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The Inertia Matrix in Least-Squares Linear Fitting

ABSTRACT Least squares fitting of point sets to lines, planes, curves and surfaces is carried
out using eigenvalues and eigenvectors to find the major principal moment of inertia axis of a
point set taken as representing the mass distribution of a rigid body. This engineering geometric
approach produces identical results when compared to methods of conventional minimization using
partial derivatives with respect to linear equation coefficients. Extending the approach to the
fitting of conics and quadrics achieves great computational advantage over conventional least-
squares optimization of Euclidean, as opposed to algebraic distance. The results, though imperfect,
provide a starting point for iterations that will converge rapidly. Often, if enough points are given
and these do not deviate wildly from the fit shape type selected, the result is satisfactory without
resorting to further improvement.
Keywords: Fitting, Curves, Surfaces, Linear, Algebra, Inertia, Moment, Grassmann, Geometry

1 INTRODUCTION

The importance and utility of extracting underlying simple functional relations and geometric
shape features from experimental data, acquired either as images or numbers, are evident. So it
is deemed unnecessary to give examples and reasons in this regard. Rather, fitting a line to three
given planar points by means of first partial derivatives of the sum of points’ squared distances
to a line y = ax + b, where a and b are unknown, will be compared to the novel method exposed
herein where the moments and products of inertia of the points about Cartesian axes lead to
principal moment of inertia axes, in the plane, via the eigenvalues and eigenvectors of the inertia
matrix. The line of best fit will be seen to lie on the centroid of the point triangle and normal
to the eigenvector associated with the larger eigenvalue of the planar inertia matrix. This latter
concept will then be applied to fitting a plane to spatial points and finally to fitting a conic, using
the inertia notion in the context of a five dimensional Euclidean point space of quadratic forms. A
special conic, a circle fit to four points, is used to illustrate a preliminary result and to point out
the essential shortcoming of our pseudo-linear approach. Although familiarity with elementary
calculus, linear algebra and mechanics is assumed, [1], [2] and [3], respectively, provide all the
relevant background necessary.
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2 A LINE TO THREE POINTS

The proposed inertia matrix method, elaborated upon in Section 4, will now be introduced using
the numerical example in Fig. 1 with points

1P (1, 2), 2P (3, 4), 3P (5, 3)

The first moment is calculated to yield G the centroid on the fit line.

[(1 + 3 + 5)/3, (2 + 4 + 3)/3] → G(3, 3)

The inertia matrix is referred to this origin so

1P
′(−2,−1), 2P

′(0, 1), 3P
′(2, 0)

replaces iP above. Then the second moments and product are obtained as

Ixx = (−1)2 + 12 + 02 = 2, Iyy = (−2)2 + 02 + 22 = 8

Ixy = (−2)(−1) + 0(1) + 2(0) = 2

Eigenvalues are found as follows.
[

Ixx − λ −Ixy

−Ixy Iyy − λ

] [

ex

ey

]

=

[

0
0

]

(1)

→
∣

∣

∣

∣

2 − λ −2
−2 8 − λ

∣

∣

∣

∣

= 0 → λ2 − 10λ + 12 = 0

λ = 5 ±
√

13

Then the eigenvector e associated with the greater eigenvalue is given by either one of Eq. 1. E.g.,
this eigenvector, normal to the sought line on G, has a slope of ey/ex, i.e., given by

[2 − (5 +
√

13)]ex − 2ey = 0

This line on G represents the axis in the plane about which the moment of inertia of the three
points is greatest. The line on G parallel to the other eigenvector is the axis of minimum inertia.
One must not confuse these axes with Izz, encountered in elementary planar mechanics, which is
mutually orthogonal to them. The inertia matrix approach clearly reveals the underlying geometric
structure of this simple fitting problem. Now consider a conventional alternative. Examining the
upper diagram in Fig. 1 one may easily formulate the sum of the three squared normal distances
∆ni in terms of line coefficients a and b. By induction and taking first partial derivatives with
respect to a and b one quickly arrives at a quadratic in a and a linear equation relating b = b(a).

