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ABSTRACT

This article presents the first adaptive quasi minimax estimator for geometrically regular images in the white noise
model. This estimator is computed using a thresholding in an adapted orthogonal bandlet basis optimized for the noisy
observed image. In order to analyze the quadratic risk of this best basis denoising, the thresholding in an orthogonal
bandlets basis is recasted as a model selection process. The resulting estimator is computed with a fast algorithm whose
theoretical performance can be derived. This efficiency is confirmed through numerical experiments on natural images.
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Introduction

Image estimation within the framework of an additive white noise is a classical problem in image processing and
statistics. The goal is to recover an image f of N pixels from a noisy observation

Y = f + εW

where W is a gaussian white noise with unit variance and ε is a known parameter that controls the variance of the noise.
Denoising the image f from the observed data Y implies the computation of an estimator F that depends only on the
observed data Y . The performance of the estimation is measured here using the average quadratic risk E(||f −F ||2) where
the expectation is computed over the random noise W .

Geometric images can be modeled as Cα images outside a set of edge curves that are themselves Cα. For such geometric
images, Korostelev and Tsybakov1 proved that for any estimator F , the quadratic risk E(||f − F ||2) cannot decay faster
with the noise level ε than ε2α/(α+1). This article proposes an estimator that reaches this asymptotic decay for geometric
images up to a logarithmic factor. This estimator is adaptive in the sense that it does not require an a priori knowledge of
the smoothness α.

This estimator is a thresholding operator in an orthogonal basis adapted to the noisy data. Namely, bandlet dictionaries
of orthogonal bases offer an asymptotically optimal representation for geometric images. Results from model selection
theory allows this optimality to carry over to the setting of estimation in gaussian noise. This estimator is computed with
a fast analysis and synthesis algorithm and its performance are estimated for the denoising of natural images. Theoretical
details of this construction are exposed in.2

Contact: gabriel.peyre@ceremade.dauphine.fr



(a) (b) 〈f, ψH

jn〉

〈f, ψD

jn〉〈f, ψV

jn〉

j
=

-8
j
=

-7
j
=

-6

(c)

Figure 1. (a) A geometrically regular function. (b,c) Its wavelet coefficients, where the white color corresponds to large positive coeffi-
cients and the black corresponds to large negative coefficients. These coefficients are arranged by scale 2

j and orientation k.

1. ESTIMATION AND APPROXIMATION OF GEOMETRIC IMAGES

1.1 White Noise Model

A simple non-linear estimator can be constructed with a thresholding operator in an orthogonal basis B = {bν}ν of
R

N , where N is the number of pixels in the image. This thresholding is defined as F = ST (Y,B) where the operator ST

is
ST (g,B) =

∑

|〈g, bν〉|>T

〈g, bν〉bν . (1)

Donoho and Johnstone3 show that the threshold level T = γ
√

log2(N)ε is optimal when ε goes to zero as soon as γ is
large enough: the corresponding quadratic risk is smaller up to a logarithmic factor than the one obtained by the projection
on the best possible subspace.

The quality of the approximation of an image f in B is classically assessed using the M -term approximation error
||f − fM || where

fM = ST (f) and M = # {ν \ |〈f, bν〉| > T} .

Donoho and Johnstone3 prove the following link between the estimation risk and the M -term approximation

||f − fM ||2 6 C1M
−α′

=⇒ E(||f − F ||2) 6 C2 log2(N)ε
2α

′

α′+1 , (2)

where C1 and C2 are constants that depend only on f . This relationship shows that the construction of a basis B that can
approximate well the set of functions f one wishes to denoise induces an efficient thresholding estimator.

This analysis is however restricted to the use of a single orthogonal basis B. In order to approximate and denoise com-
plex geometrical patterns, one would like to use more advanced constructions. This article shows how to use a dictionary
of orthogonal bases in order to estimate optimally geometrical images.

1.2 Geometrically Regular Images

Functions of L2([0, 1]2) that are Cα outside a set of curves that are themselves Cα constitute a simple model for geo-
metric images. This model has been introduced by Korostelev and Tsybakov in order to study the estimation of geometric
edges in images.1 To account for the blurring inherent to the diffraction of the optical device, we consider the set of images
f = f̃ ∗ h where f̃ is Cα outside of Cα edges and h is an unknown smooth and compactly supported kernel. Figure 1
shows an example of such a Cα − Cα geometrically regular function.

