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DISCRETE BANDELETS WITH GEOMETRIC ORTHOGONAL FILTERS

Gabriel Peyŕe, St́ephane Mallat

CMAP, École Polytechnique
91128 Palaisau Cedex, France

ABSTRACT
This paper describes the construction of second generation
bandelet orthogonal bases. The decomposition on a ban-
delet basis is computed using a wavelet filter bank followed
by adaptive geometric orthogonal filters, that requireO(N)
operations. The resulting geometry is multiscale and calcu-
lated with a fast procedure that minimizes a Lagrangian cost
at each scale. Image compression with the resulting ban-
delet transform code gives significantly better results than a
wavelet transform code.

1. INTRODUCTION

1.1. Geometry is Discrete and Multiscale

Working with digital data means working in a discrete set-
ting. A wavelet transform [1] can be applied on the dis-
crete data to obtain a multiscale representation of the orig-
inal data. In order to go one step further, today image pro-
cessing algorithms try to exploit somegeometricalregular-
ity of the underlying function. But we must keep in mind
that thisgeometryhas to be defined in a discrete setting.
In this paper we give a theoretic and algorithmic approach
to compute such a geometric representation in the discrete
wavelet domain. An application to image compression will
be shown.

1.2. Geometrically Regular Images

Functions with geometric regularity are modeled as piece-
wise Cα -regular functions outside a set of edges which are
themselves regular. However, natural images often do not
have sharp discontinuities, so the model also includes some
smoothing by an unknown kernel. The resulting functions
can be written as a convolutionf = f̃ ∗h where f̃ is a func-
tion with sharp features (regular outside a set of edges) and
h is the unknown smoothing kernel. We call this class of
functions Cα -geometrically regular functions(see figure 1,
(a)).

Standard wavelet bases [1] are optimal to represent func-
tions with pointwise singularities. However they fail to cap-
ture the geometric regularity along the singularities of a sur-
faces, because of their isotropic support. For Cα -geometrically

regular functions, the distortion-rate of a wavelet image trans-
form code withRbits satisfies

|| f − fR||2 6 CR−1 log(R).

To exploit the anisotropic regularity of a surface along
edges, the basis must include elongated functions that are
nearly parallel to the edges. Our goal is to build a new class
of orthogonal bases for which the distortion rate has an op-
timal decay.

1.3. Previous Works

Several image representations have been proposed to cap-
ture geometric image regularity, and in particular curvelet
frames [2] and first generation bandelet bases [3]. How-
ever, these constructions are not built directly in the discrete
domain, and they do not provide a multiresolution represen-
tation of the geometry. In consequence, the implementation
and the mathematical analysis is more involved and less ef-
ficient.

Contourlets [4] are also bases constructed with elon-
gated basis functions using the combination of a multiscale
and a directional filter bank. Our approach is different be-
cause it constructs a basis with a multiscale geometry that is
adaptedto the function that is represented. Asymptotically,
the resulting bandelets are regular functions with a compact
support, which is not the case of contourlets. Wedgeprints
of [5] also provide a discrete compression scheme that is
built on top of a wavelet decomposition. However, it does
not define a new orthogonal basis but rather a scheme to
perform a vector quantization of orthogonal wavelet coeffi-
cients, using a model of step edges.

2. CONSTRUCTION OF A BANDELET BASIS

The bandelet decomposition is computed with a geometric
orthogonal transform that is applied on orthognal wavelet
coefficients. It is thus computed with a wavelet filter bank
followed by directional orthogonal filters. Each geometric
direction leads to a different transform, and one can find the
optimal set of filters using a best basis algorithm.

To describe the construction of the geometric orthogo-
nal filters, we consider a wavelet transform at a fixed scale



2 j and we perform a zoom on the wavelet transform (by
selecting a sub-squareS), near a singularity (see figure 1).
Observe that wavelet coefficients

〈
f , ψ jn

〉
are samples of

an underlying regularized function〈
f , ψ jn

〉
= f ∗ψ j(2 jn) where ψ j(x) = 1

2 j ψ(−2− jx).

As a result, although the original function may be singular
at edge locations, the wavelet coefficients are samples of
a regularized function, obtained by convolving the original
function f with the “burring” kernelψ j of width 2j .
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Fig. 1. Zoom on the wavelet coefficients near a singularity.

In real applications the geometry must be estimated from
the discrete image information. To make this problem more
tractable, like in first generation bandelets, we
• search for a regularity flow (arrows) along which the func-

tion is “as regular as possible”,
• search for a polynomial flow of degreep−1 parameter-

ized either horizontally or vertically (on figure 1 one can
see a linear flow).

Until the end of this section, we suppose that we defined a
polynomial flowτ on some sub-squareS (we will later see
how to find an optimal size for the squares and an optimal
flow τ on each square).

If we impose that an integral curve of the geometric
flow τ does not deviate more than 2j (one pixel in wavelet
space) from the real geometry, then one can prove an ex-
plicit bound of the derivatives off in the directionτ of the
flow and in the vertical direction:∣∣∣ ∂ a+b f

∂τa∂yb

∣∣∣ 6 C2 j2−a/α j2− jb.

This control over the derivatives will drive the construction
of a polynomial approximation forf ∗ψ j that is elongated
and follows the flow in small “bands”.

