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Fig. 1.In order to compute the geodesic path between two points on the surfacguton is needed on a large part of the surface when
using classical fast marching (left). When the distance map to a set of &kdiis pre-computed, and the propagation is heuristically
driven by these maps, only the colored region is explored, and it becemaller and smaller as the number of landmarks increases.

Abstract Graphs and discrete computation. The canonical
method to compute shortest paths on graphs is the Dijkstra
This paper presents a new method to quickly extract algorithm, see for instance [4]. Fast exploration straegi

geodesic paths on images and 3D meshes. We use a heurisrave been used to speed up the computation. Ahal-
tic to drive the front propagation procedure of the classi- gorithm [12] makes use of an heuristic to reduce the search
cal Fast Marching. This results in a modification of the space. Other exploration strategies have been proposed in
Fast Marching algorithm that is similar to the*Aalgo- the field of artificial intelligence, such as such as IJAOQ].
rithm used in artificial intelligence. In order to find very
quickly geodesic paths between any given couples of points|mages and continuous setting. In order to extract
we advocate for the ini_tial computation of distance maps geodesics for a continuous metric, the Fast Marching al-
to a set of landmark points and make use of these distanceyqrithm [15] uses both a discrete scheme for derivation and
maps through a relevant heuristic. We show_thqt our methody front propagation. A similar algorithm was also proposed
brings a large speed up for large scale applications that re- [18].
quire the extraction of geodesics on images and 3D meshes. The minimal length properties of geodesics has been
We introduce two distortion metrics in order to find an op- applied in computer vision, for example to solve global
timal seeding of landmark points for the targeted applica- inimization problems for deformable models [3]. The
tions. We also propose a compression scheme to reduce thentinuous nature of this method is particularly attrativ
memory requirement without impacting the quality of the ¢4 image-based processings, for instance to extractambul

extracted paths. structures and centerlines in 3D medical data [5].

Path planning: from discrete to continuous. Discrete

computation on graphs give rise to numerous schemes to
The extraction of shortest paths is a building block for perform motion planification and the*Aalgorithm is in-

a large class of applications ranging from graph theory to tensively used for path-finding in video games [17]. For the

computer vision. The computation can be carried over acase of an Euclidean metric, faster algorithms have been de-

totally discrete setting (such as a graph) or over a disrdti  vised that exploit specific data structures such as vigjbili

domain (such as an image or a 3D mesh). graphs [14].

1. Previous works



The Fast Marching algorithm can be used to extract pathse A way to update the valu& (y) at a given Trial point.
with a non Euclidean metric [15]. The authors of [11] com-  This computation uses the valueslofat the adjacent lo-

pare the Fast Marching and the Algorithms to perform cations. This computation depends on the metric used,
motion planification, but they do not propose a heuristic which can be defined on a graph (for discrete methods)
modification of the Fast Marching. or on the whole space (for continuous methods). We ex-
plain in sections 2.2 and 2.3 specific instantiations for the
2. Shortest Path: Continuous and Discrete Al-  Dilkstra and Fast Marching algorithms. _
gorithms o A priority mapP orders the set of Alive points according

to some computational criterion. In the Fast Marching and
In this section we expose an unifying framework which  Dijkstra algorithm,P(z) = U(z) is the current distance

includes the Fast Marching [15], Dijkstra [4] antf [12] to the starting point. In our heuristical front propagation
algorithms together with our new heuristically driven prop  as in the X algorithm, P(z) is chosen to minimize the
agation. number of visited points. We explain in section 4 how to

actually construct a priority functio® that makes use of
2.1. Front Propagation Methods for Shortest Path a heuristic.

We work on a discrete set of points and for each point 2.2. Discrete Case: Dijkstra
2 we have access to its neighbarsdefining the relation
y ~ x. These points can be embedded on a discretization
grid (for the Fast Marching and for our method) or can be
the vertices of a graph (for Dijkstra and“A Our goal is
to compute the distance functiéh(z) = d(x1, z) to some
starting pointz;.

