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Abstract. This paper models a texture as a 2D mapping onto a nonlin-
ear manifold representing the local structures of the image. This manifold
is learned from the set of local patches from an exemplar texture. A mul-
tiscale decomposition of this manifold valued representation is computed
that mimics the orthogonal wavelet transform. The key ingredient of this
decomposition is a geometric association field that drives the computa-
tions along the manifold. Iterated predictions leads to the computation of
details coefficients over the features manifold. The resulting transform is
invertible, non-linear and represents efficiently the local geometric struc-
tures of the exemplar. The multiscale coefficients of this transform are
used to perform analysis and synthesis of textures.

Keywords: Manifold of patches, non linear wavelet transform, image ge-
ometry, texture synthesis, texture modification.

1 Geometric Modeling of Images

Multiscale decompositions. The classical isotropic wavelet transform [10] cannot
capture efficiently geometrical structures of textures. The local anisotropy of
edges requires specific constructions such as the curvelets frame of Candès and
Donoho [1] or the bandelets framework of Le Pennec and Mallat [6].

Geometric structure propagation. The local geometry of images can be described
as points on a curved manifold. Lee et al. [7] show how the edge manifold emerges
from the set of patches extracted from natural images. To handle more complex
texture features we propose to learn this manifold from an exemplar image.
Computation are performed along this manifold using a local connexion de-
scribing how structures propagate in the image plane. Mumford first introduced
this notion for edges propagation with the elastica model [12]. Computer vi-
sion scientists such as Williams and Jacobs [17] proposed in some cases efficient
approximations of this edge propagation field.



Texture synthesis. Pioneer work of Julesz [5] states filtering rules for the prob-
abilistic characterization of textures. The wavelet domain modeling of Heeger
and Bergen [4] synthesizes cloudy textures.

Most successful approaches for texture synthesis in graphics are based on non-
parametric copy of small patches from an original texture, see for example Efros
and Leung [3]. Recent approaches such as the method of Lefebvre and Hoppe
in [8] have re-casted this non-parametric patches sampling into a multiscale
framework. A random shuffling of patches coordinates allows to deviate from
the original texture. These modifications can be seen roughly as wavelet details
that are added at various scales during the synthesis.

Our manifold description of textures paves the way between multiscale tex-
ture descriptions [4] and more complex, non parametric sampling [3,8].

Manifold valued analysis. Modeling data using a manifold structure can per-
formed using non-linear estimation algorithms such as Isomap [15] or LLE [13].
These dimensionality reduction procedures enable the analysis of libraries of
images such as the ones studied by Donoho and Grimes [2].

Processing of manifold valued functions is studied by Ur-Raman et al. [16]
who propose a wavelet-like decomposition for such data. Our multiscale feature
valued analysis presented in section 4 is inspired by this work but is adapted to
geometric images and textures. In particular, our scheme takes into account the
relative position of two features in the image, which enables the generation of
anisotropic geometries such as elongated features.

Recent approaches to image synthesis in computed graphics use manifold
modeling of textures. Matusik et al. define a manifold from a set of textures [11].
Lefebvre and Hoppe introduce a mapping of an image into a higher dimensional
appearance space [9]. This embedding allows a synthesis with high fidelity and
spacial variations.

2 Manifolds as Image Models

We model the local structure of textures using a set of manifolds {Mw}w
computed from an exemplar texture fe. The manifoldMw is composed of patches
of fixed size w that are extracted from the original texture fe

Mw def.

=
{

pw
t \ t ∈ [0, 1]2

}

⊂ L2([−w/2, w/2]2) (1)

where ∀x ∈ [−w/2, w/2]2, pw
t (x) = fe(x− t). (2)

As explained by Grimes and Donoho [2], the set Mw might have a complex
structure and be non-differentiable even for a simple images fe. Figure 1 shows
some examples of patches extracted from a discretized texture. In numerical
applications, the image fe is composed of n×n pixels, soMw is a set of patches
considered as vectors of R

m×m with m = wn.



Fig. 1. Two examples of textures and some local geometric structures.

