
HAL Id: hal-00365608
https://hal.science/hal-00365608

Submitted on 3 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-negative Sparse Modeling of Textures
Gabriel Peyré

To cite this version:
Gabriel Peyré. Non-negative Sparse Modeling of Textures. SSVM’07, Jun 2007, Ischia, Italy. pp.628-
639. �hal-00365608�

https://hal.science/hal-00365608
https://hal.archives-ouvertes.fr

Non-negative Sparse

Modeling of Textures

Gabriel Peyré

Ceremade, Université Paris Dauphine,
Place du Marchal De Lattre De Tassigny,

75775 Paris Cedex 16 France
gabriel.peyre@ceremade.dauphine.fr,

http://www.ceremade.dauphine.fr/∼peyre/

Abstract. This paper presents a statistical model for textures that uses
a non-negative decomposition on a set of local atoms learned from an
exemplar. This model is described by the variances and kurtosis of the
marginals of the decomposition of patches in the learned dictionary. A
fast sampling algorithm allows to draw a typical image from this model.
The resulting texture synthesis captures the geometric features of the
original exemplar. To speed up synthesis and generate structures of vari-
ous sizes, a multi-scale process is used. Applications to texture synthesis,
image inpainting and texture segmentation are presented.

1 Statistical Models for Texture Synthesis

The characterization of textures is a central topic in computer vision and
graphics, mainly approached from a probabilistic point of view.

Spatial domain modeling. The works of both Efros and Leung [1] and Wei and
Levoy [2] pioneered a whole area of greedy approaches to texture synthesis.
These methods copy pixels one by one, enforcing locally the consistence of the
synthesized image with the exemplar. Recent approaches such as the method of
Lefebvre and Hoppe [3] are fast, multiscale and give impressive results.

Transformed domain modeling. Julesz [4] stated simple axioms about the prob-
abilistic characterization of textures. A texture is described as a realization of
a random process characterized by the marginals of responses to a set of linear
filters. Zhu, Wu and Mumford [5] setup a Gibbs energy to learn both the filters
and the marginals. They use a Gibbs sampler to draw textures from this model.

A fast synthesis can be obtained by fixing the analyzing filters to be steerable
wavelets as done by Heeger and Bergen [6]. The resulting textures are similar to
those obtained by Perlin [7]. They exhibit isotropic cloud-like structures and fail
to reproduce long range anisotropic features. This is because wavelets decompo-
sitions represent sparsely point wise singularities but do not compress enough
long edge features. Higher order statistics such as local correlations are used by
Portilla and Simoncelli [8] to synthesize high quality textures.

Sparse image decompositions. Representing a complex image with few meaning-
ful elements is at the core of the visual processing made by the human cortex.
Atteneave [9] and Barlow [10] first stated that efficient high level computations
should be performed over a representation of reduced complexity.

This biological processing suggests a sparse description of a patches y ∈ R
N

of N pixels extracted from a natural image as

y[n] =

p−1∑

k=0

xk dk[n] where ||x||ℓ0
def.

= #
{
k \ xk 6= 0

}
6 τ ≪ N, (1)

where x = [x0, . . . , xp−1] are the coefficients of the decomposition, and where
typically p > N . This simple linear model uses as prior a dictionary D =
[d0, . . . , dp−1] ∈ R

N×p of atoms.

This generative process is appealing as it involves p degrees of freedom to
perform statistical modeling while generating a large amount of different images.
Classical works in computational harmonic analysis describe the set of candidate
images y as belonging to some functional space and study the sparsity of the
decomposition of y in some fixed basis or dictionary. Fourier decomposition is
only suitable for smooth images and a wavelet decomposition [11] allows to model
sparsely data with pointwise singularities. Images with geometrical singularities
such as edges should be analyzed with more involved constructions such as the
frame of curvelets [12] or a bandelet best basis [13].

These tools however are not efficient to capture the complex geometry of
textures, which might include turbulent structures or complex overlapping junc-
tions. To sparsely represent these structures, we use a exemplar-based approach
where the dictionary D is learned from a single input texture.

