
HAL Id: hal-00365622
https://hal.science/hal-00365622

Submitted on 3 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Landmark-based Geodesic Computation for
Heuristically Driven Path Planning

Gabriel Peyré, Laurent D. Cohen

To cite this version:
Gabriel Peyré, Laurent D. Cohen. Landmark-based Geodesic Computation for Heuristically Driven
Path Planning. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR’06), Jun 2006, New York, NY, United States. pp.2229-2236, �10.1109/CVPR.2006.163�.
�hal-00365622�

https://hal.science/hal-00365622
https://hal.archives-ouvertes.fr

Landmark-based Geodesic Computation
for Heuristically Driven Path Planning

Gabriel Peyŕe
CMAP, UMR CNRS 7641,

École Polytechnique, 91128 Palaiseau, France
gabriel.peyre@polytechnique.fr

Laurent D. Cohen
CEREMADE, UMR CNRS 7534,

Universit́e Paris Dauphine, 75775 Paris, France
cohen@ceremade.dauphine.fr

No heuristic 1 landmark 3 landmarks 20 landmarks 50 landmarks 100 landmarks

Fig. 1. In order to compute the geodesic path between two points on the surface, compution is needed on a large part of the surface when

using classical fast marching (left). When the distance map to a set of landmarks is pre-computed, and the propagation is heuristically

driven by these maps, only the colored region is explored, and it becomes smaller and smaller as the number of landmarks increases.

Abstract

This paper presents a new method to quickly extract
geodesic paths on images and 3D meshes. We use a heuris-
tic to drive the front propagation procedure of the classi-
cal Fast Marching. This results in a modification of the
Fast Marching algorithm that is similar to the A∗ algo-
rithm used in artificial intelligence. In order to find very
quickly geodesic paths between any given couples of points,
we advocate for the initial computation of distance maps
to a set of landmark points and make use of these distance
maps through a relevant heuristic. We show that our method
brings a large speed up for large scale applications that re-
quire the extraction of geodesics on images and 3D meshes.
We introduce two distortion metrics in order to find an op-
timal seeding of landmark points for the targeted applica-
tions. We also propose a compression scheme to reduce the
memory requirement without impacting the quality of the
extracted paths.

1. Previous works

The extraction of shortest paths is a building block for
a large class of applications ranging from graph theory to
computer vision. The computation can be carried over a
totally discrete setting (such as a graph) or over a discretized
domain (such as an image or a 3D mesh).

Graphs and discrete computation. The canonical
method to compute shortest paths on graphs is the Dijkstra
algorithm, see for instance [4]. Fast exploration strategies
have been used to speed up the computation. TheA∗ al-
gorithm [12] makes use of an heuristic to reduce the search
space. Other exploration strategies have been proposed in
the field of artificial intelligence, such as such as IDA∗ [10].

Images and continuous setting. In order to extract
geodesics for a continuous metric, the Fast Marching al-
gorithm [15] uses both a discrete scheme for derivation and
a front propagation. A similar algorithm was also proposed
in [18].

The minimal length properties of geodesics has been
applied in computer vision, for example to solve global
minimization problems for deformable models [3]. The
continuous nature of this method is particularly attractive
for image-based processings, for instance to extract tubular
structures and centerlines in 3D medical data [5].

Path planning: from discrete to continuous. Discrete
computation on graphs give rise to numerous schemes to
perform motion planification and the A∗ algorithm is in-
tensively used for path-finding in video games [17]. For the
case of an Euclidean metric, faster algorithms have been de-
vised that exploit specific data structures such as visibility
graphs [14].

1

The Fast Marching algorithm can be used to extract paths
with a non Euclidean metric [15]. The authors of [11] com-
pare the Fast Marching and the A∗ algorithms to perform
motion planification, but they do not propose a heuristic
modification of the Fast Marching.

2. Shortest Path: Continuous and Discrete Al-
gorithms

In this section we expose an unifying framework which
includes the Fast Marching [15], Dijkstra [4] andA∗ [12]
algorithms together with our new heuristically driven prop-
agation.

