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RANDOM SENSING OF GEOMETRIC IMAGES
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ABSTRACT

This paper proposes an extension of compressed sensing
that allows to express the sparsity prior in a dictionary of
bases. This enables the use of the universal sampling strat-
egy of compressed sensing together with an adaptive re-
covery process that adapts the basis to the structure of the
sensed signal. A fast greedy scheme is used during recon-
struction to estimate the best basis using an iterative refine-
ment. Numerical experiments on geometrical images show
that adaptivity is indeed crucial to capture the structures of
complex natural signals.
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1 Introduction

1.1 Classical Sampling vs.
Sensing

Compressed

The classical sampling theory of Shannon is based on uni-
form smoothness assumptions (low frequency spectral con-
tent). Under band limited condition, finely enough sampled
functions can be recovered from a setgbointwise mea-
surements.

However, being bandlimited is not a good model for
natural images and one usually assume that such a function
f has a decomposition with few elements on some fixed or-
thogonal basig. This kind of assumption is at the heart of
the compression of an image using a wavelet expansion.
Under such sparseness assumption, one can hope to use
a much smaller numbetr < N of measurements, which
are linear projection® f = {(f, ¢;)}?_, on a set of fixed
vectorsg; € RY. The price to pay for this compressed
sampling strategy is a non-linear reconstruction procedure
to recoverf from the compressed representatipfi. This
theory of compressed acquisition of data has been pushed
forward during last few years conjointly by Candés and Tao
[2] and Donoho [5].

In order for this recovery to be effective, one needs
sensing vectors; that are incoherent with the vectors®f
A convenient way to achieve this property is to use random
vectorsp;, which cannot be sparsely represented in bi&sis

Application in imaging. Compressed sensing acquisi-
tion of data could have an important impact for the design

of imaging devices where data acquisition is expensive. For
instance in seismic or magnetic imaging one could hope
to use few random projections of the object to acquire to-
gether with a high precision reconstruction.

Analogies in physiology. This compressed sampling
strategy could potentially lead to interesting models for var-
ious sensing operations performed biologically. Skarda and
Freeman [12] have proposed a non-linear chaotic dynamic
to explain the analysis of sensory inputs. This chaotic state
of the brain ensures robustness toward unknown events and
unreliable measurements, without using too many comput-
ing resources. While the theory of compressed sensing is
presented here as a random acquisition process, its exten-
sion to deterministic or dynamic settings is a fascinating
area for future research in signal processing.

1.2 TheBest Basis Approach

Framesvs. dictionary of bases. Fixed orthogonal bases
are not flexible enough to capture the complex redundancy
of natural images. For instance the orthogonal wavelet
transform [9] lacks of translation and rotation invariance
and is not efficient to compress geometric images [7]. Itis
thus useful to consider families of vectors that are redun-
dant but offer a stable decomposition. For instance, frames
of translation invariant wavelets have been used for image
denoising and frames of rotation-invariant Gabor functions
are useful to characterize textures [9].

However, to capture the complex structure of natural
images, one needs a very large number of such elementary
atoms. Frame theory suffers from both theoretical diffi-
culties (lack of stability) and technical problems (compu-
tational complexity) when the number of basis vectors in-
creases too much. To cope with these problems, one can
consider a dictionar$D = {B*},ca of orthogonal bases
B*. Choosing an optimal basis in such a dictionary allows
to adapt the approximation to the complex content of a spe-
cific signal.

Images and geometry. Cartoon images is a simple
model that captures the sketch content of natural images.
Figure 1, (a), shows such a geometrically regular image,
which contains smooth areas surrounded by regular curves.
The curvelet frame of Candés and Donoho [1] can deal
with such a regularity and enjoys a better approximation



rate than traditional isotropic wavelets. This results can be
enhanced using a dictionary of locally elongated functions
that follow the image geometry. Bandelets bases of Le Pen-
nec and Mallat [7] provide such a geometric dictionary to-
gether with a fast optimization procedure to compute a ba-
sis adapted to a given image.

Adaptive biological computation. Hubel and Wiesel
have shown that low level computation done in area V1
of the visual cortex are well approximated by multiscale
oriented linear projections [6]. Olshausen and Field pro-
posed in [10] that redundancy is important to account for
sparse representation of natural inputs. However further
non-linear processings are done by the cortex to remove
high order geometrical correlations present in natural im-
ages. Such computations are thought to perform long range
groupings over the first layer of linear responses [8] and
thus correspond to an adaptive modification of the overall
neuronal response. The best-basis coding strategy could
thus offer a signal-processing counterpart to this neuronal
adaptivity. In this paper we restrict ourselves to orthogo-
nal best basis search. Future extensions of this approach to
dictionaries of redundant transforms are likely to improve
numerical results and better cope with biological computa-
tions.