Learning the dictionary. Given a set of m typical patches Y = [y0, . . . , ym−1] ∈
R

N×m, one needs to compute both the dictionary D and the coefficients X =
[x0, . . . , xm−1] of the decomposition Y ≈ DX that leads to the sparsity ||xj ||ℓ0 6

τ of each column xj of X required by equation (1).

Olshausen and Field [14] first proposed a learning scheme to build a dictio-
nary of atoms to represent each signal of a data set using few elements. For
natural images, edge filters emerge to efficiently represent the geometry of im-
ages. Algorithms have been proposed in signal processing such as the K-SVD of
Aharon et al [15] and the tight frames construction of Tropp et al. [16].

ICA and sparse dictionaries have been applied in texture modeling mainly
for features extraction in classification [17,18]. An ICA decomposition is used as
a post-processing step by Manduchi and Portilla [19] to enhance the synthesis
results of Heeger and Bergen multiscale approach [6].

An alternative way to perform sparse coding is to enforce positivity of both
the coefficients X and the dictionary D. Non-negative factorization, as proposed
by Lee and Seung [20] tends to to decompose an image into its meaningful parts,
see the theoretical study of Donoho and Stodden [21].

Contributions. In this paper, we propose a signal-processing approach to the
sparse modeling of textures. It is based on the following ingredients:

Only marginal responses of a decomposition are used. It provides a simple
modeling of textures ensembles in the transformed domain.

An additive generative model based on positive atoms is used. Although our
method works with traditional linear decompositions, positive atoms are more
localized and decompose the exemplar texture into it constitutive elements.

A fast signal-processing based method is used to learn the set of atoms adapted
to a given texture. This is motivated by the sparse description of textures and
does not require complex solvers such as the one of [5].

A fast iterative scheme is used to sample a typical texture that matches the
same marginal statistics. It does not ensure a sampling with maximum entropy
distribution [5] but initializing the iterations with a random noise is good
enough in typical applications, as noticed in [6,8].

2 Non-negative Atoms for Texture Decomposition

Non-negative matrix factorization. The process of learning a dictionary D of
atoms D = [d0, . . . , dp−1] to represent accurately a set Y = [y0, . . . , ym−1] of
exemplars is equivalent to performing a factorization Y = DX . This problem is
underconstrained and the non-negative factorization [20] enforces positivity of
both X and D to constrained the learning problem.

The problem of learning D and X requires to minimize the reconstruction
error ||Y −DX || subject to the constraints D, X � 0. This minimization is not
convex on both D and X , but following [22], an alternate minimization on each
matrix can be carried using iterations of the following two steps

Xab ← Xab

∑
i DiaYib/(DX)ib∑

i Dia

and Dia ← Dia

∑
b XabYib/(DX)ib∑

b Xab

,

which converge to a local minimum of ||Y − DX ||. To enforce the dictionary
elements yi to be of unit norm, the columns of D are normalized at each iteration.
An explicit sparsity prior can be added into this process [23] to enforce the
constraints ||xj ||ℓ0 6 τ required by equation (1). In practice, this did not result
in a noticeable enhancement for texture modeling.

Patch-based decomposition. Our sparse modeling of textures is based on the
assumption of local ergodicity common to many previous works, see for instance
[8]. It assumes that the texture is a realization of a random vector whose statistics
are invariant under translation.

Starting from an exemplar texture fe ∈ R
N of N pixels given by the user, one

works at a fixed scale w > 0 that sets the size of the typical structures present
in the texture. Section 4 describes how a multiscale procedure can alleviate the
issue of using a fixed scale. If n is a pixel in the image, we denote by pn = pn(fe)
the patch of w × w pixels centered at n in fe.

The ergodicity assumption leads us to model each patch pn(fe) as being
sparsely represented in some dictionary D. In practice, a set of m square patches
Y = [y0, . . . , ym−1] of N = w×w pixels is extracted at random from the exemplar
fe. The non negative factorization Y = DX is used to learn the dictionary from
the exemplar. Figure 1 shows some examples of atoms dj of D learned from a
texture.