2.1. Front Propagation Methods for Shortest Path

We work on a discrete set of points and for each point
x we have access to its neighborsy, defining the relation
y ∼ x. These points can be embedded on a discretization
grid (for the Fast Marching and for our method) or can be
the vertices of a graph (for Dijkstra and A∗). Our goal is
to compute the distance functionU(x) = d(x1, x) to some
starting pointx1.

Initialization:
• Alive set: the starting pointx0;
• Trial set: the neighbors ofx0;
• Far: the set of all other grid points.
Loop:
• Let x be the Trial point with the smallest priorityP(x);
• Move it from the Trial to the Alive set;
• For each neighbory of the current pointx:

– if y is Far, then add it to Alive and compute a new value
for U(y),

– if y is Alive, recompute the valueU(y), and update it if
the new value is smaller,

– recompute the priorityP(y).
• If the end pointx = x1 is reached, stop the algorithm.

Table 1: Pseudo-code for the common framework for front
propagation.

The propagation methods label the points during the
computation according to:

• Alive is the set of points at which the distance valueU has
been computed and will not change;

• Trial is the set of next grid points to be examined and for
which an estimate ofU has been computed;

• Far is the set of all other grid points, for which there is
not yet an estimate forU .

Table 1 shows the main steps of the algorithms. Each algo-
rithm must implement the following sub-functions

• A way to update the valueU(y) at a given Trial pointy.
This computation uses the values ofU at the adjacent lo-
cations. This computation depends on the metric used,
which can be defined on a graph (for discrete methods)
or on the whole space (for continuous methods). We ex-
plain in sections 2.2 and 2.3 specific instantiations for the
Dijkstra and Fast Marching algorithms.

• A priority mapP orders the set of Alive points according
to some computational criterion. In the Fast Marching and
Dijkstra algorithm,P(x) = U(x) is the current distance
to the starting point. In our heuristical front propagation
as in the A∗ algorithm,P(x) is chosen to minimize the
number of visited points. We explain in section 4 how to
actually construct a priority functionP that makes use of
a heuristic.

2.2. Discrete Case: Dijkstra

In the discrete setting, a symmetric weightg(x, y) is
used to define the distance between two adjacent points
x ∼ y of the graph. The length of a pathv = [v1, . . . , vm],
of ℓ(v) = m adjacent pointsvi is L(v) =

∑
g(vi, vi+1),

and we define the distance between two vertices

d(x0, x1) = min
m,v

{L(v) \ ℓ(v) = m, v1 = x0, vm = x1} .

The distanceU(x) at a vertexx in the alive set is updated
during the propagation according to

U(x) = min
y∼x

(U(y) + g(x, y)).

The shortest pathv from x0 to x1 is tracked backward using

v0 = x1 and vi+1 = argmin
y∼vi

U(y).

2.3. Continuous Case: Fast Marching

In R
d, we are given a potential functiong(x) > 0,

and the weighted geodesic distance between two points
x0, x1 ∈ R

d, is defined as

d(x0, x1) = min
γ

(∫ 1

0

||γ′(t)|| g(γ(t))dt

)
, (1)

whereγ is a piecewise regular curve withγ(0) = x0 and
γ(1) = x1. Wheng = 1, the integral in (1) corresponds
to the length of the curveγ andd is the classical Euclidean
distance.

The Fast Marching uses the fact that the functionU sat-
isfies the nonlinearEikonalequation:

||∇U(x)|| = g(x). (2)

The distanceU(x) = u at a pointx = xi,j in the trial set is
updated during the propagation according to the solution of

max(u − U(xi−1,j), u − U(xi+1,j), 0)2 +
max(u − U(xi,j−1), u − U(xi,j+1), 0)2 = h2g(xi,j)

2.

This is a second order equation (the equation is written in
R

2 for simplicity) and it can be solved as detailed for exam-
ple in [2].