1.3 Best Basis Computation

In the following we use the normlgf [, = >, | f[¢]|* and
[£leo = #{i \ flil # 0}. AdictionaryDy = {B }aea

is a set of orthogonal basgs = {:. }.,, of RY. We asso-
ciate a cospen(A) which is a prior complexity measure on
each basi#3* that satisfie$ ", _, 27 P"M = 1. A fixed
weightpen(A) = log, (M) can be used if the siz&l of D

is finite. The parametegsen(\) can be interpreted as the
number of bits needed to specify a baSis Following the
construction of Coifman and Wickerhauser [3], a best basis
B»" adapted to a signal minimizes a Lagrangin

A" = argmin L(f, \, t)
AEA

@)

where  L(f,\t) = [¥*f|n + Cot pen(N),

where¥?* = [, ... ,¢J{,_1]T is the transform matrix de-
fined by B*. This best basi$*" is thus the one that gives
the sparsest description $fas measured by thé norm.

The Lagrange multiplie€’y t weights the penalization
pen()\) associated to the complexity of a ba#is. The
parametet is the level of deterministic noise caused by not
having a perfectlyk-sparse function but rather a function
whose coefficients in basi$*” decay fast. This parameter
is not available since it depends on the decay speed and on
k (which in turn depends on the number of sensed vectors).
However the recovery algorithm presented in section 2.3
does not need the exact valuetafince an upper bound
is estimated during iterations.

For a dictionaryD that enjoys a multiscale structure,
the optimization off is carried out with a fast procedure,
see [3, 7] for practical examples of this process.

2 Compressed Sensing Reconstruction

In this paper, the sampling matrik = [¢, .. .7¢>n,1f
is defined by random pointsp; }; of unit length although
other random sensing schemes can be used, see [2].

2.1 BasisPursuit Formulation

Searching for the sparsest sign@l in some basif3 =
{¥m }m that matches the sensed values= ®f leads to
consider a penalized variational problem

* . 1
1* = argmin (5199~ yl +t¥gle ). @)
geRN
where¥ = [¢y,. .. ,@bN,l]T is the transform matrix de-

fined byB. The Lagrange multiplieraccounts both for sta-
bilisation against noise and for approximate sparsity, which
is common in practical applications.

Candés and Tao in [2] and Donoho in [5] have shown
that, if f is sparse enough in some baBisf can be recov-
ered from the sensed daja= ®f. More precisely, they
show that it exists a constant such that if|U f|, < &
then ifn > C log(N) k one recoverg™ = f.

2.2 Best Basis Pursuit

The compressed sensing machinery is extended to a dictio-
nary of base®, by imposing that the recovered signal is
sparse in at least one basisof. To avoid using too com-
plex basis the recovery process from noisy measurements
takes into account a complexipen(\) of the optimal ba-
sisB*. The original recovery procedure (2) is replaced by
the following minimization

(3129 —yl2 + ¢ ]9 gl

+ Cp t? pen()\)),

f* = argmin min
geERN AEA

©)

where the penalizatiofi; t* pen()) is the same as in equa-
tion (1).

2.3 lterativeThresholding For Sparsity Min-

imization

The recovery procedure suggested by equation (3) corre-
sponds to the inversion of the operatbrunder sparsity
constraints on the observed sigrfal In this paper we ex-
tends the algorithm of Daubechies et al. [4] to the setting
of a dictionnary of bases. Searching in the whole dictio-
nary D for the best basis that minimizes formulation (3)



is not feasible for large dictionaries, which typically con-

tain of the order o2” bases. Instead we propose a greedy

search for the best basis during the recovery process. We
make repeated use of the soft thresholding operator de-
fined in an orthogonal basi8 = {¢,,}m by Si(g) =

>m 5t({g; ¥m)) ¥m Wheres(z) = sign(z)(|z| — t)+ in

the following algorithm

e Initialization. Sets = 0, f, = 0 and choose\; € A
at random or using some default choice (such as a DCT
basis in 1D or a wavelet basis in 2D).

e Step 1. Updating the estimate. Enforce conditiory =
Dfsprusingfoir = fo + 0T (y — D fo).

e Step 2: Denoising the estimate. Compute the value of
the current thresholtl, = 30, using the estimator of the
noise levelbr; = median(| ¥ fs411])/0.6745. Perform the
denoisingfs+1 = Si, (fs+1) whereS;, is the threshold
operator at, in the basisZ™:.

e Step 3: Update best basis. Update the best basis using
As+1 = argmin, L(fs+1, A, ts). For typical dictionar-
ies such as the ones considered in this paper, this mini-
mization is carried out with a fast procedure, as seen in
subsection 1.3.

e Stopping criterion. If s < spax, g0 to step 1, other-
wise stop iterations. In all our experiments, the number
of iterations is set t@,,,x = 20.