Fig. 1. Example of dictionary for patches of 12×12 pixels. We used m = 20w2 random
patches for the learning stage.

3 Parametric Modeling Over a Learned Dictionary

Once a dictionary D is learned to efficiently represent the patches Y of size
w × w extracted from fe, a statistical model is built using the marginal of the
decomposition coefficients X such that Y = DX . Ergodicity allows to use the
sets of coefficients xk = {Xk,j}

m−1

j=0
to estimate the marginals of the underlying

probabilistic model that generates the patches of fe.
The marginal distributions are both on-sided and highly concentrated near 0.

We thus keep track of the empirical variance and kurtosis of the decomposition
of Y onto the dictionary D defined by

σk(Y)
def.

= σ(xk)
def.

= M2(x
k), and κk(Y)

def.

= κ(xk)
def.

=
M4(x

k)

(M2(xk))2
, (2)

where Ms(x
k)

def.

=
1

N

m∑

j=1

(xk[j])s. (3)

A texture fe is characterized, at a scale w, by

its adapted dictionary D,

the empirical variance σk(Y) and kurtosis κk(Y).

Both are computed from the decomposition of a large enough set of patches Y
extracted from fe.

4 Sampling from the Positive Texture Model

Texture ensembles. A dictionary D learned from the exemplar defines an equiv-

alence relationship
D
∼ between two sets of patches P = {pn}n and Q = {qn}n

that shares the same statistics

P
D
∼ Q ⇐⇒ ∀k, σk(P) = σk(Q) and κk(P) = κk(Q).

Note that these statistics are defined over a transformed domain, which means
that one first has to factor the matrix P = [p0, p1, . . .] as P = DX and then
extract the statistics of the rows xk, as explained in the previous section.

The set of images f of N1 pixels whose local decompositions in D share the
same marginal statistics as fe defines an ideal texture ensemble

T̃ (fe)
def.

=
{

f \ {pn(f)}n∈P

D
∼ {pn(fe)}n∈P

}
⊂ R

N1 .

where P denotes the set of pixels. Note that although fe contains N pixels,
the texture ensemble can be defined for any size N1. We use a model based
on overlapping patches to have a translation invariant description that avoids
blocking artifact.

Imposing simultaneously all the statistical constraints that define T (fe) is a
complex non-linear process due to the overlapping between patches pn(f). We
approximate this texture ensemble using the following decomposition

T̃ (fe) ≈ T (fe)
def.

=
⋂

δ∈∆

Tδ(fe) where ∆
def.

= {0, . . . , w − 1}2. (4)

Each Tδ(fe) imposes constraints on a sub-set of non-overlapping patches

Tδ(fe)
def.

=
{
f \ {pn(f)}n∈Pδ

D
∼ {pn(fe)}n∈Pδ

}

where Pδ with δ = (δ1, δ2) is the sub-lattice of pixels n defined by

Pδ = {n = (n1, n2) \ n1%w = δ1 and n2%w = δ2} ,

where % is the modulo operator.

Projection on the texture ensemble. The approximation of the texture ensemble
of equation (4) describes T (fe) as the intersection of convex sets Tδ(fe). Fol-
lowing [8], an image f can be approximately projected onto T (fe) by iterating
projections onto each Tδ(fe). Since each set Tδ(fe) involves constraints on inde-
pendent patches of f , this projection can be carried by local ajustements on the
decomposition of each patch pn(f) for n ∈ Pδ.

We denote by πδ(f) the approximate projection of f onto Tδ(fe), which is
computed using the following steps

The set of patches P = {pn(f)}n∈Pδ
are gathered from f .

The positive factorisation P = DX is performed using the algorithm described
in section 2. We now adjust the statistics of each vector of coefficients xk =
{Xk,j}j representing the decomposition on a single atom dk of D.

The projection on variance constraints is performed by x̃k ← xkσk(fe)/σ(xk).

As done in [8], enforcing the kurtosis is performed using a gradient descent of
the potential x̃k 7→ |κ(x̃k)− κk(fe)|2 while keeping σ(x̃k) constant.