a2 +
[
∑

ik(x
2

i − x2

k)] − [
∑

ik(y
2

i − y2

k)]
∑

ik[(xi − xk)(yi − yk)]
a − 1 = 0 (2)

nb =
∑

i

yi − (
∑

i

xi)a (3)

Note that n is the number of points and that all possible differences and differences of squares must
be taken in the sums. Two solutions for a, the slope of the fitted line, appear. One is the actual
slope the other is its normal. Eq. 3 provides the corresponding values of b. The lines intersect on
G, the centroid of the given points. There is no way a-priori to tell which line is which . . . unless
one is prepared to examine second derivatives; a procedure that becomes quite inconvenient in
problems of higher dimension.
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Figure 1: Three Point Line Fit

3 A PLANE TO SIX POINTS

This time an example where six given random points will be fit to a plane is presented and the
singular matrix appears in Eq. 4.





Ixx − λ −Ixy −Ixz

−Ixy Iyy − λ −Iyz

−Ixz −Iyz Izz − λ









ex

ey

ez



 =





0
0
0



 (4)

The six given points iP (ipx,i py,i pz) appear below.

1P (4, 3, 2), 2P (7, 1, 4), 3P (2, 8, 1),

4P (9, 6, 7), 5P (1, 4, 6), 6P (12,−3,−5)

The homogeneous coordinates of the centroid are G{g0 : g1 : g2 : g3} ≡ {6 : 35 : 19 : 15}. To
obtain the elements of the inertia matrix iP are first multiplied by 6 and g1, g2, g3 are subtracted
from iP to produce

1P
′(−11,−1,−3), 2P

′(7,−13, 9), 3P
′(−23, 29,−9),

4P
′(19, 17, 27), 5P

′(−29, 5, 21), 6P
′(37,−37,−45)
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Notice that all six of the following sums of products contain the common divisor 6. Inertia matrix
element magnitude is irrelevant because we seek only the direction of eigenvector e associated with
greatest eigenvalue λ.

Ixx = {[(−1)2 + (−3)2] + [(−13)2 + 92]
+[292 + (−9)2] + [172 + 272] + [52 + 212]
+[(−37)2 + (−45)2]}/6 = 1010
Iyy = {[(−3)2 + (−11)2] + [92 + 72]
+[(−9)2 + (−23)2] + [272 + 192]
+[21 + (−29)2] + [(−45)2 + 372]}/6 = 1106
Izz = {[(−11)2 + (−1)2] + [72 + (−13)2]
+[(−23)2 + 292] + [192 + 172] + [(−29)2 + 52]
+[372 + (−37)2]}/6 = 994
Ixy = {[(−11)(−1)] + [(7)(−13)] + [(−23)(9)]
+[(19)(17)] + [(−29)(5)] + [(37)(−37)]}/6 = 323
Ixz = {[(−3)(−11)] + [(9)(7)] + [(−9)(23)]
+[(27)(19)] + [(21)(−29)] + [(−45)(37)]}/6 = 243
Iyz = {[(−1)(−3)] + [(−13)(9)] + [(29)(−9)]
+[(17)(27)] + [(5)(21)] + [(−37)(−45)]}/6 = −309

The cubic characteristic equation becomes

λ3 − 3110λ2 + 2961505λ − 796404408 = 0

which has three real roots, ignoring small imaginary residues returned by numerical solution.

λ = 453.1092563, 1244.042205, 1412.84854

Using the third, greatest one in the expansion of Eq. 4 yields a set of three linearly dependent
equations in the elements of e, the associated eigenvector.

(1010 − 1412.84854)ex + 323ey + 243ez = 0
323ex + (1106 − 1412.84854)ey − 309ez = 0
243ex − 309ey + (994 − 1412.84854)ez = 0

Solving, say, the first two homogeneously produces three direction numbers normal to the desired
plane.

ex = −25242.80478, ey = −45991.1989, ez = 19284.4863

These, together with the homogeneous coordinates of G, yield the plane equation.