We want to approximatef j = f ∗ψ j on the regular grid
of spacing 2j , restricted to a small squareS, knowing the ap-
proximate geometric flowτ. In order to do so, we construct
an orthogonal filter bank that will decomposef j on func-
tions that follows the geometrical flow. The support of the
filters is obtained using a dyadic grouping of the sampling
points insideS into bands{Bk

m}
2k

m=1 for each filtering stepk
(see figure 2). The exact filter responses are obtained using
polynomials multiresolution restricted to the dyadic groups,
and are in fact 2D extensions of Alpert multiwavelets. This

orthogonal directional filter bank can be implemented us-
ing the fast linear-time algorithm of Alpert [6]. The under-
lined filters are calculated within the transform procedure
using a Gram-Schmidt orthogonalization. The resulting fil-
ters havep vanishing moments, as the original wavelet ba-
sis, but they areelongatedalong the singularity, whereas the
original wavelets have a square support.

f ∗ ψj
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Fig. 2. 2D and continous-3D plot of f∗ψ j restricted to
S (top). Construction of a recursive binary partitions (bot-
tom). Each Bkm is displayed in a different grey level.

To construct a bandelet basis on the whole wavelet do-
main, we use a quadtree segmentation of each wavelet scale
in dyadic squares, as shown on figure 3. Note that we define
a differentquadtree for each scale of the wavelet transform
(on figure 3 only the quadtree of the finest scale is depicted),
but we use the same quadtree for each of the three orienta-
tions of the wavelet transform at fixed scale. A complete
representation in a bandelet basisB = {bn} is thus com-
posed of:
• An image segmentation at each scale 2j , defined by a

quadtree.
• For each dyadic square of the segmentation,

– a polynomial flow,
– bandelet coefficients{〈 f , bn〉}n.

3. BEST BASIS TRANSFORM CODE

A bandelet transform code encodes the parameters that spec-
ify the geometry of the basisB = {bn}n that is adapted to
the image, as well as the image coefficients in this bandelet
basis. These bandelet coefficients are uniformly quantized
with a stepT and a zero-bin twice larger corresponding to
[−T,T]. The resulting coefficients are entropy coded with
an arithmetic coder. At each scale 2j , the parameters of
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Fig. 4. Comparison of Wavelets and Second Generation Bandelets at 0.2 bit/pixel.
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Fig. 3. An example of quadtree segmentation of the wavelet
space. Each segmentation define a bandelet basis. These
geometric flows satisfy the error bound of2 j (see zoom on
right).
the geometry are also quantized to obtain a precision of
(2 j)/4. The total number of bitsR is decomposed into
R= ∑Rj = ∑(RjS+RjG +RjB), where, for each scale 2j :

• RjS is the number of bits to code the dyadic segmentation.
• RjG is the number of bits to code the quantized polynomial

geometric flow in each square.
• RjB is the number of bits to code the quantized bandelet

coefficients.

The image restored from its quantized bandelet coefficients
is written fR.

For a quantification stepT, we would like to find the
best basisB that minimizes the resulting distortion-rate.
According to the approach in [3], we minimize a Lagrangian
which can be shown to approximate the Lagrangian of the
true distortion-rate:

L ( f ,R,B) = || f − fR||2 + 3
4T2 ∑

j
(RS j+RG j +RB j) .

Thanks to the additivity of this Lagrangian and to the quadtree
structure, the minimization ofL can be performed using a
fast CART-like bottom-up algorithm [3].

Even though we make an exhaustive search for the op-
timal geometry, for an image ofN pixels, the complexity
of this best bandelet basis algorithm isO(N3/2) for a linear
geometry (i.e.p = 2). Some heuristics can also be used to
reach a linear time complexityO(N). The following theo-
rem computes the asymptotic decay rate of the distortion-
rate obtained with this best bandelet basis transform code.
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Fig. 5. Graphical display of continuous bandelet functions
for various scales j< 0, quad-tree levelsℓ, partition depth
k and position m.

Theorem: Given f a Cα -geometrically regular function, the
transform codingfR with Rbits in the bandelet basisB min-
imizing L ( f ,R,B),with R= RS+RG +RB, satisfies

|| f − fR||2 6 C logα(R)R−α ,



with C a constant that depends only on the functionf .
We note the following important points:

• This exponentα is a priori unknown. The algorithm adapts
itself to the best possibleα, and it is optimal.

• The reconstructed function is as regular as the original
function (bandelet functions are regular, see figure 5).

• There is no blocking artifact due to the segmentation (in
the spatial domain, bandelet functions do overlap with
each other).

4. NUMERICAL COMPRESSION RESULTS

The bandelet transform is implemented with the 7/9 CDF
biorthogonal wavelet basis. This best bandelet compression
procedure was tested on various natural images. The PSNR
improvement with respect to an equivalent wavelet trans-
form coder is about 2dB for Barbara and 0.6dB for Lena
(see figure 6). On figure 7 one can see, for the finest scale
of the wavelet transform, the quadtree selected by the best
basis algorithm, and a zoom on the orientation of the linear
flow on each dyadic square. Figure 4 (upper row) shows
a zoom on fine geometric structure of Barbara image, and
one can see that Bandelets perform very well in these areas.
The flow-based approach improves the encoding of these
geometrically regular patterns.
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Fig. 6. Distortion curves for Lena (PSNR gain∼0.6dB)
and Barbara (PSNR gain∼2dB).
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Fig. 7. Wavelet coefficients and bandelets orientations at
finest scale (quadtree and flow computed at 0.4 bit/pixel).

5. CONCLUSION

We introduced second generation bandelet bases that are en-
tirely discrete and orthogonal and are calculated from a dis-
crete wavelet basis. The construction uses a multi-scale de-
scription of the underlying geometry and the corresponding
bandelets are regular. Image compression in a best bandelet
basis provide a clear improvement over an equivalent trans-
form coder in a wavelet basis.
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