The geodesic curveγ from x0 to x1 can be computed
by extracting the parametric curveC(t) that solves the back
propagation equation:

dC

dt
= −

−−→
∇U with C(0) = x1.

This gradient descent is a local computation, and it only
uses the value ofU for a small fraction of the visited grid
points. Note that these grid points are those located in the
Alive set at the end of the front propagation procedure.

3. Heuristically Driven Front Propagation

In this section we explain our algorithm in the 2D set-
ting, and show some numerical results that illustrate the
main features of this method.

3.1. Propagation with a Heuristic

In order to minimize the number of Alive points at the
end of the front propagation procedure, one should use a
priority function P that tries to advance the front toward
the goal pointx1. In order to do so, we assume that, to-
gether with the the current weighted distance to the start
pointU(x) = d(x0, x), we have an estimate of the remain-
ing weighted distanceV (x) ≈ d(x1, x). Our heuristical
front propagation algorithm follows the implementation of
listing 1 with a priority map

P(x) = U(x) + V (x). (3)

The rationale behind the definition ofP is thatd(x0, x) +
d(x1, x) is minimal and constant along the geodesic path
joining x0 andx1, see [9].

Algorithm A ∗. For discrete graphs, it has been shown that
if the heuristic satisfiesV (x) 6 d(x1, x), then the extracted
geodesic is a path of minimum length. This leads to the A∗

algorithm of [12]. Various strategies have been proposed
to devise admissible heuristics, see [8] and the references
therein.

Heuristically driven Fast Marching On figure 2, one
can see a front propagation, where we have used the oracle
heuristicV (x) = λ d(x1, x), with a parameterλ ∈ [0, 1].
The valueλ = 0 corresponds to the classical Fast Marching
propagation, which results in a large region of Alive points
(colored in red). However, as we increase the value ofλ
toward 1, the explored region shrinks around the geodesic
path that linksx0 to x1.

There are however two important issues with this order-
ing of the Trial set:

• This ordering can break the monotone condition that is
required by the Fast Marching algorithm to produce a
valid approximation of the continuous underlying dis-
tance function. We show in the numerical results pre-
sented in sub-section 4.2 that the geometric error on the
extracted geodesic remains low.

• We do not have an immediate access to the remaining dis-
tanced(x, x1), since it would involve performing another
front propagation fromx1. We explain in section 4 how
to overcome this problem.

3.2. Evaluation of an Heuristic

We cast the problem of finding a good heuristic into the
problem of approximating the distance functiond(x, y) be-
tween two points(x, y) by some functioñd. We define the
heuristic using

V (x) = d̃(x1, x) ≈ d(x1, x).

This approximated distancẽd should satisfies̃d 6 d in order
not to deviate the propagation from the true shortest path
(computed withV = 0). It must be fast to evaluate and can
use a reasonable amount of pre-computed data.

To evaluate the quality of the heuristic, we propose two
metrics
• The approximation metric

E1(d, d̃) =

∫∫
|d(x, y) − d̃(x, y)|2dxdy,

is approximated during evaluation using a finite number
of precomputed distance mapsd(pi, x) to a set of points
{pi}

m
i=1 chosen at random

E1(d, d̃) =
1

m

m∑

i=1

∫
|d(pi, y) − d̃(pi, y)|2dy.

• The computation gain metric measures the usefulness of
the heuristic for extracting geodesics between a set of cou-
ples of points{(xi

0, x
i
1)}i. For each front propagation

from xi
0 to xi

1, we measure the areaAi(d̃) of the Alive set
at the end of the propagation. We also measure the area
Ai(0) of the Alive set for a propagation without heuristic.
We define the computation gain metric to be

E2(d, d̃) =
1

m

m∑

i=1

Ai(d̃)/Ai(0).

When the geodesics queries are random, these two met-
rics tends to gives the same evaluation. However, the
computation-gain metric is able to better adapt to typical
applications where queries can be be highly non-uniform
(for instance in road or tubular structure extraction).