Models and estimation. A gray scale image is a mapping f : {0, . . . , n−1}2 → R

from pixels to real numbers. Our manifold description of images corresponds to
a factorization

f : {0, . . . , n− 1}2
f̃
−→Mw0

Φw0−→ R (3)

where the manifold Mw0 is estimated from an exemplar fe (that might be dif-
ferent from f) and the scale parameter w0 > 0 represents the smallest size of a
typical feature. Note that the mapping Φw0

depends only on Mw0 and thus on
fe and can be computed independently of f . Factorization (3) extends to color
images by considering each channel independently.

In this paper, we are interested by the mapping f̃ which locates an image
feature f̃(x) ∈Mw0 of size w0 at location x in the image plane. The function Φw0

controls the display of each feature, and we assume a simple sampling process

Φw0
: p ∈Mw0 7→ p(0) ∈ R.

We note that recent works in harmonic analysis has focussed on the processing
of such function Φw0

∈ L2(M) defined over a manifold domainM. In particular
Fourier analysis of this function can be carried using eigenvector of the Laplace
Beltrami operator. Szlam et al. [14] use this spectral decomposition to perform
a non-linear filtering.

In this paper, instead of modifying Φw0
, we propose to modify f̃ which in-

volves two key ingredients.

Estimating f̃ such that factorization (3) hold at least approximately. To that
end we perform a simple local best fit

f̃ [k]
def.

= argmin
g∈Mw0

nw0/2
∑

t1=−nw0/2

nw0/2
∑

t2=−nw0/2

|f [k + t]− g[t]|2. (4)

The minimization of equation (4) extends to color images. In practice a color
equalization is performed on fe prior to the matching as shown in image 2.

Performing signal processing for manifold-valued functions. The general frame-
works of Ur Uaman et al. [16] is not suited for processing patches that have
some spacial connexions. We develop our own computation model and derive
a multiscale decomposition in this paper.



Examples of texture representations. In the case of a texture manifold Mw0

learned from an exemplar fe using equation (1), the estimation of f̃ from a
given texture f defines a 2D-valued mapping

ϕ : [0, 1]2 → [0, 1]2, where ∀x ∈ [0, 1]2, f̃(x) = pw0

ϕ(x) ∈M
w0 ,

where pw
t is the patch extracted from fe at some position t, as defined by equa-

tion (1). A similar coordinate mapping ϕ is generated by the texture synthesis
algorithm of Lefebvre and Hoppe [8,9].

Exemplar equalized Texture Coordinate mapping Reconstructedfe fe f ϕ
˜

f0

Fig. 2. Example of coordinate mapping ϕ estimated for two different pairs of textures
(fe, f). The mapping ϕ(x) = (ϕ1(x), ϕ2(x)) ∈ R

2 is depicted using a red color for ϕ1

and green for ϕ2. Prior to computing ϕ, the colors of fe are equalized to match those
of f . The reconstructed texture is Φw0 ◦ f̃ .

Figure 2 shows two examples of mappings ϕ estimated for target textures f of
a size twice bigger (in pixels) than the size of the exemplar fe. For natural images,
the mapping ϕ is usually piecewise linear and exhibit jump discontinuities. The
right column of figure 2 shows the function Φw0

◦ f̃ ≈ f reconstructed from the
manifold representation f̃ . This reconstruction satisfies (Φw0

◦ f̃)(x) = fe(ϕ(x)).
If the learned manifold Mw0 does not contains the local geometric structures
of f , the reconstruction might differ from the original texture. On the example
of figure 2 (upper row), one can see that the green line features of the pepper
image are lacking.

3 Association Field over the Patch Manifold

The mean computation of two features g, g′ ∈ Mw must take into account
the relative positions of the features in the image to process. The two features



are thus assumed to be samples of some manifold valued function f̃ such that
f̃(x) = g ∈ Mw and f̃(x′) = g′ ∈ Mw. For the purpose of our multiscale
processing framework, one only needs to compute such average for horizontal
ω = (1, 0) and vertical ω = (0, 1) alignements of features. We thus assume
that x − x′ = wω. We describe the computation of the mean mapping in the
horizontal case, the vertical one being similar. Starting from two feature elements
g, g′ ∈Mw, a new patch is computed by mixing the right side of g with the left
side of g′

µω(g, g′)(x)
def.