Korostelev and Tsybakov1 show that the quadratic risk E(||F − f ||2) cannot decay faster than

O(ε2α/(α+1)) for all Cα − Cα geometrically regular functions, (3)



when ε goes to zero. Using this upper bound and equation (2), they show that the optimal asymptotic approximation speed
for geometric images is ||f − fM ||2 6 O(M−α).

The result (3) is based on an estimation of the Kolmogorov complexity of the set of geometric functions. They propose
an estimator that achieves this risk for non blurred geometric images. It is based on a detection of the edges and thus
is not adapted to blurred geometric images or natural images. This article derives an alternate construction based on a
decomposition in an adapted orthogonal basis. This construction comes with a fast algorithm suitable for image denoising
and with a provable estimation bound that matches the one of Korostelev and Tsybakov.

1.3 Geometric Estimation and Geometric Approximation

Wavelet approximation. The thresholding estimator of Donoho and Johnstone3 performs well on natural images and its
translation invariant extension is often preferred in practice.4 This isotropic regularization over wavelets the wavelet domain
is close to the total variation minimization of Rudin, Osher and Fatemi,5 see for instance6 for a variational formulation of
the wavelet denoising.

Approximation in an orthogonal wavelet basis reaches the bound (3) only on the restricted class of uniformly Cα

functions, see.7 The asymptotic decay of the wavelet approximation for functions having discontinuities along curves is
||f − fM ||2 = O(M−1) which is also the decay for the larger class of bounded variations functions. Wavelets are thus not
optimal to approximate geometrically regular images because their isotropic support fails to capture the regularity of the
edge curves.

Geometric Estimation. The wavelet decomposition of geometric patterns exhibits dependencies among neighboring
coefficients over both the spacial and the scale domain. Figure 1 (c) indeed shows how the wavelet coefficients are smoothly
varying along an edge. Simoncelli and co-workers8 have studied the non-gaussian and non-independent behavior of groups
of wavelet coefficients.

In order to enhance the results of denoising by a thresholding over the wavelet domain, one has to take into account
local dependencies among the coefficients. In this article, we compare our results to the BLS-GSM algorithm of Portilla et
al.9 but other algorithms exploit the inter and intra-scale redundancies of wavelet coefficients, see for instance.10–12

This line of research makes use of a clever statistical modeling to enhance the estimation process and has proved
effective for natural images denoising. The performance of these models is however difficult to analyze and there is no
underlying functional model for the image to recover. This paper proposes to capture the redundancy of the wavelet
representation using a retransformation of these multiscale coefficients. This bandletization process avoids the need of a
complex statistical model and an independent thresholding of the resulting coefficients leads to an optimal estimation for
geometric images.

Other approaches take into account the geometry of the underlying image. This includes anisotropic diffusion,13

non-local filtering14 optimized local transforms learned from data15 and more complex filtering processes based on local
transforms.16

Geometric approximation. For Cα geometrically regular functions, one wants to find an approximation scheme with M
parameters which yields an error that decays like M−α, as in a wavelet approximation of uniformly Cα functions. Indeed,
although these functions may be discontinuous, one can take advantage of the regularity of their edge curves.

To exploit the geometric image regularity along edge curves, the image has to be decomposed over functions having
both an elongated support and vanishing moments. The curvelets of Candès and Donoho17 are such elongated functions
and define a frame. Candès and Donoho prove that for α = 2 the best M -term approximation fM of a Cα-geometrically
regular function f in curvelets satisfies

||f − fM ||2 = O(log3(M) M−2). (4)

Curvelet approximations are nearly optimal for α = 2, but one does not reach the M−α optimal bound for α > 2. A
thresholding estimator in a curvelet frame has been used successfully to denoise natural images.18

