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TANGENCY AMONG THREE CYLINDERS
A HYPERBOLOID AND A TORUS

Paul ZSOMBOR-MURRAY
McGill University, Canada

A challenging exercise in solid modeling is examined and developed as an opportunity to raise
students’ consciousness in “geometric thinking” by considering how to extract additional, required
design parameters from an initial specification. This involves the formulation and solution of a
variety of problems in analytical geometry and inevitable digression into some simple application of
polynomial discriminants and the notion that pitfalls as well as advantages accompany symmetric
configuration.
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1. SOLID MODELING A TABLE
Look at Fig. 1. The problem at hand is to ex-
tract the necessary design information from the
following specifications so that a 3D model of
this small patio cocktail table may be assembled
from five simple parts, very easily constructed
individually with “Solid Works” once the design
information is available.

• The table top is a 500mm diameter by
25mm thick disc and sits on

• Three legs that are cylinders of 50mm outer
diameter and inclined at the angle of the
sloping edges of a regular tetrahedron with
one base horizontal.

• Legs mutually touch, each pair on a point at
half their total sloping leg height, i.e., legs
are beveled at an angle so their elliptical
ends lie in horizontal planes on the bottom
of the table top and the floor.

• Vertical distance between floor and under
surface of table top is 500mm.

• A ring in the shape of a torus or “per-
fect doughnut” holds the legs together and
touches them. The smallest circular section
of this torus has a diameter of 50mm.

The task will be to map the elliptical footprints
of the legs onto the under surface of the table
top and to the floor and to find the inner radius
of the “doughnut hole”.

Figure 1: A Round Table with Three Legs Held
by a Ring

1.1 Expectation

The student is expected to produce and deliver:-

• A nice CAD drawing of the hyperbola and
the minor circular torus section, of radius
R, in tangency as was done in the circle and
ellipse in Fig. 5,



• An analysis to find the minor (meridian)
circle centre radius x2 of the torus and the
points of tangency of this circular section
with the hyperbola on the axial section of
the hyperboloid swept by the table legs and

• Of course, the entire five piece solid model.

2. NEAT DESCRIPTIVE GEOMETRY
The region where the three legs and torus touch
are described constructively in the top and ele-
vation view drawing shown in Fig. 2 while Fig. 3
shows one of the leg axes in end or point view.
These three illustrations, including Fig. 1, were
taken from an article that appeared recently in
IBDG [1]. These may help if you can read mul-
tiview scaled drawings and have learned a little
descriptive geometry.

2.1 Touching Legs and Torus
Now the leg axis geometry and that of the hy-
perbolic external envelope of the legs will be ad-
dressed so that the legs and the torus can be con-
structed. First the mutual tangency of the three
legs will be considered using two approaches. In
the first, a conic coefficient matrix and its dual,
cofactored form will be used. In the second, the
relation between tangency and double roots is
shown thus providing a simple introduction to
discriminant methods. The enveloping hyper-
boloid will be found by identifying the ruling
line, on a leg cylinder, that is furthest from the
hyperboloid axis.

2.2 Slope of the Legs
To find the slope of the legs, from the speci-
fication that their cylindrical axes are parallel
to three intersecting edges of a regular tetra-
hedron and their slope is the angle θ between
an edge and the plane formed by the remaining
two intersecting edges, imagine a unit cube with
the three intersecting edges on its face diagonals
thus.

OA, OB, OC, O(0, 0, 0)

A(1, 1, 0), B(0, 1, 1), C(1, 0, 1)

Figure 2: Leg in True View and One-Sheet Ex-
ternal Hyperbolid of Revolution

Figure 3: End View of a Leg



O, A, B, C are cube vertices and the unit normal
to plane ABC is n while u is the unit vector
along AO.

n =
AB × AC

|AB||AC|
=

1√
3
[−1 − 1 − 1]T

u =
1√
2
[−1 − 1 0]T

The inner product n · u = sin θ =
√

2/3 .

2.3 Leg Cotangency Conditions
Imagine that the three legs are already in their
proper positions. Examining the layout in a
top view projection like the upper illustration
in Fig. 2. The equilateral triangle in the cen-
tre is reproduced in Fig. 4 and represents the
three leg axis. Sectioning the legs with succes-
sive horizontal planes proceeding from the floor
up one will eventually arrive at a level, exactly
mid-way up, where the elliptical sections of the
legs are cotangential. Only one such ellipse is
shown in Fig. 4 but two other, congruent ones
may be visualized with their major axes on the
other two sides of the equilateral triangle. It is
obvious that one need not consider ellipse tan-
gency since the right bisectors of the triangle
will more simply serve the same purpose. Now
consider the ellipse in standard form as shown
in Fig. 4 in the Cartesian frame on origin O and
axes x1, x2. One knows the leg cylinder radius
is b = 25mm and

sin θ =
b

a

where a is the ellipse semi-major axis length
and θ is the slope angle of legs parallel to the
concurrent edges of a regular tetrahedron, i.e.,
sin θ =

√
2/3 and a = 25

√
3/2mm. What is not

known is w the distance between hyperboloid’s
axis of symmetry and any leg axis.