G1x + G2y + G3z + G0 = 0 →
g0exx + g0eyy + g0ezz − (g1ex + g2ey + g3ez) = 0

→
(6)(−25242.80478)x + (6)(−45991.1989)y
(6)(19284.4863)z − [(35)(−25242.80478)

+(19)(−45991.1989) + (15)(19284.4863)] = 0
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Fig. 2 shows top and front view of the array of six spatial points as well as all three mutually
orthogonal eigenvector directions. The remaining two were computed with the other two eigen-
values. The one labelled λ3 is associated with the greatest eigenvalue. It does not appear as the
longest because the direction numbers were plotted as calculated. Vectors were not normalized
and assigned inertial magnitudes represented by the respective eigenvalues.
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Figure 2: Six Point Plane Fit

4 CONIC GRASSMANNIAN

The coefficients of a conic on five given points are provided by the top row minor 5×5 determinants
of the singular matrix, Eq. 5.
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Therefore the conic is represented in a six dimensional homogeneous vector space of quadratic
point form variables qi, derived from point coordinates pi, Eq. 6.

P{p0 : p1 : p2 : p3} ≡ {w : x : y : z} →
Q{q0 : q1 : q2 : q3 : q4 : q5}

≡ {w2 : wx : wy : x2 : xy : y2} (6)

For a brief but excellent introduction relating homogeneous coordinates and projective geometry
to modern linear algebra a recent text by Pottmann and Wallner [4] is highly recommended.
When fitting a conic to more than five given points, for the purpose of pattern recognition,
e.g., in unsupervised automated inspection of industrial production [5], digital image pixels often
constitute the point set. Hence, after pre-processing, the spatial point set P is assumed to lie in
the Euclidean plane of the curve it must represent. For this reason Eq. 5 contains only six planar
quadratic forms (columns) rather than ten needed to define a three dimensional quadric surface
in space. One may set p0 = w = 1 for points in the Euclidean plane to obtain the usual Cartesian
coordinates

P (p1, p2) ≡ (x, y) → Q(q1, q2, q3, q4, q5)

≡ (x, y, x2, xy, y2) (7)

Now first moments (centres of “gravity”) and second moments (moments and products of “inertia”)
of the numerous given points, assumed to be of equal unit weight, in a five dimensional Euclidean
space, will be defined. But first, consider what is in hand and what will be done with it.

• There are n given points

iQ(iq1, iq2, iq3, iq4, iq5), i = 1, . . . , n

• The first moment is defined with respect to a point G about which the sum of all point
moments vanishes. Conversely G is the point where all n points may concentrate their weight
so as to exert the same moment, anywhere, as do the n points in their actual position.

G{g0 : g1 : g2 : g3 : g4 : g5} ≡ {n :
n

∑

i=1

iq1 :

n
∑

i=1

iq2 :
n

∑

i=1

iq3 :
n

∑

i=1

iq4 :
n

∑

i=1

iq5} (8)

• A hyperplane g{G0 : G1 : G2 : G3 : G4 : G5} on G is sought such that the sum of the squares
of the normal “distances” from iQ to g is minimized.

• This will occur, at least in the context of this geometric model, when the hyperplane normal
direction numbers G1 : G2 : G3 : G4 : G5 are in the same ratio as those of the point cloud
inertia matrix eigenvector e{0 : E1 : E2 : E3 : E4 : E5} associated with the eigenvalue of
greatest magnitude, say, λmax = λ5. The reason for this choice is evident. The sum of the
squares of the distances to unit mass points in all directions normal to an axis is maximized
if that axis is the principal axis of greatest inertia of a rigid body whose mass is composed
exclusively of unit masses on iQ. This observation proceeds directly from the definition of
mass moment of inertia about an axis of rotation.
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• G0 = 0 if G ∈ g. I.e., if one chooses G as origin. Then g is identical to e, except for some
non-zero real multiplier.

• A little thought experiment may help to clarify the two arguments above.

1. Imagine a massless rectangular wire-frame “box” with edge lengths a > b > c. On
each of the eight vertices is located a unit point mass. Since 8 > 3, these points are
redundant in defining a unique plane. However it is obvious that G is at the centre of
the box, g bisects the four edges of length c and the normal to g on G is the principal
axis of greatest inertia. Finally, 2c2 is the sum, of the distances squared, from vertex
points iP to g. It is obviously minimal.