No heuristic,3D view of the potential

0x

1x

λ = 0.5 λ = 0.8 λ = 1λ = 0

Figure 2.An example of 2D path planning. The set of alive points according to increasing heuristic is shown in red.

4. Landmark-based Front Propagation

In this section, we describe a particular implementation
of the heuristic. This heuristic is computed using an ap-
proximated distancẽd evaluated with a set of pre-computed
distances to landmark points.

4.1. Landmark-based heuristic

A new method for distance evaluation on graph has been
introduced in [8] as an admissible heuristic for the A∗ al-
gorithm. We explain why this method can be useful for our
heuristically driven Fast Marching and give a quantitative
numerical study.

This method exploits the triangular inequality, since we
have, for every couple of pointsx ety,

d(x, y) = sup
z

(
|d(x, z) − d(z, y)|

)
.

This equality is still valid in the continuous framework of
the Fast Marching, and in order to derive a useful heuristic,
one can chose a small setz1, . . . , zn of Landmark points.
The set of distance mapsdk(x) = d(zk, x) is pre-computed
once for all, and we define the approximation

d̃z1...zn
(x, y) = sup

k=1...n

(
|dk(x) − dk(y)|

)
. (4)

In the following, we drop thez1, . . . , zn dependencies and
call the approximated distancẽd. We note that this approx-
imation always satisfies the conditioñd 6 d.

Figure 3 give an intuitive explanation of the efficiency
of this approximation. In the ideal case, the geodesicγk

joining a landmarkzk to x also pass throughy. In this case,
we haved(x, y) = d̃(x, y) and there is no approximation.
But in most of the cases, this is not true, but a geodesicγk

passes close toy and d̃ is indeed a good approximation of
the real distance.

4.2. Landmark-based Path Planing

This landmark-based propagation can be used to speed-
up the computation of most path planing application, in-
cluding path finding in video games or robot path planing.

γγk γk

xx

zk
y

y y

k

Ideal case Real life case

d(
x
, y

)
d(

y,
z k

)−
d(

x
, z

k
)

=

d(
x
, y

)
d(

y,
z k

)−
d(

x
, z

k
)

>

Figure 3.Justification of the approximation properties ofd̃.

On figure 4, one can see the active region explored by
the propagation algorithm for an increasing number of land-
mark points. These points are chosen at random on the 2D
image. The explored region progressively shrinks toward
the central extracted curve when we add more points, since
the heuristic is becoming more accurate.

On figure 5, one can see a numerical evaluation of the
precision of the extracted geodesic. It reports the distortion
||γ − γ̃||H between the original geodesicγ (computed with-
out heuristic) and̃γ the one extracted with a heuristic. We
use the symmetric mean-square Hausdorff metric

||γ − γ̃||2H =
1

2

(∫

γ

min
y∈γ̃

||x − y||22dx +

∫

γ̃

min
x∈γ

||x − y||22dx
)
,

since this captures well the geometric distortion caused by
our partial propagation.

On 2D maps containing important curvilinear features
(such as the road on the example on the left), the distor-
tion caused by the heuristic is nearly not noticeable. On the
contrary, for relatively flat maps (such as the one depicted
on the right) the distortion can be relatively high (of the or-
der of a few pixels for a map of256 × 256 pixels). This is
because the salient features of this map catch the geodesic
and avoid large lateral moves when the front propagation is
modified.

In order to improve the quality of the heuristic and thus
the resulting speed-up, one has to carefully seed the land-
marks across the image. In the next section we set-up a
complete framework for the evaluation of this sampling, to-
gether with strategies to get a high-quality seeding of the
base points.

No heuristic 1 landmark 3 landmarks 12 landmarks 20 landmarks

Figure 4.Example of propagation using a landmark-based heuristic with random seeding of base points.

H
a
u
s
d
fo

r
ff

e
r
r
o
r

H
a
u
s
d
fo

r
ff

e
r
r
o
r

0
20 40 60 800 20 40 60 800

landmarks # landmarks

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

Figure 5.Distortion caused by our heuristic propagation on the extracted geodesics. The error is reported using the Hausdorff distance
expressed in pixels (the size of the image is256 × 256).