In the discrete setting, a symmetric weigfite, y) is
used to define the distance between two adjacent points
x ~ y of the graph. The length of a path= [v1,...,v.],
of £(v) = m adjacent points; is L(v) = >_ g(vi, vit1),
and we define the distance between two vertices

d(xo,z1) = min {L(v) \ £(v) = m,v1 = T, U = T1}.

Initialization:
o Alive set: the starting pointo; The distancé/(x) at a vertexx in the alive set is updated
« Trial set: the neighbors afy; during the propagation according to
e Far: the set of all other grid points. U(z) = min(U(y) + g(z.y)).
Loop: Y . .
e Let z be the Trial point with the smallest priori (z); The shortest path from z to x; is tracked backward using
¢ Move it from the Trial to the Alive set; vo=a1 and vy = argminU(y).
e For each neighbay of the current point: Y~

_P;%,iUs(F?r, then add it to Alive and compute a new value 2.3. Continuous Case: Fast Marching

y ! . . .
—if y is Alive, recompute the valu€ (y), and update it if In R?, we are given a potential function(z) > 0,
the new value is smaller, and the weighted geodesic distance between two points

PR
— recompute the prioritf(y). g, z1 € R% is defined as

o If the end pointr = x; is reached, stop the algorithm.

o e =min ([ OlGO), @

where~ is a piecewise regular curve wit(0) = z, and
~v(1) = x;. Wheng = 1, the integral in (1) corresponds
The propagation methods label the points during the to the length of the curve andd is the classical Euclidean

Table 1: Pseudo-code for the common framework for front
propagation.

computation according to: distance.

« Aliveis the set of points at which the distance vallibas The Fast Marching uses the fact that the functiosat-
been computed and will not change; isfies the nonlineaEikonalequation:

e Trial is the set of next grid points to be examined and for IVU(2)] = ¢(x). @)

which an estimate of/ has been computed; _ _ _ _ _
« Far is the set of all other grid points, for which there is The distancé/(z) = u ata pointz = x; ; in the trial set is
not yet an estimate fdy . updated during the propagation according to the solution of
Table 1 shqws the main steps of_ the algorithms. Each algo- max(u — U(zio1), u—U(zit1,),0)2 +
rithm must implement the following sub-functions max(u — U(zij—1), u — U(xi j4+1),0)% = h2g(z; ;).



This is a second order equation (the equation is written in e This ordering can break the monotone condition that is
R? for simplicity) and it can be solved as detailed for exam-  required by the Fast Marching algorithm to produce a
plein [2]. valid approximation of the continuous underlying dis-
The geodesic curve from x( to x; can be computed tance function. We show in the numerical results pre-
by extracting the parametric cur¢gt) that solves the back sented in sub-section 4.2 that the geometric error on the

propagation equation: extracted geodesic remains low.
ac . ¢ We do not have an immediate access to the remaining dis-
P -VU  with  C(0) = ;. tanced(z, x1), since it would involve performing another

front propagation fromx;. We explain in section 4 how
This gradient descent is a local computation, and it only  to overcome this problem.

uses the value of/ for a small fraction of the visited grid
points. Note that these grid points are those located in the3.2. Evaluation of an Heuristic

Alive set at the end of the front propagation procedure. o o
We cast the problem of finding a good heuristic into the

problem of approximating the distance functié(x, y) be-

tween two pointgz, y) by some functioni. We define the
In this section we explain our algorithm in the 2D set- heuristic using

ting, and show some numerical results that illustrate the

main features of this method. V(z) = d(zy,z) ~ d(x1, ).