The warped bandlet transform, introduced by Le Pennec and Mallat19 uses an adaptive scheme to approximate an
image. A dictionnary of bandlet bases parametrized by their geometry is defined and a fast algorithm allows to find a best
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Figure 2. (a) Wavelet coefficients of an image. (b) Dyadic segmentation of the wavelet coefficients of a geometrically regular image. (c)
An adapted flow is computed on each square of the segmentation.

basis adapted to the function to approximate. The resulting approximation scheme results in an error ||f−fM ||2 that decays
like O(M−α) where M is the total number of parameters to describe both the approximation and the best bandlet basis,
see.19

This warped bandlet construction however does not correspond to an orthogonal decomposition, which leads to both
theoretical and algorithmic difficulties when approximating and estimating a geometric image. The energy conservation
of an orthogonal transformation is indeed a key ingredient to analyze the thresholding estimation. This orthogonality is
important to extend the bound (2) to a dictionary of bases using model selection theory. This paper uses the construction
of Mallat and Peyré20 that builds orthogonal bandlets by retransforming the coefficients of a wavelet decomposition.

2. ORTHOGONAL BANDLET BASES

Mallat and Peyré construct a dictionary of orthogonal bases20 that offers the same O(M−α) error decay as the original
warped bandlets19 for the class of Cα geometric images. These orthogonal bases are defined on top of an orthogonal
wavelet transform. The wavelet coefficients are retransformed using an adaptive bandletization that enhances the original
wavelet representation. This bandletization step is defined by an Alpert multiwavelet transform along an optimized flow
that follows closely the geometry of the underlying image.21

2.1 Orthogonal Bandlets Parametrization

Each orthogonal bandlet basis B(λ) = {bν}ν is parametrized using a geometry λ ∈ Λ that specifies, for each scale 2j

and each orientation k of the wavelet transform,

a dyadic segmentation of the corresponding wavelet coefficients,
a flow, that indicates the approximate geometric direction over each square of the segmentation that contains an edge.

The bandlets are obtained through an orthogonal retransformation of the wavelet coefficients inside each square that con-
tains an edge. This retransformation is the decomposition of each set of wavelet coefficients on an orthogonal basis of
Alpert multi-wavelets.21

This Alpert retransformation of the wavelet coefficients corresponds to the decomposition of the original image on a set
of elongated basis functions bν . These bandlet functions capture the directional regularity of contours because the Alpert
retransformation follows the estimated geometric flow. Figure 2 shows an example of a typical geometric parameter λ ∈ Λ
for a bandlet basis adapted to a synthetic geometric image. On can see on (a) that the wavelet coefficients are close to zero
in regular areas, but large coefficients emerge near edges. On (b) the dyadic segmentation isolates squares where a single
geometric direction can be robustly represented using a vector field, as shown on (c).

Bandlet bases are gathered in a dictionary of orthogonal bandlet bases indexed by a geometry. The efficiency of
these bases is linked to the use of two fast algorithms. The first one performs the analysis (decomposition) and synthesis
(reconstruction) of a function f in some given basis B(λ). The second algorithm searches in the whole dictionary of B(λ)
for a best basis B(λ⋆) adapted to some function f one wishes to approximate.



2.2 Bandlet Approximation Algorithm

Given a geometry λ ∈ Λ, the fast bandlet transform algorithm decomposes an image f in the bandlet basis B(λ) =
{bν}ν . This algorithm, detailed in,20 computes first an orthogonal wavelet transform followed by a directional Alpert
transform in each square of the segmentation described by λ.

The best M -terms approximation fM of f in this basis is obtained by keeping the M largest coefficients. This is
equivalent to defining fM with the thresholding operator ST using an adapted threshold T

fM = ST (f,B(λ)) =
∑

|〈f, bν〉|>T

〈f, bν〉bν (5)

where M = # {ν \ |〈f, bν〉| > T} and where ST is defined in (1). The threshold T is set to the value of the M th

coefficient ordered by magnitudes. The image fM is obtained from the set of thresholded coefficients with a fast inverse
bandlet transform. This algorithm is similar to the forward transform and applies the inverse Alpert directional transform
followed by the inverse orthogonal wavelet transform.