The stochastic noise level is due to random acquisition

corrupting the current estimag. It is computed though

the median estimator and its value decays during iterations
toward the deterministic noise valtéhat is due to approx-
imate sparsity.

3 Best Bandelet Basis Compressed Sensing

3.1 Adapted Bandelet Transform

The bandelet bases dictionary was introduced by Le Pen-
nec and Mallat [7] to perform adaptive approximation of
images with geometric singularities, such as the cartoon
image in figure 1, (a). We present a simple implementa-
tion of the bandelet transform inspired from [11].

A bandelet basisB* is parameterized by\ =
(@, {0s}seq), whereQ is a quadtree segmentation of the
pixels locations ands € [0,7[UZ is an orientation (or
the special toke&) defined over each squaseof the seg-
mentation, see figure 1, (a). The bandelet transform cor-
responding to this basis applies independently over each
squareS of the image either

e if 05 = =: a 2D isotropic wavelet transform,

o if g # Z: a 1D wavelet transform along the direction
defined by the anglés.

We now detail the latter transform. The position of a pixel
x = (x1,22) € S with respect to the directiofig is
pe = sin(fs)z; —cos(fs)zo. Them pixels{z(?} in S are
ranked according to the 1D orderipgo) < p,1) < ... <
Dy(m-1). This ordering allows to turn the imade[z]} ,cs

defined overS into a 1D signalfip[i] = f[z(®], see fig-
ure 1, (c). The bandelet transform of the imggmside.S
is defined as the 1D Haar transform of the sigfial, see
figure 1, (d). This process is both orthogonal and easily in-
vertible, since one only needs to compute the inverse Haar
transform and pack the retrieved coefficients at the original
pixels locations. Keeping only a few bandelet coefficients
and setting the others to zero performs an approximation of
the original image that follows the local directiég, see
figure 1 ().

In order to restrict the number of tested geometries
0 for a squareS € @ containing#sS pixels, we follow
[11] and use the set of directions that pass through two
pixels of S. The number of such directions is of the or-
der of (#S5)2. For this bandelet dictionary, the penaliza-
tion of a basisB* where A = (Q, {fs}s) is defined as
pen()) = #Q + ZSEQ 2log,(#5S), where#Q is the
number of leaves iid). A fast best basis search, described
in [11], allows to define a segmentatiGhand a set of di-
rections{fs}s adapted to a given imagéby minimizing
(1). This process segments the image into squéres
which f is smooth, thus settinfls = = and squares con-
taining an edge, whers closely matches the direction of
this singularity.

3.2 Numerical Results

The geometric image depicted in figure 2, (a) is used to
compare the performance of the original compressed sens-
ing algorithm in a wavelet basis to the adaptative algorithm
in a best bandelet basis. Since the wavelet basis is not
adapted to the geometric singularities of such an image, re-
construction (b) has strong ringing artifacts. The adapted
reconstruction (c) exhibits fewer such artifacts since the
bandelet basis functions are elongated and follow the ge-
ometry. The segmentation is depicted after the last itera-
tion, together with the chosen directiég which closely
matches the real geometry. On figure 2, (d/e/f), one can see
a comparison for a natural image containing complex ge-
ometric structures such as edges, junctions and sharp line
features. The best bandelet process is able to resolve these
features efficiently.

4 Conclusion

Using a dictionary of bases decouples the approximation
process from the redundancy needed for adaptivity and re-
quires the design of a penalization cost on the set of bases.
This framework is not restricted to orthogonal bases, al-
though it is a convenient mathematical way to ensure the
compressed sensing recovery condition. This best basis ap-
proach to sensing and recovery is also a promising avenue
for interactions between biological processing, where a de-
terministic or chaotic process is highly probable and signal
processing, where randomization has proven useful to pro-
vide universal coding strategies.
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Figure 1. (a) a geometric image together with some adapted dyadic segmentati¢in) a squareS together with some adapted
directionfs ; (c) the 1D signalfip obtained by mapping the pixels valugis:(¥)) on a 1D axis ; (d) the 1D Haar coefficients of

fip ; (e) the 1D approximation obtained by reconstruction from the 20 largest Haar coefficients ; (f) the corresponding square
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Figure 2. (a/d) original image ; (b/e) compressed sensing reconstruction using the waveletbasiy/6 (b: PSNR=22.1dB,
b: PSNR=23.2dB) ; (c/f) reconstruction using iteration in a best bandelet basis (c: PSNR=24.3dB, f: PSNR=25.1dB).
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