3. Heuristically Driven Front Propagation

3.1. Propagation with a Heuristic This approximated distanceshould satisfied < d in order

In order to minimize the number of Alive points at the not to deviat(_e the propagation from the true shortest path
end of the front propagation procedure, one should use alcomputed withV” = 0). It must be fast to evaluate and can
priority function P that tries to advance the front toward US€ @ reasonable amount of pre-computed data.
the goal pointz;. In order to do so, we assume that, to- Tq evaluate the quality of the heuristic, we propose two
gether with the the current weighted distance to the startMetrics
point U (x) = d(z, ), we have an estimate of the remain- ® The approximation metric
ing weighted distanc® () ~ d(z1,x). Our heuristical

front propagation algorithm follows the implementation of Ei(d,d) = // |d(x,y) — d(z,y)[*dz dy,
listing 1 with a priority map

Pz) = U(z) + V(2). ©) is approximated during evaluation using a finite number
of precomputed distance mapg;, ) to a set of points
The rationale behind the definition &f is thatd(zo, z) + {pi}, chosen at random

d(z1,x) is minimal and constant along the geodesic path
joining 2, andx 1, see [9]. ~ 1 & ~

e Ey(d,d) = — > [ ld(pi.y) — d(pi.y) *dy.
Algorithm A *.  For discrete graphs, it has been shown that =
if the heuristic satisfie¥ (z) < d(x1, z), then the extracted e The computation gain metric measures the usefulness of
geodesic is a path of minimum length. This leads to the A the heuristic for extracting geodesics between a set of cou-
algorithm of [12]. Various strategies have been proposed ples of points{(x},x%)};. For each front propagation
to devise admissible heuristics, see [8] and the references from z to z¢, we measure the ared(d) of the Alive set

therein. at the end of the propagation. We also measure the area
A;(0) of the Alive set for a propagation without heuristic.
Heuristically driven Fast Marching On figure 2, one We define the computation gain metric to be
can see a front propagation, where we have used the oracle .
heuristicV (x) = Ad(x1,x), with a parametei € [0, 1]. ~ 1 =
’ . o Es(d,d) = — i(d)/A;(0).
The value) = 0 corresponds to the classical Fast Marching 2(d,d) m ; Ai(d)/A:(0)

propagation, which results in a large region of Alive points

(colored in red). However, as we increase the value of When the geodesics queries are random, these two met-

toward 1, the explored region shrinks around the geodesicrics tends to gives the same evaluation. However, the

path that linkse, to ;. computation-gain metric is able to better adapt to typical
There are however two important issues with this order- applications where queries can be be highly non-uniform

ing of the Trial set: (for instance in road or tubular structure extraction).
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Figure 2.An example of 2D path planning. The set of alive points according to intrgdeuristic is shown in red.
4. Landmark-based Front Propagation

In this section, we describe a particular implementation
of the heuristic. This heuristic is computed using an ap-
proximated distance evaluated with a set of pre-computed
distances to landmark points.

4.1. Landmark-based heuristic

A new method for distance evaluation on graph has been
introduced in [8] as an admissible heuristic for the &-
gorithm. We explain why this method can be useful for our
heuristically driven Fast Marching and give a quantitative

Yk
Ideal case Real life case

Figure 3.Justification of the approximation properties&;f

numerical study. On figure 4, one can see the active region explored by
This method exploits the triangular inequality, since we the propagation algorithm for an increasing number of land-

have, for every couple of pointsety, mark points. These points are chosen at random on the 2D
image. The explored region progressively shrinks toward

d(z,y) = sup(|d(x, z) —d(z, y)\). the central extracted curve when we add more points, since

the heuristic is becoming more accurate.
This equality is still valid in the continuous framework of ~ ©On figure 5, one can see a numerical evaluation of the
the Fast Marching, and in order to derive a useful heuristic, Precision of the extracted geodesic. It reports the distort
one can chose a small set ..., z, of Landmark points. |7 — 7l between the original geodesjcomputed with-
The set of distance mag () = d(z1, ) is pre-computed out heuristic) andy the one extracted with a heuristic. We
once for all, and we define the approximation use the symmetric mean-square Hausdorff metric

1
. by =31 = 5 ( [ mine ~ ylide + [ minfe — yfaz),

by sn(ew) = s (Jdi(e) —di(w)]). (@ 2\ /e

o since this captures well the geometric distortion caused by

In the following, we drop they, ..., z, dependencies and  our partial propagation.
call the approximated distande We note that this approx- On 2D maps containing important curvilinear features
imation always satisfies the conditidng d. (such as the road on the example on the left), the distor-