=

{

g(x1 + w/2, x2) if x1 < 0,
g′(x1 − w/2, x2) if x1 > 0.

The mean mω(g, g′) ∈ Mw of g and g′ in the direction ω is then computed as
the feature that best matches this mixing image

mω(g, g′)
def.

= argmin
h∈Mw

||µω(g, g′)− h||.

Figure 3 illustrates the process of mean features computationsMw.

(g , g ′ )g
′

w

g mµ
ω ω(g , g ′ )

Fig. 3. Computation of the mean mω(g, g′) of two edge features g, g′ ∈ Mw along
direction ω = (1, 0).

This numerical algorithm is a simple way to estimate an association field
between feature elements. Similar ideas are used in graphics for texture synthesis
using copy of patches, see for instance [3,8]. More complex approaches relying on
a biological or variational modeling of the association field could be used [12,17].

4 Multiscale Feature-valued Transform

The multiscale transform decomposes a given patch valued image f̃ : [0, 1]2 7→
Mw0 of n × n values into a set of n2 coefficients {dj}

J
j=1 ∪ {f̃J} that encodes

at each scale j 6 J
def.

== log2(n
2) the details needed to reconstruct the features

of the original texture. This transform is inspired by the interpolating manifold



wavelet decomposition of Ur-Raman et al. [16] but with important differences
that make it suitable for the analysis of local image features.

Manifold parameterization. In order to carry computations along the manifold
Mw we assume that it is globally parameterized by a bijective mapping

γw : Ω ⊂ R
p →Mw. (5)

Such a parameterization is hardly available in practice. In numerical applications,
we compute an approximate mapping using the Locally Linear Embedding [13].
The goal of this dimensionality reduction is to compute wavelet coefficients as
differences in the parameter domain d = γw(g) − γw(g′) ∈ R

p of two patches
g, g′ ∈Mw. Ur-Raman et al. [16] define a wavelet difference d as a vector in the
tangent plane of the manifold that is tangent to the geodesic joining g and g′ and
whose magnitude is the length of the geodesic. We use a parametric approach to
cope with our patch-valued data. The value of the dimensionality p should reflect
the complexity of the local geometry of fe and we use p = 5 in our numerical
applications.

Function [{dω
j }j,ω, f̃J ] = multiscale transform fwd(f̃).

Input : feature valued image f̃ ,
Output : detail coefficients dω

j for j = 1, . . . , J and ω ∈ {(1, 0), (0, 1)},
coarse approximation at scale J , fJ .

Initialization : set f̃0 = f̃ .
For j = 1, . . . , J = log

2
(n),

Set wj = 2j/n.
(Expand) Consider fj [k] = fj−1[k] ∈ Mwj .
For ω = (1, 0) and then ω = (0, 1)

(Split) Compute even and odd set of coefficients:
fe

j [k1, k2] = fj [2k1, k2] and fo
j [k1, k2] = fj [2k1 + 1, k2].

(Extract) Compute µ = mω(fe
j [k1, k2], f

e
j [k1 + 1, k2]) and set

dω
j [k1, k2] = γwj

(µ) − γwj
(fo

j [k1, k2]) and fj [k1, k2] = fe
j [k1, k2].

(Swap) Switch lines and columns : fj [k1, k2] = fj [k2, k1].
End

End

Table 1: Pseudo code for the forward feature valued transform.

Reconstruction from the wavelet coefficients requires the computation of the
inverse mapping γ−1

w . In numerical applications whereMw is estimated using a
discrete set of points, we use a nearest neighbor search

∀x ∈ R
d, γ−1

w (x)
def.

= argmin
g∈M

||γw(g)− x||2ℓ2 .



Feature-valued Wavelet Decomposition In the following, we use cyclic boundary
conditions, which means that we formally write v[k] = v[k + n] for a vector
v ∈ R

n. For the analysis of non-periodic textures, we use an extension by sym-
metrization along the boundaries of the image.