2.3 Best Basis Search Algorithm

Given a fixed number of parameters M , one can search for the best bandlet basis that minimizes the approximation error
||f − fM ||. This constrained problem is difficult to solve, but one can relax it and minimize the corresponding Lagrangian
that penalizes the approximation error with the number of terms M as followed

L(f, T,B(λ)) = ||f − fM ||2 + T 2M, where fM = ST (f,B(λ)) (6)

where ST is defined in (1).

The best basis algorithm allows to optimize the Lagrangian L over the set of bases B(λ) for λ ∈ Λ. Thanks to the
dyadic refinement of the segmentation composing the geometries, this algorithm avoids to test every possible geometry
and has an overall complexity of O(NT−2(p−1)2) where p > α is the number of vanishing moments of the transform.

For a fixed threshold T , this algorithm computes the adapted geometry

λ⋆ = argmin
λ∈Λ

L(f, T,B(λ)).

The approximation fM = ST (f,B(λ⋆)) in the best basis B(λ⋆) is optimal for the constrained approximation problem of
f with M coefficients. If f is a Cα − Cα geometrically regular function, Peyré and Mallat20 show that

||f − fM ||2 = O(M−α). (7)

This result is adaptive since one does not need to know a priori the regularity parameter α in order to reach the optimal
decay of the error.

3. GEOMETRIC ESTIMATION WITH BANDLETS

Equation (2) shows that the performance of a thresholding estimator F of f from a noisy observation Y = f + εW is
linked to the approximation properties of the chosen basis. A thresholding of Y in the best bandlet basis associated to f
with the threshold T = γ

√

log2(N)ε should thus give an optimal estimation for Cα −Cα geometrically regular functions.
Such a basis is however not available in practice since it depends on the unknown noiseless image f . One thus has to
estimate an adapted basis from the noisy observation Y . This section uses tools from model selection to show that this
strategy indeed leads to a nearly optimal estimator.



3.1 Bandlet Estimator

The bandlet estimator F is defined in two steps. One first searches for the best basis B(λ⋆) associated to the noisy
observation Y and to the threshold T ,

B(λ⋆) = argmin
B(λ)

L(Y, T,B(λ)),

where the Lagrangian is defined in equation (6). This estimator is then computed as

F = ST (Y,B(λ⋆)) where T = γ
√

log2(N)ε (8)

where γ is a large enough constant, and the thresholding operator is defined in equation (1). The determination of B(λ⋆)
is performed using the fast best basis search algorithm outlined in section 2. The decomposition of Y in B(λ⋆) and the
reconstruction after the thresholding also use the fast bandlet processing algorithms described in section 2.2.

3.2 Model Selection and Bandlets

In order to analyze the statistical properties of this estimator, one cannot use the classical theory of thresholding in an
orthogonal basis. Our estimator can however be re-casted within the framework of the model selection.22

This theory proposes a non-linear statistical estimator that is the projection of the observations Y on a vector space m⋆,
solution of the following penalized optimization problem

m⋆ = argmin
m∈M

||Y − PmY ||2 + T 2 dim(m),

where Pm is the orthogonal projector on m. In this problem, M is the set of available models that are low dimensional
vector spaces that should approximate well the original data f . The estimator F of f using the optimal model is defined as

F
def.
= Pm⋆Y.

The model selection theory allows to control the quadratic risk E(||f − F ||2) as long as the number of vectors used to
generate all models m in M grows polynomially with the dimension N . In such a case, one has the following result22

E(||f − F ||2) 6 C
(

min
m∈M

||f − Pmf ||2 + γ2 log2(N)ε2 dim(m) + N−1
)

. (9)

When the set M of all the models is the set of sub-spaces spanned by the vectors of some orthogonal basis B = {bν},
the best model corresponds to the thresholding

m⋆ = span {bν \ |〈Y, bν〉| > T} .

In the general case, the computation of m⋆ is however a difficult task. This article focusses on a highly structured set of
models that are built from the bandlet dictionary. This structure allows to apply a fast best basis exploration algorithm to
select the optimal model.

For the bandlet estimator, M is the union of all the subspaces spanned by bandlets in the different bases

M
def.
=

⋃

λ∈Λ

⋃

k>0

⋃

(νi)i⊂B(λ)

span (bν1
, . . . , bνk

) .