2.4 Coefficient Matrix and Cofactors
We have a situation where the five conditions
necessary to define a conic, the ellipse in this
case, include four tangent lines, p on points S

up

up

x 1

x 2

Oa

b w

S

P

Q

R

p

q

r

s

Figure 4: Triangle and Ellipse

and P , q on points P and Q, r on points Q and
R and s on points R and S. Furthermore one
knows that the point (not shown) T (0,−b) is
on the ellipse, too. In order to review principles
used below, refer to [2]. Consider the three conic
coefficient matrices in the following expression. A00 A01 A02

A01 A11 A12

A02 A12 A22

 →

 A11A22 − A2
12 A02A12 − A01A22

A02A12 − A01A22 A00A22 − A2
02

A01A12 − A02A11 A01A02 − A00A12

A01A12 − A02A11

A01A02 − A00A12

A00A11 − A2
01


≡

 a00 a01 a02

a01 a11 a12

a02 a12 a22


The first coefficient matrix is that of a conic tan-
gent line equation, i.e., pre-multiplying it with
a row vector of planar line coordinates and post-
multiplying by the column vector produces the
scalar line equation of the conic. Cofactoring



produces the middle matrix, the coefficient ma-
trix of the corresponding point conic with coeffi-
cients represented as aij. With the four tangent
line corner point homogeneous coordinates from
Fig. 4 we get the four tangent line equation co-
efficients.

P{1 : 0 : w}, Q{1 :
√

3w : 0}
R{1 : 0 : −w}, S{1 : −

√
3 : 0} →

p{
√

3w : 1 : −
√

3}, q{
√

3w : −1 : −
√

3}
r{
√

3w : −1 :
√

3}, s{
√

3w : 1 :
√

3} (1)

Now the five constraint equations, Eq. 2, define
the ellipse in terms of coefficients Aij.

p : 3w2A00 + 2
√

3wA01 − 6wA02 + A11

−2
√

3A12 + 3A22 = 0

q : 3w2A00 − 2
√

3wA01 − 6wA02 + A11

+2
√

3A12 + 3A22 = 0

r : 3w2A00 − 2
√

3wA01 + 6wA02 + A11

−2
√

3A12 + 3A22 = 0

s : 3w2A00 + 2
√

3wA01 + 6wA02 + A11

+2
√

3A12 + 3A22 = 0

T : A11A22 − A2
12 + 2bA01A12 − 2bA02A11

+b2A00A11 − b2A2
01 = 0 (2)

Solving for Aij and cofactoring produces the
ellipse point coefficient matrix, in aij, on the
right in expression 3, not surprisingly in stan-
dard form.  −1 0 0

0 3(w2 − b2) 0
0 0 b2

 →

 −3(w2 − b2)b2 0 0
0 b2 0
0 0 3(w2 − b2)

 (3)

With row and column vectors of variable homo-
geneous coordinates of point X{x0 : x1 : x2}
and with x0 = 1 in Euclidean space the ellipse
is given by Eq. 4.

−1 +
x2

1

3(w2 − b2)
+

x2
2

b2
= 0 (4)

Equating denominators of x2
1 by definition as

a2 = 3(w2 − b2) gives w = ±
√

(a2 + 3b2)/3 .

2.5 Standard Form and Discriminant
An alternate approach to symmetrically placing
the three coplanar, cotangential elliptical sec-
tions on equilateral triangle sides, formed by
a top view projection of the leg cylinder axes,
is now discussed. Since the solution is easily
seen to simplify to a standard form ellipse with
given minor axis length b and a tangent line,
say, QR → r with given principal axis inter-
cepts Q(

√
3w, 0) and R(0,−w), the ellipse and

line, using the negative reciprocal intercept for-
mulation described in [3], are presented in Eq. 5
in terms of three unknowns, x1, x2, a, where a is
the semi-major axis length.

−1 +
x2

1

a2
+

x2
2

b2
= 0, 1− x1√

3w
+

x2

w
= 0 (5)

Eliminating x2 between the ellipse and line ex-
pressed in Eq. 5 produces a quadratic in x1 only.

(9b2 + 3a2)x2
1 − 6

√
3a2wx1 − 9a2(b2 + w2) = 0

This is differentiated with respect to x1

(a2 + 3b2)x1 −
√

3a2w = 0

and x1 is eliminated between the quadratic and
its derivative yielding a function f(a, b, w) = 0.

324a2b2(a2 + 3b2)(a2 + 3b2 − 3w2) = 0

The factor containing w is solved to again ar-
rive at w = ±

√
(a2 + 3b2)/3 and with the given

specifications w = a = 25
√

3/2mm.

2.6 From Ellipse to Hyperboloid Axis
Fig. 5 shows the tangent circle of maximum ra-
dius, centred on the minor axis of the ellipse at
distance w from its centre. A leg cylinder gen-
erator on such a tangent point is also a genera-
tor of the one sheet hyperboloid of revolution to
which the torus is tangent. In fact, the circle is
the throat circle of that hyperboloid.
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Figure 5: Hyperboloid Throat Circle

The standard form ellipse and tangent circle
equations are written as Eq. 6.

