Random Sensing of Geometric Images - Archive ouverte HAL Access content directly
Conference Papers Year : 2006

Random Sensing of Geometric Images


This paper proposes an extension of compressed sensing that allows to express the sparsity prior in a dictionary of bases. This enables the use of the universal sampling strategy of compressed sensing together with an adaptive recovery process that adapts the basis to the structure of the sensed signal. A fast greedy scheme is used during reconstruction to estimate the best basis using an iterative refinement. Numerical experiments on geometrical images show that adaptivity is indeed crucial to capture the structures of complex natural signals.
Fichier principal
Vignette du fichier
07-NeuroComp-Peyre.pdf (555.99 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00365628 , version 1 (03-03-2009)


  • HAL Id : hal-00365628 , version 1


Gabriel Peyré. Random Sensing of Geometric Images. NeuroComp'06, Oct 2006, Pont-à-Mousson, France. pp.91-94. ⟨hal-00365628⟩
96 View
61 Download


Gmail Facebook X LinkedIn More