One thus has
Pm⋆Y = ST (Y,B(λ⋆)) = F.

where the best basis B(λ⋆) associated to Y is defined in equation (3.1). In the case of the bandlet model selection problem,
the optimal model m⋆ can be computed using the fast best basis search algorithm exposed in section 2.3.

The number of bandlet functions that generate M is polynomial in the number of pixels N of the image f one wishes
to recover. One can thus apply the model selection result of equation (9), that can be reformulated using the Lagrangian of
equation (6)

E(||f − F ||2) 6 C
(

min
B(λ)

L(f, γ
√

log2(N)ε,B(λ)) + N−1
)

. (10)
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Figure 3. Visual comparison of the wavelets and the bandlet estimators on a geometric image.

3.3 Bandlet Estimation Theorem

In order to assess the quality of the bandlet estimator, one needs to combine the model selection result (10) with the
approximation result (7). This leads to the following theorem of quasi-optimality of the bandlet estimator, see2 for a
detailed proof of this result.

THEOREM 1. For any Cα −Cα geometrically regular function f , it exists a constant C such that, for any noise level ε, the

bandlet estimator F satisfies

E(||f − F ||2) 6 C
(

log2(N)ε
2α

α+1 + N−1
)

.

This estimator exploits the adaptivity of the bandlets since it does not require the knowledge of the regularity parameter
α. This result can be enhanced for ε2 that is large with respect to N−1 by replacing the log2(N) term by log2(ε).

In order to reach this optimal risk decay, one has to exploit the anisotropic regularity of the geometry. The use of
an orthogonal decomposition is however not mandatory and other constructions are possible. The non adaptive estimator
proposed by Korostelev and Tsybakov1 is for instance based on a direct estimation of the edges. The use of orthogonal bases
eases the mathematical analysis of the scheme and underlines the link between estimation and approximation. Using the
framework of model selection, this link can be used in a seamless manner as long as one can control both the approximation
rate of the set of bases and the overall cardinality of the set of vectors to avoid over-fitting the noise.
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Figure 4. Visual comparison of the wavelet and bandlet estimators on a natural image.

4. NUMERICAL RESULTS

Theorem 1 gives the asymptotic optimality of the bandlet estimator when the noise level ε vanishes. In real applications,
this noise level can be far from zero and the asymptotic theorem can be inefficient to describe the quality of an estimator.
Furthermore, natural images can deviate a lot from the ideal model of Cα − Cα geometrically regular images because of
the presence of textured areas that are not pure edges.

A translation invariant estimator. In order to enhance the results of the bandlet estimator and make it approximately
translation invariant, we apply the denoising process to 4 translated versions of the noisy observation and average the
results. This process is similar to the cycle-spinning algorithm used in translation invariant wavelet denoising.4

In order to further increase the translation invariance of the estimator, we have enhanced the Alpert transform21 that is
at the core of the bandletization process. This Alpert decomposition can be turned into a translation invariant redundant
frame using cycle-spinning or using a fast decomposition similar to the translation invariant Haar transform. This redundant
bandletization is implemented in a toolbox freely available online.23

Denoising results. Figure 5 quantifies the numerical results of the denoising process using the PSNR, defined as

PSNR(f, g) = −20 log10(||f − g||2/||f ||∞),

for g = Y (noisy PSNR) and g = F (denoised PSNR).



Three different estimators have been used:

a thresholding operator in a translation invariant wavelet frame,4

the BLS-GSM estimator,9 that uses an advanced statistical modeling for the wavelet coefficients,
the translation invariant bandlet estimator.

For geometric images (figure 3 and figure 5, right) the bandlet estimator gives better results than the other estimators. In
particular, the recovered edges are sharper and show less ringing artifacts. This is due to the anisotropic support of the
adapted bandlet functions that follow closely the geometry of the underlying image.

For a complex natural image (figures 4 and figure 5, left) the bandlet estimator gives results similar to the state of the
art (BLS-GSM method9). The bandlet reconstruction recovers well sharp transitions and directional textures, but is less
efficient for complex texture patterns and regular areas, where a statistical modeling is more adapted.
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