4.3. Seeding strategies for the landmarks

The quality of a sampling can be measured using the pre-
viously introduced metrics

Ei(z1, . . . , zn) = Ei(d, d̃z1...zn
) for i = 1, 2.

In order to find sampling locations{z1, . . . , zn} for the
landmarks, we use various strategies, among which :
(a) A manual sampling that exploits specific knowledge of

the 2D mapg. This semi-automatic method is not stud-
ied in this paper.

(b) A random sampling in the image.
(c) A uniform sampling according to the distanced. This

can be accomplished using the farthest point sampling
procedure proposed in [13], where one chooses

zn+1 = argmax
z

(argmin
16k6n

d(zk, z)).

(d) A uniform seeding on the boundary of the domain.
(e)A greedy strategy minimizing theE1 metric. We define

recursively the locations

zn+1 = argmin
z∈R

E1(z1, . . . , zn, z),

whereR is some small set of random candidates.
(f) Same as (e) but usingE2 instead ofE1.

Distance approximation evaluation. A good seeding
strategy should be able to put a landmark before any couple
of points in the domain, near the geodesic path connecting
these points. For a constant (i.e. Euclidean) metric, (d) is
thus the optimal sampling scheme. However, for complex
metric, this is no more the case.

On figure 6, one can see the approximated distance
d̃(x1, x) to a target pointx1, computed forn = 32 land-
marks using various seeding strategies.

On figure 7, one can see a quantitative plot of the ap-
proximation errorE1(x1, . . . , xn). The error-driven seed-
ing strategy (e) clearly performs the best as expected by def-
inition. For a smooth potentialg (left) the seeding strategy
on the boundary (d) performs well, but it fails to capture the
topology of complex 2D maps (right).

Computation-saving evaluation. In order to evaluate our
algorithm in a real setting, we have set-up a complete frame-
work using500 typical queries{(xi

0, x
i
1)}i for various 2D

Real distance to (a) Random sampling (e) Error-based sampling(d) Boundary samplingPotential g

1x

1x

1x

Figure 6.Graphical display of the approximated distanced̃(x1, x) for various seeding strategies.

0

0

-1

-2

1 2 3

(a) Random

(e) Error driven

(d) Boundary

10
log (#Landmarks)

0

-1

-2

10
log (#Landmarks)

0 1 2 3

1
0

lo
g

(E

) 1

Figure 7.Decreasing of the approximation errorE1(z1, . . . , zn)
for various seeding strategies.

maps. Some resulting shortest paths queries are shown on
the left of figure 8, they are relevant for many standard ap-
plications such as path finding in video games or robot path
planing.

On the right of figure 8, we have shown the decreasing of
the computation-saving metricE2(x1, . . . , xn) for several
sampling strategies. For the greedy sampling strategy (f),
we have used another set of 100 typical queries, in order
not to bias the computation of the errorE2.

One can see that the computation-driven sampling strat-
egy (f) clearly outperforms the other strategies. In particu-
lar, the approximation-based strategy (e) does not give good
results, mainly because typical paths are not correlated to
areas where the approximation error||d − d̃|| is large.

5. Reducing Memory Usage

5.1. Cells Representation

Classical methods, such as using an octree data structure,
can be used to reduce the memory usage of level set algo-
rithms, for example in order to perform image segmentation
[6].

Typical shortest paths queries 10
log (#Landmarks)

0 1 2 3

0

-2

-4

1
0

lo
g

(E

) 2
(a) Random

(f) Error driven

(e) Error driven

0 1 2 3

0

-2

-4

1
0

lo
g

(E

) 2

(a) Random

(f) Error driven

(e) Error driven

Figure 8.Computation speed-upE2(z1, . . . , zn) obtained with a
various number of landmarks. The areas colored in red corre-
spond to the explored region without heuristic.