2. It must be pointed out that, as regards fitting planes to points, this geometric model
is perfect . However the analogy between points and quadratic point forms is not and
neither is the fit it produces.

This “point cloud” then, for a conic, is in five dimensional Euclidean space. The inertia matrix
can be written as a symmetric array of sums of squares (along the diagonal) and negative product
(off diagonal) terms in Eq. 9.

I =













I11 −I12 −I13 −I14 −I15

−I12 I22 −I23 −I24 −I25

−I13 −I23 I33 −I34 −I35

−I14 −I24 −I34 I44 −I45

−I15 −I25 −I35 −I45 I55













(9)

Rather than fitting six or more points to a general conic an example to fit four points to a circle
is chosen because the simpler calculation can be demonstrated in detail and this special case will
illustrate some intricacy not otherwise evident.

5 CIRCLE ON FOUR POINTS

Fitting a circle to an over-determined system of four given points iP{ip0 : ip1 : ip2} ≡ {w : x : y}
begins with a table of their homogeneous point coordinates.

w x y
1 4 2
1 9 5
1 14 5
1 18 4

This is represented in a table containing only four quadratic point forms, rather than six of a
general conic, because the circle’s invariance under rotation would fill the column under xy with
zeros. Similarly, another circle characteristic, identical coefficients of x2 and y2, require that these
two columns be combined as a sum. Thus these four appear in a 5 × 5 matrix, of rank deficiency
two, whose determinant expresses the circle equation. Additional given points would simply add
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more zero columns on the left, further increasing rank deficiency, i.e., expanding the null space of
the matrix.
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∣

∣
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= 0

These quadratic point forms

{w2 : wx : wy : x2 + y2} ≡ {ip
2

0
: ip0 ip1 : ip0 ip2 : ip

2

1
+ ip

2

2
}

≡ {iq0 : iq1 : iq2 : iq3}
and their sum and their average are tabulated below.

q0 q1 q2 q3

1 4 2 20
1 9 5 106
1 14 5 221
1 18 4 340

Σ 4 45 16 687
G = q 1 11.25 4 171.75

5.1 Centroid, Inertia Matrix & Elements

Subtracting the coordinates of G, the “centre of gravity”, produces the next table.

q′
1

q′
2

q′
3

−7.25 −2 −151.75
−2.25 1 −65.75
2.75 1 49.25
6.75 0 168.25

Now the inertia matrix characteristic equation is given by
∣

∣

∣

∣

∣

∣

I11 − λ −I12 −I13

−I12 I22 − λ −I23

−I13 −I23 I33 − λ

∣

∣

∣

∣

∣

∣

= 0

where

I11 =
4

∑

i=1

(

iq
′2

2
+ iq

′2

3

)

, I12 =
4

∑

i=1

(iq
′

1 iq
′

2
)

I13 =
4

∑

i=1

(iq
′

1 iq
′

3
) , I22 =

4
∑

i=1

(

iq
′

1

2
+ iq

′

3

2
)

I23 =
4

∑

i=1

(iq
′

2 iq
′

3
) , I33 =

4
∑

i=1

(

iq
′

1

2
+ iq

′

2

2
)
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So
q′
2

2 + q′
3

2 q′
1
q′
2

q′
1
q′
3

23032.0625 14.5 1100.1875
4324.0625 −2.25 147.9375
2426.5625 2.75 135.4375
28308.0625 0 1135.6875

q′
1

2 + q′
3

2 q′
2
q′
3

q′
1

2 + q′
2

2

23080.625 303.5 56.5625
4328.125 −65.75 6.0625
2433.125 49.25 8.5625
28353.625 0 45.5625

and
I11 = 58090.75, I12 = 15, I13 = 2519.25
I22 = 58195.5, I23 = 287 I33 = 116.75

5.2 Eigenvalues and Eigenvectors

The characteristic equation determinant yields the following cubic

λ3 − 116403λ2 + 3387767447λ − 20536062200 = 0

with eigenvalues
λ = 58201.40932, 58195.52759, 6.063090633

The greatest, first eigenvalue produces the following three dependent equations when it is substi-
tuted into the matrix that pre-multiplies column eigenvector e.