The updated patches P̃ are reconstructed using the dictionary P̃ = DX̃ where
the rows of X̃ are the new coefficients x̃k for k = 0, . . . , p− 1. The projection
πδ(f) is computed by rearranging the non-overlapping patches of P̃ .

Sampling from the texture ensemble. The set T (fe) is compact and the uni-
form distribution on T (fe) thus defines the probability measure with maximum
entropy. Zhu et al. [5] sample this distribution in order to synthesize textures
without bias.

Rather than performing an exact sampling of the uniform distribution on
T (fe), we follow [8] and use a sampling strategy that finds a point in T (fe)
by iterating projections on each of set Tδ(fe). Starting from an initial point
with high entropy such as a gaussian noise ensures that the set of generated
images span T (fe) with a minimum bias. This leads to the following synthesis
algorithm:

Preprocessing: extract m random patches Y = [y0, . . . , ym−1] of width w × w
from fe. Compute the positive factorization Y = DX and record the parame-
ters σk(fe) and κk(fe) of the marginals defined in equation (2).

Initialization: set f as a realization of a gaussian white noise on N1 pixels.

Repeat for random shift δ ∈ {0, . . . , w − 1}2 until convergence: f ← πδ(f).

5 Texture Synthesis

Mono-scale synthesis. Starting from an exemplar fe of N pixels, the mono-scale
texture synthesis process consists in computing an image f ∈ T (fe) of N1 pixel.
This sampling is carried out using the iterative projection method exposed in
the previous section.

Note that this method generates textures of arbitrary size. Furthermore, we
use cyclic boundary conditions when extracting patches {pn(f)}n∈Pδ

from the
output texture, which results in periodic textures that tile the plane. Figure 2
shows two exemples of synthesis. The short range structures are well synthesized,
but the algorithm fails to capture long range fiber-like structures.

Color texture are synthesized by applying the algorithm on each channel
independently. Moving from the RGB color representation to the HSV represen-
tation improves synthesis quality since the intensity channel tends to have more
distinct structures than the remaining channels. Figure 2 compares our method
with the method of [6] and [8]. Both the input texture fe and output f are of size
256 × 256 pixels. The multiscale histogram matching of Heeger and Bergen [6]

is not able to reproduce textures with geometric features. In contrast, both the
higher order model of Portaill and Simoncelli [8] and our method can synthesize
textures with complex structures.

(a) (b) (c) (d)

Fig. 2. (a) Original texture. (b) Textures synthesized with the method of Heeger and
Bergen [6] (c) Textures synthesized with the method of Portilla and Simoncelli [8]. (d)
Textures synthesized with our method.

Multiscale synthesis. In order to cope with the fixed scale w used in previous
section, one can use a multiscale synthesis strategy. We use a fixed number
of pixels w0 but consider textures with increasing resolutions. This allows to
capture first elongated low frequencies structures and then fine scale geometric
details. A simple interpolation is used to switch between the various resolutions.
At each scale, the synthesis algorithm manipulates only small patches of size
w0 × w0. This leads to the following algorithm that handles J scales.

Initialization: Set j = J to be the coarser scale. Initialize the synthesis with a
random noise f of N1/2J ×N1/2J pixels.

Step 1: Set w = 2jw0. Smooth the exemplar f j
e = fe∗hj where hj is a gaussian

kernel of width 2j pixels. Extract a set of m patches Yj from f j
e . Sub-sample

these squares by a factor 2j so that vectors in Yj are of size w0 × w0.

Step 2: Perform the mono-scale synthesis algorithm using patches Yj to train
the dictionary and with the current f as initialization.

If j = 0 then stop the algorithm. Otherwise, upsample the current synthesized
texture using linear interpolation from N/2j ×N/2j pixels to 2N/2j × 2N/2j

pixels. Set j → j − 1 and go back to step 1.

In our implementation, we have used 2 scales j = 0, 1 and a base width w0 = 8.
Figure 3 compares the fixed scale synthesis and the multiscale synthesis which
is able to creates elongated singularities. Figure 4 shows additional synthesis
results.