We choose to implement a simple data structure to re-
duce the memory usage by allocating the grid cell on the fly
during the propagation. A typical cell data structure, for 2D
computation, is:

struct cell {
// current geodesic distance
double distance;
// either alive, trial or far
char state;
// pointers to the 4 neighbors
cell* neighbors[4]; };

0 Landmark 1 Landmark 5 Landmarks 20 Landmarks

Figure 9.Explored area for constrained path planning.

To be able to retrieve a given cell in constant time, we also
store the list of allocated cells in a hash table. This is im-
portant because when a new cell is allocated, we need to
connect it to the existing cells.

cellNULL

(0,0)

(1,0)

(1,1)
NULL

NULL

NULLHash

NULL

NULL NULL

cell

cell

This pointer-based representation of the neighboring rela-
tion is convenient to extract the geodesic with a gradient
descent. There is some memory overhead due to the ex-
plicit storage of pointers to neighbors, but the fact that our
scheme explores significantly less cells than the classical
Fast Marching allows to save much more memory, as shown
in next section. The computing time overhead due to the use
of a hash table is about 40% in all our tests.

5.2. Computation from Compressed Data

To reduce the storage requirement of the distances to
landmarkdk(x), we implement a compression procedure.
A typical implementation should
• Allow random access of the valuedk(x), without decom-

pressing the whole data.
• Be asymetric, since we do not care about the compression

time, but we need fast access to distance values.
• Give low decompression error, since we need an accurate

heuristic and we need to satisfy as much as possible the
conditiond̃ 6 d.

We use a two-steps procedure:
• Differential representation :A1(x) = d(x1, x) and

Ak+1(x) = d(xk+1, x) − dx1...xk
(xk+1, x),

where we use the approximated distanced̃x1...xk
to give

an estimate ofd(xk+1, x) using the availablek first land-
marks. This new representation remove the redundancy
that exists between the different distance maps.

• We code each mapAi using a vector quantization scheme
[7]. In our tests, we use codeblocks of size3 × 3, and we
quantize the resulting vectors ofR

9 using a codebook of
size 256. This results in a memory gain of36 : 1 with
respect to storing single precision floats.

The constraints we have on the computation from com-
pressed data are similar to the process of rendering from
compressed textures [1]. We use the differential coding
strategy to cope with the particular redundancy of distances
functions. The compression produces neither noticeable ar-
tifact nor distortion on the extracted geodesics. The compu-
tation time overhead due to decompression is about 15% in
CPU time.

6. Other Applications

Our landmark-based propagation can be applied verba-
tim to higher dimensional propagation and to triangulated
surfaces in order to speed-up shortest path queries.

6.1. Constrained Path Planning

Geodesics can be used to compute the path of a robot
with various shape and motion constraints [15]. Basically,
each additional degree of freedom add a new dimension to
the domain in which the front propagation should be per-
formed. Solving such high dimensional problems is time
and memory consuming, so the use of a heuristic is highly
desirable. In our experiment, the most important issue is the
memory used by the full-grid classical Fast Marching, and
the memory management strategy exposed in subsection 5
is crucial to scale to complex problems.

On figure 11, one can see two examples of path extrac-
tions in 2D with one rotational additional degree of free-
dom. This results in 3D front propagation, and the corre-
sponding speed function is depicted on the left. Figure 9
shows the influence of the heuristic strengthλ on the cells
explored by the front propagation.

6.2. Geodesic Extraction on 3D Meshes

The Fast Marching algorithm has been extended to 3D
meshes in [16]. Our heuristically driven front propagation
extends to 3D surfaces in a straightforward manner. We use
a constant metricg = 1 and as the surfaces considered does

No heuristic 1 landmark 3 landmarks 20 landmarks 50 landmarks 100 landmarks

Figure 10.Heuristically driven front propagation on 3D meshes, with an increasing number of landmark points.