The algorithm starts with an initial feature valued mapping f̃0 = f̃ of n× n
values. Each step generates successively coarser features valued images f̃j [k] ∈
Mwj of n/2j × n/2j coefficients, with wj = 2j/n.

Each column of the array f̃j is processed and we drop the column index to
simplify the notations. The same computation is then performed on the rows of
the array, as described in the pseudo code 1. The current vector f̃j is split into
even and odd coefficients

∀ k = 0, . . . , n/2j − 1, f̃e
j [k]

def.

= f̃j [2k] and f̃o
j [k]

def.

= f̃j [2k + 1].

The even coefficients are used to predict the values of the odd coefficients using
the averaging operator described in section 3

f̃o
j [k] ≈ µ

def.

= mω(f̃e
j [k], f̃e

j [k + 1]) where ω = (1, 0).

The wavelet decomposition at scale j along direction ω encodes the prediction
error, measured using differences computed over the parameter domain

dω
j [k]

def.

= γwj
(µ)− γwj

(f̃o
j [k]) ∈ R

p.

The even coefficients are then copied f̃j = f̃e
j in order to be further processed

along the rows. Once f̃j as been processed, the resulting feature valued image

of n/2j+1 × n/2j+1 values is copied into f̃j+1 considered as taking values into
the coarser manifold Mwj+1 . Note that at each iteration of the analysis, the
assignment f̃j ← f̃j−1 assumes a switch from elements f̃j−1[k] ∈ Mwj−1 to

elements f̃j [k] ∈Mwj .

The resulting wavelet transform can be inverted by retrieving the odd coef-
ficients f̃o

j from the available details dω
j and even coefficients f̃e

j = f̃j

f̃o
j [k] = γ−1

wj
(γwj

(f̃e
j [k])− dω

j [k]).

The pseudo code 1 implements the forward transform, whereas the pseudo code
2 implements the reverse transform. Figure 7 (b) shows the magnitude of the
wavelet coefficients packed similarly to the orthogonal wavelet coefficients [10].



Function f̃ = multiscale transform bwd({dω
j }j,ω, fJ).

Input : detail coefficients dω
j for j = 1, . . . , J and ω ∈ {(1, 0), (0, 1)},

coarse approximation at scale J , fJ .
Output : feature valued image f̃ .

Initialization : set f̃J = f̃ .
For j = J = log

2
(n), . . . , 1,

Set wj = 2j/n.
For ω = (0, 1) and then ω = (1, 0)

(Reconstruct) Compute µ = mω(fj [k1, k2], fj [k1 + 1, k2]) and set
fo

j [k1, k2] = γ−1

wj
(µ − dω

j [k1, k2]) and fe
j [k1, k2] = fj [k1, k2].

(Join) Compute coefficients:
fj [2k1, k2] = fe

j [k1, k2] and fj [2k1 + 1, k2] = fo
j [k1, k2].

(Swap) Switch lines and columns : fj [k1, k2] = fj [k2, k1].
End

(Contract) Consider fj−1[k] = fj [k] ∈ Mwj−1 .
End

Output f̃ = f̃0.

Table 2: Pseudo code for the backward feature valued transform.

5 Texture Analysis and Synthesis

In this section, an input texture fe is used to provide an estimation of the
feature manifoldsMw for dyadic sizes w. The multiscale transform is used with
these manifolds to perform texture synthesis and modification.

5.1 Texture Synthesis

An ideal interpolation of a coarse scale sets of coefficients can be constructed
using the inverse multiscale transform. The user defines the four coefficients
composing f̃j0 for the scale j0 = 1 (they are chosen at random in our examples).
The wavelet coefficients {dω

j }j,ω are set to zero in order to deviate as little as
possible from the exemplar texture fe. Coefficients at scale j = 1 define four
corners of the texture and successive steps in the backward transform (pseudo-
code 2) perform dyadic refinements which compute feature valued functions f̃j

of increasing dyadic sizes. The corresponding images fj
def.