110.65932e1+ 15e2+ 2519.25e3 = 0
15e1+ 5.90932e2+ 287e3 = 0

2519.25e1+ 287e2+ 58084.65932e3 = 0

Solving the first two equations homogeneously reveals the eigenvector normal to the “best” fitting
“plane”.

e =





e1

e2

e3



 =





−10582.05441
6029.52516
428.9213329





5.3 The “Plane” & the Circle

Recall the centroid
G{g0 : g1 : g2 : g3} = {1 : 11.25 : 4 : 171.75}

on which g the pseudo-plane of best fit must lie.

g{G0 : G1 : G2 : G3}
= {−(g1e1 + g2e2 + g3e3) : g0e1 : g0e2 : g0e3}

= g{21262.77253 : −10582.05441 :

6029.52516 : 428.9213329} (10)
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Recall, also, the circle equation whose coefficients are the elements of g, thus.

21262.77253w2 − 10582.05441wx

+6029.52516wy + 428.9213329(x2 + y2) = 0

Rearranging this in more familiar, Euclidean form and dividing by G3 produces something that
looks like a circle equation

(x2 + y2) − 24.67131755x + 14.05741496y + 49.57266263 = 0

that can easily be interpreted as

(x2 + y2) − 2xcx − 2ycy + (x2

c + y2

c − r2) = 0

Solving for centre coordinates C(xc, yc) and radius r gives the following circle parameters.

xc = 12.33565878, yc = −7.02870748, r = 12.32876895

Examine Fig. 3. This result is quite encouraging when compared to a rigorous least squares
distance fit described below. However the downward-convex circular arc centred on C ′ is the
result of invoking the second eigenvalue, less than the greatest by only 0.01%! This inertial fit
appears to be very sensitive in this regard.
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Figure 3: Four Point Circle Fit

5.4 Least Squares Distance

Consider the minimization of the following sum.

D =
4

∑

i=1

[

√

(xc − xi)2 + (yc − yi)2 − r
]2

Taking the derivatives
∂D

∂xc

= 0,
∂D

∂yc

= 0,
∂D

∂r
= 0
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Removing the common factor 2 from all three derivatives and the common reciprocal factor

4
∏

i=1

√

(xc − xi)2 + (yc − yi)2

from the first two yields three simultaneous equations. Note that u = x, y to account for the first
two of similar form.

(4uc −
∑

ui)a1234 − [(uc − u1)a234

+(uc − u2)a134 + (uc − u3)a124

+(uc − u4)a123]r = 0

a1 + a2 + a3 + a4 − 4r = 0 (11)

Multiple subscripts indicate products, e.g., a1234 = a1a2a3a4 and

ai =
√

(xc − xi)2 + (yc − yi)2

Eliminating r leaves the two following equations.

3(4uc −
∑

ui)a1234

−a2

1
[(uc − u2)a34 + (uc − u3)a24 + (uc − u4)a23]

−a2

2
[(uc − u1)a34 + (uc − u3)a14 + (uc − u4)a13]

−a2

3
[(uc − u1)a24 + (uc − u2)a14 + (uc − u4)a12]

−a2

4
[(uc − u1)a23 + (uc − u2)a13 + (uc − u3)a12] = 0

Solving these explicitly seems impractical. However inserting the exact values obtained with the
inertial model leaves residues of about -695 and -97, respectively. After a few iterative perturba-
tions these are reduced to about 2.1 and -3.8. To achieve still greater precision is probably not
worthwhile. The centre coordinates of C are now

xc = 12.32503412, yc = −7.02685

Substituting these into the third partial derivative, Eq. 11, produces r = 12.32552238. When
these improved values are used to construct a circle in Fig. 3 this and the original arc are virtually
coincident.

6 CONCLUSION

It is anticipated that the novel geometric approach, based on a moment of inertia interpretation,
described here could, with further development, become a powerful image processing and pattern
recognition tool. The immediate extension of its currently modest capacities will be focused on
recognition of other shapes which can be represented by quadratic forms, i.e., other specific conics
as well as quadric surfaces.
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