(a) (b)

Speed function P

Figure 11.Examples of constrained path planning.

not have boundary, the uniform seeding strategy (c) gives
the best results for theE1 metric. On figure 12, one can
see the approximated distanced̃(x1, x) for various number
of landmarks. On figure 1 and 10, one can see the algo-
rithm in action on various meshes, and for various number
of landmark points.

1 landmark 5 ldm.2 ldm. 20 ldm. 100 ldm.

Figure 12.Approximation of the distance functiond(x1, x) using
d̃(x1, x) on a 3D mesh, with an increasing number of landmarks.

7. Conclusion

In this paper we have presented a simple modification of
the Fast Marching to speed up the extraction of geodesics on
images, higher dimensional data and triangulated surfaces.
This modification takes into account a heuristics computed
using a set of distances to landmarks. We reduce the mem-
ory requirement of the algorithm using specific data struc-
tures and a fast compression scheme.

References

[1] A. C. Beers, M. Agrawala, and N. Chaddha. Rendering from
compressed textures. InProc. of SIGGRAPH 1996, pages
373–378, 1996.

[2] L. Cohen. Multiple Contour Finding and Perceptual Group-
ing Using Minimal Paths.Journal of Mathematical Imaging
and Vision, 14(3):225–236, May 2001.

[3] L. D. Cohen and R. Kimmel. Global Minimum for Active
Contour models: A Minimal Path Approach.International
Journal of Computer Vision, 24(1):57–78, Aug. 1997.

[4] T. H. Cormen, C. E. Leiserson, and R. R. Rivest.Introduction
to Algorithms. MIT Press, Cambridge, Massachusetts, 1990.

[5] T. Deschamps and L. Cohen. Fast Extraction of Minimal
Paths in 3D Images and Applications to Virtual Endoscopy.
Medical Image Analysis, 5(4), December 2001.

[6] M. Droske, M. Meyer, M. Rumpf, and C. Schaller. An adap-
tive level set method for interactive segmentation of intracra-
nial tumors.Neurosurgical Research, 27, 2005.

[7] A. Gersho. Vector Quantization and Signal Compression.
Kluwer Academic Publishers, Boston, 1992.

[8] A. V. Goldberg and C. Harrelson. Computing the shortest
path: A* search meets graph theory.Technical Report MSR-
TR-2004-24, 2004.

[9] R. Kimmel, A. Amir, and A. M. Bruckstein. Finding shortest
paths on surfaces using level sets propagation.IEEE Trans.
on PAMI, 17(6):635–640, 1995.

[10] R. E. Korf. Depth-first iterative-deepening: an optimal ad-
missible tree search.Artif. Intell., 27(1):97–109, 1985.

[11] P. Melchior, B. Orsoni, O. Lavialle, A. Poty, and
A. Oustaloup. Consideration of obstacle danger level in path
planning using A* and fast-marching optimisation: com-
parative study.Signal Processing, 11(11):2387–2396, Nov.
2003.

[12] N. Nilsson. Problem-solving Methods in Artificial Intelli-
gence. McGraw-Hill, New York, 1971.

[13] G. Peyŕe and L. D. Cohen. Geodesic Remeshing Using Front
Propagation.Proc. IEEE Variational, Geometric and Level
Set Methods 2003, pages 33–40, Sept. 2003.

[14] H. Rohnert. Shortest paths in the plane with convex polygo-
nal obstacles.Inf. Process. Lett., 23(2):71–76, 1986.

[15] J. Sethian.Level Sets Methods and Fast Marching Methods.
Cambridge University Press, 2nd edition, 1999.

[16] J. Sethian and R. Kimmel. Computing Geodesic Paths on
Manifolds. Proc. Natl. Acad. Sci., 95(15):8431–8435, 1998.

[17] W. B. Stout. Smart moves: Intelligent path-finding.Game
Developer, oct. 1996.

[18] J. Tsitsiklis. Efficient Algorithms for Globally Optimal Tra-
jectories. IEEE Trans. on Automatic Control, 40(9):1528–
1538, Step. 1995.

