iterations is set tosmax = 20.

The stochastic noise levelts is due to random acquisition
corrupting the current estimatefs. It is computed though
the median estimator and its value decays during iterations
toward the deterministic noise valuet that is due to approx-
imate sparsity.

3 Best Bandelet Basis Compressed Sensing

3.1 Adapted Bandelet Transform

The bandelet bases dictionary was introduced by Le Pen-
nec and Mallat [7] to perform adaptive approximation of
images with geometric singularities, such as the cartoon
image in figure 1, (a). We present a simple implementa-
tion of the bandelet transform inspired from [11].

A bandelet basisBλ is parameterized byλ =
(Q, {θS}S∈Q), whereQ is a quadtree segmentation of the
pixels locations andθS ∈ [0, π[∪Ξ is an orientation (or
the special tokenΞ) defined over each squareS of the seg-
mentation, see figure 1, (a). The bandelet transform cor-
responding to this basis applies independently over each
squareS of the image either

• if θS = Ξ: a 2D isotropic wavelet transform,
• if θS 6= Ξ: a 1D wavelet transform along the direction

defined by the angleθS .

We now detail the latter transform. The position of a pixel
x = (x1, x2) ∈ S with respect to the directionθS is
px = sin(θS)x1−cos(θS)x2. Them pixels{x(i)} in S are
ranked according to the 1D orderingpx(0) ≤ px(1) ≤ . . . ≤
px(m−1) . This ordering allows to turn the image{f [x]}x∈S

defined overS into a 1D signalf1D[i] = f [x(i)], see fig-
ure 1, (c). The bandelet transform of the imagef insideS
is defined as the 1D Haar transform of the signalf1D, see
figure 1, (d). This process is both orthogonal and easily in-
vertible, since one only needs to compute the inverse Haar
transform and pack the retrieved coefficients at the original
pixels locations. Keeping only a few bandelet coefficients
and setting the others to zero performs an approximation of
the original image that follows the local directionθS , see
figure 1 (f).

In order to restrict the number of tested geometries
θ for a squareS ∈ Q containing#S pixels, we follow
[11] and use the set of directions that pass through two
pixels of S. The number of such directions is of the or-
der of (#S)2. For this bandelet dictionary, the penaliza-
tion of a basisBλ whereλ = (Q, {θS}S) is defined as
pen(λ) = #Q +

∑

S∈Q 2 log2(#S), where#Q is the
number of leaves inQ. A fast best basis search, described
in [11], allows to define a segmentationQ and a set of di-
rections{θS}S adapted to a given imagef by minimizing
(1). This process segments the image into squaresS on
which f is smooth, thus settingθS = Ξ and squares con-
taining an edge, whereθS closely matches the direction of
this singularity.

3.2 Numerical Results

The geometric image depicted in figure 2, (a) is used to
compare the performance of the original compressed sens-
ing algorithm in a wavelet basis to the adaptative algorithm
in a best bandelet basis. Since the wavelet basis is not
adapted to the geometric singularities of such an image, re-
construction (b) has strong ringing artifacts. The adapted
reconstruction (c) exhibits fewer such artifacts since the
bandelet basis functions are elongated and follow the ge-
ometry. The segmentation is depicted after the last itera-
tion, together with the chosen directionθS which closely
matches the real geometry. On figure 2, (d/e/f), one can see
a comparison for a natural image containing complex ge-
ometric structures such as edges, junctions and sharp line
features. The best bandelet process is able to resolve these
features efficiently.

4 Conclusion

Using a dictionary of bases decouples the approximation
process from the redundancy needed for adaptivity and re-
quires the design of a penalization cost on the set of bases.
This framework is not restricted to orthogonal bases, al-
though it is a convenient mathematical way to ensure the
compressed sensing recovery condition. This best basis ap-
proach to sensing and recovery is also a promising avenue
for interactions between biological processing, where a de-
terministic or chaotic process is highly probable and signal
processing, where randomization has proven useful to pro-
vide universal coding strategies.
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Figure 1. (a) a geometric image together with some adapted dyadic segmentationQ ; (b) a squareS together with some adapted
directionθS ; (c) the 1D signalf1D obtained by mapping the pixels valuesf(x(i)) on a 1D axis ; (d) the 1D Haar coefficients of
f1D ; (e) the 1D approximation obtained by reconstruction from the 20 largest Haar coefficients ; (f) the corresponding square
approximated in bandelet.
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Figure 2. (a/d) original image ; (b/e) compressed sensing reconstruction using the wavelet basis,n = N/6 (b: PSNR=22.1dB,
b: PSNR=23.2dB) ; (c/f) reconstruction using iteration in a best bandelet basis (c: PSNR=24.3dB, f: PSNR=25.1dB).
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