(a)

(b)

(c)

(d)

Fig. 3. (a) Original texture fe. (b) Texture synthesized with the mono-scale procedure
with patches of width w = 8. (c) Texture synthesized at scale 2j = 2 with w = 16. (d)
Texture synthesized at scale 2j = 1 with w = 8.

6 Texture Inpainting

The inpainting problem consists in filling a set of missing pixels Ω in a given
image fe. This problem has been approached using evolution equation derived
from fluid dynamics by Bertalmio et al. [24] however diffusion-based approaches
fail to reproduce texture patterns. Using a sparsity prior in a set of fixed bases
such as Curvelets and local DCT, Fadili and Starck [25] are able to inpaint
oscillatory and elongated texture structures.

Our synthesis algorithm can be slightly modified to cope with missing data
as follow.

Extract a set of m patches Y from fe that are as close as possible from Ω
without intersecting it.

Set as initial inpainted image f the original fe with values at random inside
Ω.

Step 1: for a random shift δ, perform one step of synthesis f ← πδ(f). The
projection needs only to be performed for patches pn(f) ∩Ω 6= ∅.

Step 2: impose the known values, ∀n /∈ Ω, f [n]← fe[n]. Go back to step 1.

Figure 5 shows some step of this inpainting process and figure 6 shows additional
results. A limitation of this method is that it works well for homogeneous textures

Fig. 4. Examples of multiscale texture synthesis.

and the inpainting tends to give poor results if Ω intersects a broad range of
structures.

(a) (b) (c) (d) (e)

Fig. 5. (a) Texture to inpaint, the missing region Ω is depicted in black. (b,c,d) Evo-
lution of the inpainting for step 1,2,4. (e) Final result.

Texture segmentation. Our model can be used to perform segmentation of a
given texture f into components corresponding to patterns similar to exemplars
{f1

e , . . . , fs
e }. Learned dictionaries have already been used for segmentation [18],

and we recast this approach into our patch-based non-negative model. The idea
is to project the texture f onto each texture ensemble T (f ℓ

e) and select locally
the class ℓ that generates the least deviation from f . This leads to the following
algorithm.

Learn the statistical model T (f ℓ
e) for each class ℓ.

Compute the projection fℓ of f on each ensemble T (f ℓ
e) using the algorithm

of section 4.

Fig. 6. Examples of inpainting.

Compute the class-wise error for each pixel and smooth it with a gaussian
kernel Gs0

of with s0

Ẽℓ[n]
def.

= |f [n]− fℓ[n]|2 and Eℓ = Ẽℓ ∗Gs0
.

The smoothing removes estimation noise and reflects the prior knowledge that
class boundary should be smooth curves.

Compute the segmentation into classes using

ℓ[n] = argmin
ℓ

Eℓ[n].

We have tested this segmentation using a set of s = 5 exemplar textures. The
input image f of 256 × 256 pixels is a patchwork of five textures extracted
from the upper left corner of the original images f̃ ℓ

e of 512 × 512 pixels. The

exemplars f ℓ
e are extracted from the lower right corner of f̃ ℓ

e . Figure 7 shows the
segmentation process.

7 Conclusion

We have proposed a statistical model for textures built out of marginal dis-
tributions of a positive decomposition. The statistical model is parametric since
we use only low order moments of the distribution. This is permitted thanks to
the sparsity provided by a learned dictionary. Such a positive dictionary cap-
tures with few atoms the structures of the textures. This simple model allows to
perform multiscale texture synthesis and can be fitted into various applications
such as texture inpainting or texture segmentation.

An important parameter of our model is the redundancy factor p/N . Redun-
dancy brings invariances to various factors such as translations or local illumi-
nation changes. These parameters are however hard to control. Representations
that can explicitly capture this invariances include bilinear decompositions [26]
that could improve our model.

References

1. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV
’99: Proceedings of the International Conference on Computer Vision-Volume 2,
IEEE Computer Society (1999) 1033

(a) (b) (c) (d)

(g)(f)(e)
ℓ = 1 ℓ = 2

ℓ = 4ℓ = 3

ℓ = 5

Fig. 7. (a) Original texture f . (b) Projected texture f1 of f onto T (f1

e). Note how the
upper left corner is well preserved. (c) Projected texture f2. (d) Projected texture f3.
(e) Ground trust segmentation. (f) Segmentation ℓ[n] computed with s0 = 3 pixels. (g)
Segmentation computed with s0 = 6 pixels.

2. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantiza-
tion. In: SIGGRAPH ’00: Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co.
(2000) 479–488

3. Lefebvre, S., Hoppe, H.: Parallel controllable texture synthesis. ACM Trans.
Graph. 24(3) (2005) 777–786

4. Julesz, B.: Visual pattern discrimination. IRE Trans. Inform. Theory 8(2) (1962)
84–92

5. Zhu, S.C., Wu, Y., Mumford, D.: Filters, random fields and maximum entropy
(FRAME): Towards a unified theory for texture modeling. Int. J. Comput. Vision
27(2) (1998) 107–126

6. Heeger, D.J., Bergen, J.R.: Pyramid-Based texture analysis/synthesis. In Cook,
R., ed.: SIGGRAPH 95 Conference Proceedings. Annual Conference Series, ACM
SIGGRAPH, Addison Wesley (1995) 229–238

7. Perlin, K.: An image synthesizer. In: SIGGRAPH ’85: Proceedings of the 12th
annual conference on Computer graphics and interactive techniques, New York,
NY, USA, ACM Press (1985) 287–296

8. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics
of complex wavelet coefficients. Int. J. Comput. Vision 40(1) (2000) 49–70

9. Attneave, F.: Some informational aspects of visual perception. Psychological Re-
view 61 (1954) 183–193

10. Barlow, H.B.: Possible principles underlying the transformation of sensory mes-
sages. In Rosenblith, W.A., ed.: Sensory Communication, MIT Press (1961) 217–
234

11. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)

12. Candès, E., Donoho, D.: New tight frames of curvelets and optimal representations
of objects with piecewise C2 singularities. Comm. Pure Appl. Math. 57(2) (2004)
219–266

13. Le Pennec, E., Mallat, S.: Bandelet Image Approximation and Compression. SIAM
Multiscale Modeling and Simulation 4(3) (2005) 992–1039

14. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive-field properties
by learning a sparse code for natural images. Nature 381(6583) (1996) 607–609

15. Aharon, M., Elad, M., Bruckstein, A.: The k-svd: An algorithm for designing
of overcomplete dictionaries for sparse representation. IEEE Trans. On Signal
Processing (to appear) (2006)

16. Tropp, J., Dhillon, I., Heath, R., Strohmer, T.: Designing structured tight frames
via an alternating projection method. IEEE Trans. on Information Theory 51(1)
(2005) 188–209

17. Zeng, X.Y., Chen, Y.W., van Alphen, D., Nakao, Z.: Selection of ica features for
texture classification. In: ISNN (2). (2005) 262–267

18. Skretting, K., Husoy, J.: Texture classification using sparse frame based represen-
tations. EURASIP Journal on Applied Signal Processing, to appear (2006)

19. Manduchi, R., Portilla, J.: Independent component analysis of textures. In: ICCV.
(1999) 1054–1060

20. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix
factorization. Nature 401 (1999) 788–791

21. Donoho, D., Stodden, V.: When does non-negative matrix factorization give a cor-
rect decomposition into parts? In Thrun, S., Saul, L., Schölkopf, B., eds.: Advances
in Neural Information Processing Systems 16, Cambridge, MA, MIT Press (2004)

22. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In:
Advances in Neural Information Processing Systems 13, Cambridge, MA, MIT
Press (2001)

23. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. Jour-
nal of Machine Learning Research 5 (2004) 1457–1469

24. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Sig-
graph 2000. (2000) 417–424

25. Fadili, M., Starck, J.L.: Em algorithm for sparse representation-based image in-
painting. In: IEEE International Conference on Image Processing, Vol. II. (2005)
61–63

26. Grimes, D.B., Rao, R.P.N.: Bilinear sparse coding for invariant vision. Neural
Computation 17(1) (2005) 47–73