= (Φwj
◦ f̃j) have 2j×2j

pixels and can be seen as a non linear interpolation. The final synthesized texture

is f
def.

= (ΦwJ
◦ f̃). The pixels of these intermediate images are sampled from the

exemplar texture via a coordinate mapping fj [k] = fe[ϕj [k]] and the mapping ϕj

is refined through the iterations. Figure 4 shows the iterations of the synthesis
algorithm which refines fj and ϕj .

Figure 5 shows two examples of texture synthesis. Note that the size of the
synthesized textures can be arbitrary large. We use periodic boundary conditions
for the backward transform so that the resulting texture is periodic (although
the exemplar needs not be) and tiles the plane.



f7f6 ϕ6ϕ5

fe

f = f8 ϕ = ϕ8

Exemplar

Synthesized Coordinate mapping

Fig. 4. Progression of the synthesis algorithm.

SynthetizedExemplar fe
f SynthetizedExemplar fe

f

Fig. 5. Two examples of texture synthesis using zero padding in the multiscale domain.

In order to deviate from the original texture, one can use non-zero wavelet co-
efficients. More precisely, we define a parametric texture model over the wavelet
coefficients using

∀ j > 0, ∀ω, ∀ k ∈ {0, . . . , n/2j − 1}2 dω
j [k] ∼ X(σj),

where ∼ means that each coefficient is drawn from a gaussian random variable
X(σj) of mean 0 and variance σj which allows a user control of the synthesis.
Figure 6 shows different examples of texture synthesis using various spectral
content σj .

5.2 Texture Modification

In contrast to texture synthesis, texture modification requires both the for-
ward and backward multiscale transform. The modification process takes as
input an original texture f , which is to be modified according to some exemplar
texture fe. This exemplar texture is used as the exemplar model for the feature
valued multiscale transform.

In a pre-processing step, a feature valued mapping f̃ is computed from f
following equation (4). The forward transform described in listing 1 is used
to decompose f̃ as wavelets details {dω

j }j,ω. The texture can be modified in
the wavelet domain by applying a non-linear thresholding that removes small



Original

Fig. 6. Texture generation with varying multiscale spectral distributions. The bottom
line shows the spectral variation σj (coarse scales on the left). A small band indicate
little deviation with respect to an ideal synthesis for the considered scale.

coefficients whose magnitude is bellow a threshold T

dω
j,T [n]

def.

=

{

dω
j [n] if ||dω

j [n]|| 6 T,
0 otherwise.

A more complex thresholding strategy could be used to include a normalization
of the wavelet coefficients but we do not use it in our numerical experiments. Note
that each wavelet detail dω

j [n] is a p-dimensional vector so its magnitude ||dω
j [n]||

is computed using the usual norm in R
p. The thresholded wavelet coefficients

dω
j,T are used to synthesize a modified feature valued function f̃T using the

backward transform described in listing 2. The modified texture is computed as

fT
def.

= (Φ2J ◦ f̃T ).
On figure 7, bottom row, one can see how the wavelets coefficients are pro-

gressively shrinked toward zero. When T = max(dω
j ), the modification algorithm

performs a pure texture synthesis since all wavelets coefficients are set to zero.



On figure 8 one can see how the modification process smoothly interpolates be-
tween the two textures by progressively adding and removing texture structures
when wavelet coefficients are thresholded to zero.

(a)

(b) (d) (e) (f)

(c) (c) (d)

Fig. 7. Progressive modification of a texture. (b,d,f,h) Magnitude S of the thresholded
wavelets coefficients for T/ max dω

j = 0, 0.1, 0.5 and 1 respectively. (a,c,e,g) Corre-
sponding reconstructed textures.

6 Conclusion

In this paper, we have proposed a new texture model as a mapping into
a non-linear features manifold. A multiscale decomposition of such a mapping
is performed by using a pairwise association field. This non-linear analysis and
synthesis framework allows to perform feature preserving texture generation and
modification. This new model is promising for capturing multiple structures that
exists in non-homogeneous textures using several target manifolds. Taking into
account non-manifold constraints such as symmetries is another avenue for future
work.
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