Figure 3 give an intuitive explanation of the efficiency tion caused by thg heuristic is nearly not noticeable. On the
of this approximation. In the ideal case, the geodegic contrary, for relatively flat maps (such as the one depicted

.7 der of a few pixels for a map &f56 x 256 pixels). This is

we haved(z,y) = d(z,y) and there is no approximation. g K .
because the salient features of this map catch the geodesic

But in most of the cases, this is not true, but a geodesic g e
passes close tg andd is indeed a good approximation of and avoid large lateral moves when the front propagation is

h Ldi _ modified.
the real distance In order to improve the quality of the heuristic and thus
4.2. Landmark-based Path Planing the resulting speed-up, one has to carefully seed the land-

marks across the image. In the next section we set-up a
This landmark-based propagation can be used to speedeomplete framework for the evaluation of this sampling, to-
up the computation of most path planing application, in- gether with strategies to get a high-quality seeding of the
cluding path finding in video games or robot path planing. base points.
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Figure 4.Example of propagation using a landmark-based heuristic with rand@uisg of base points.
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Figure 5.Distortion caused by our heuristic propagation on the extracted geode§tos error is reported using the Hausdorff distance
expressed in pixels (the size of the imagesé x 256).

4.3. Seeding strategies for the landmarks whereR is some small set of random candidates.

The quality of a sampling can be measured using the pre- (f) Same as (e) but usinfg; instead off;

viously introduced metrics
Distance approximation evaluation. A good seeding

Ei(z1,...,20) = Bi(d,d,..2,) for i=1,2. strategy should be able to put a landmark before any couple
In order to find sampling location§z1, ..., z,} for the of points.in the domain, near the geodgsic path copnectir_lg
landmarks, we use various strategies, among which : these points. For a constant (i.e. Euclidean) metric, (d) is

(a) A manual sampling that exploits specific knowledge of thus the optimal sampling scheme. However, for complex

the 2D maypy. This semi-automatic method is not stud- metric, t.hls is no more the case. . :
ied in this paper. ~ On figure 6, one can see the approximated distance

(b) A random sampling in the image. d(z1,x) to a target pointz;, computed fom = 32 land-

. . . . . marks using various seeding strategies.
() A uniform samp!lng accqrdmg to the d|staqde This . On figure 7, one can see a quantitative plot of the ap-
can be accomplished using the farthest point sampling

. proximation errorE (x1,...,2,). The error-driven seed-
procedure proposed in [13], where one chooses ing strategy (e) clearly performs the best as expected by def
Zny1 = argmax(argmin d(zy, 2)). inition. For a smooth potentiaf (left) the seeding strategy
z Isksn on the boundary (d) performs well, but it fails to capture the
(d) A uniform seeding on the boundary of the domain. topology of complex 2D maps (right).
(e) A greedy strategy minimizing the; metric. We define
recursively the locations Computation-saving evaluation. In order to evaluate our

algorithm in a real setting, we have set-up a complete frame-

Fntl = arf;ergin Er(z,-- -5 2n,2), work using500 typical queries{(z§, z%)}; for various 2D
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Figure 6.Graphical display of the approximated distanﬁ(ecl, x) for various seeding strategies.
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Figure 7.Decreasing of the approximation errdt (z1, ..., zn)
for various seeding strategies.

(a) Random

——— (e) Error driven
maps. Some resulting shortest paths queries are shown o (f) Error driven
the left of figure 8, they are relevant for many standard ap-

plications such as path finding in video games or robot path

planing.
On the right of figure 8, we have shown the decreasing of
the computation-saving metri€s (x4, .. .,z,) for several

sampling strategies. For the greedy sampllng strategy (f),
we have used another set of 100 typical queries, in order Typical shortest paths queries
not to bias the computation of the errbs. Figure 8.Computation speed-ufiz(z1, . .., 2, ) obtained with a
One can see that the Computation_driven samp]ing Strat_VariOUS number of landmarks. The areas colored in red corre-
egy (f) clearly outperforms the other strategies. In partic SPOnd to the explored region without heuristic.
lar, the approximation-based strategy (e) does not give goo
results, mainly because typical paths are not correlated tod
areas where the approximation erfdr— d| is large.

1 2
log, (#Landmarks )

We choose to implement a simple data structure to re-
uce the memory usage by allocating the grid cell on the fly
during the propagation. A typical cell data structure, fbr 2
computation, is:

5. Reducing Memory Usage

struct cell {
/'l current geodesic distance
doubl e di stance;
Classical methods, such as using an octree data structure, /1 either alive, trial or far
can be used to reduce the memory usage of level set algo- char state;
rithms, for example in order to perform image segmentation /1 pointers to the 4 neighbors
[6]. cell* nei ghbors[4]; };

5.1. Cells Representation
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Figure 9.Explored area for constrained path planning.

To be able to retrieve a given cell in constant time, we also e We code each mag; using a vector quantization scheme

store the list of allocated cells in a hash table. This is im- [7]. In our tests, we use codeblocks of size 3, and we

portant because when a new cell is allocated, we need to quantize the resulting vectors Bf using a codebook of

connect it to the existing cells. size 256. This results in a memory gain3sf : 1 with
respect to storing single precision floats.

Hash The constraints we have on the computation from com-
pressed data are similar to the process of rendering from
compressed textures [1]. We use the differential coding

D stratggy to cope with the particular redundancy of.distance

(1:0) functions. The compression produces neither noticeable ar

0,01 tifact nor distortion on the extracted geodesics. The cempu

e NULL .- NULL tation time overhead due to decompression is about 15% in
.................... CPU time.

This pointer-based representation of the neighboring rela o
tion is convenient to extract the geodesic with a gradient 6. Other Applications

descent. There is some memory overhead due to the ex- Our landmark-based propagation can be applied verba-

plicit storage of p0|r.1ter.s. to neighbors, but the fact that OU 4im to higher dimensional propagation and to triangulated
scheme explores significantly less cells than the classical

Fast Marching allows to save much more memory, as Shownsurfaces in order to speed-up shortest path queries.
in next section. _The computing time overhead due to the useg 1 constrained Path Planning
of a hash table is about 40% in all our tests.
Geodesics can be used to compute the path of a robot
5.2. Computation from Compressed Data with various shape and motion constraints [15]. Basically,
each additional degree of freedom add a new dimension to

To reduce the storage requirement of the distances tohe domain in which the front propagation should be per-
landmarkdy, (), we implement a compression procedure. formed. Solving such high dimensional problems is time
A typical implementation should and memory consuming, so the use of a heuristic is highly
e Allow random access of the valuk (z), without decom-  desirable. In our experiment, the most important issuedis th

pressing the whole data. memory used by the full-grid classical Fast Marching, and
e Be asymetric, since we do not care about the compressiorthe memory management strategy exposed in subsection 5
time, but we need fast access to distance values. is crucial to scale to complex problems.

« Give low decompression error, since we need an accurate On figure 11, one can see two examples of path extrac-
heuristic and we need to satisfy as much as possible thdions in 2D with one rotational additional degree of free-
conditiond < d. dom. This results in 3D front propagation, and the corre-

We use a two-steps procedure: sponding speed function is depicted on the left. Figure 9

shows the influence of the heuristic strengtbn the cells

o Differential representation 4, (z) = d(z1,«) and explored by the front propagation.,

A1 (@) = d@p41,2) = dayay (@1, 2), 6.2. Geodesic Extraction on 3D Meshes

where we use the approximated distaﬁgg,wk to give The Fast Marching algorithm has been extended to 3D
an estimate ofl(zx1, x) using the availablé first land- meshes in [16]. Our heuristically driven front propagation
marks. This new representation remove the redundancyextends to 3D surfaces in a straightforward manner. We use
that exists between the different distance maps. a constant metrig = 1 and as the surfaces considered does
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Figure 10 Heuristically driven front propagation on 3D meshes, with an increasinglwer of landmark points.
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