−1+
x2

1

a2
+

x2
2

b2
= 0, −r2+x2

1+(x2+w)2 = 0 (6)

Eliminating x2 produces a quadratic in x1. Tak-
ing its derivative with respect to x1 yields a sec-
ond, linear equation in x1. Solving these to elim-
inate x1 gives the circle radius r and then simul-
taneous solution of Eq. 6 finds the two points
that each support a cylinder-and-hyperboloid
generator. The radius and tangent points are
given by Eq. 7 where results are expressed as
dimensionless ratios.

r2

a2
= 1 +

w2

a2 − b2
,

x1

a
= ±

√
1−

(
wb

a2 − b2

)2

x2

w
=

b2

a2 − b2
(7)

Alas, although the solution above has been sim-
plified so as to deal only with a quadratic equa-
tion, the intersection between two conics admits
four solutions. Referring to [4] one sees a com-
prehensive development of this topic. In the so-
lution Eq. 7 above the quartic

Px4
1 + Qx3

1 + Rx2
1 + Sx1 + T = 0

where Q = S = T = 0 has been represented
by only the quadratic factor Px2 + R = 0 that
leads to a pair of imaginary solutions. The
real, significant, double root (x1 − 0)2 = 0 is
omitted. In such cases where the circle centre
point is on the ellipse minor axis x2 = b. A
pair of real roots emerges from the quadratic
factor if θ is sufficiently small as in the arbi-
trary case illustrated in Fig. 5. The actual sit-
uation with the given design parameters that
produce x1 = 0 is summed up in Fig. 6 where
r = b + w = b + a = 25(1 +

√
3/2) .

a

b

w

r

Figure 6: Three Leg Sections on Torus Equator
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Figure 7: Tori and Hyperboloid Sections



2.7 Torus and Hyperboloid Tangency
First the axial hyperbolic section of the standard
form one sheet hyperboloid of revolution with
throat radius r given by Eq. 7 is configured as a
planar projection on, say, x1 = 0. This is done
using the point X{x0 : x2 : x3} = {1 : r : 0} and
an absolute point A{a0 : a2 : a3} = {0 : cos θ :
sin θ} on the chosen plane of projection, x1 = 0.
The chosen hyperbola is written in Eq. 8 along
with the coefficients derived with points X and
A. Notice that α and β are used to represent the
unknown conic coefficients since the more usual
a and b were already used for the ellipse.

β2x2
2 − α2x2

3 − α2β2x2
0 = 0 →

x2
2

α2
− x2

3

β2
− 1 = 0

x0 = 1, α = r, β = r tan θ (8)

As in the case of finding the radius r of the circle
that circumscribes the three mutually tangential
elliptical sections of the leg cylinders, as shown
in Fig. 6, one must find the location of the cir-
cular axis of the torus, a distance v from the
hyperbola axis on x2 = 0. The meridial circular
section of the torus is of given radius R = 25mm
and this circle (x2 − v)2 + x2

3 − R2 = 0 must be
tangential to the hyperbola given by Eq. 8. If
one chooses to eliminate x3 between Eqs. 8 and
the circle, two “right” answers are obtained, the
first of the two pairs ±(α+R), ±(α−R), α =
r. The second pair represents tangency of cir-
cles inside the hyperbola. If however R is suf-
ficiently large or θ is sufficiently small then the
solution produced by eliminating x2, that ad-
mits two separate points of tangency, applies,
i.e., v =

√
r2(1 + tan2 θ) + R2(1 + cot2 θ). Sec-

tions of an R = 25mm and an R = 200mm
torus are shown on the right and left of the hy-
perbola pertaining to b = 25mm legs at slopes
of θ = sin−1

√
2/3 are shown in Fig. 7.

2.8 Conic and Circle Tangency
Applying the analysis outlined in [4] to the con-
figurations depicted in Figs. 5,6,7, where the cir-
cle is centred at P (0,±p2, 0) and P (±p1, 0, 0),

respectively, reveals the condition where the two
contact points at±x1 and±x3 collapse to x1 = 0
or x3 = 0, respectively. This is expressed in
terms of appropriate dimensionless ratios.(x1

a

)2

= 1−
(

bw

a2 − b2

)2

(9)

Eq. 9, essentially a reprise of Eq. 7, is devoid of
radius r or R. As w is increased so that∣∣∣∣ w/a

(a/b)− (b/a)

∣∣∣∣ > 1

then the single point contact applies and the in-
ner radius of the torus is r = b+w and the circu-
lar axis of the torus is at x2 = r+R for the given
dimensional specification of the table leg config-
uration, i.e., b = R = 25mm and w = a = 25b.

3. GENERAL CONFIGURATION
Consider placing in mutual contact three cylin-
ders of revolution of various given radii and axial
directions. There is no loss in generality if one
chooses the first cylinder axis to lie on the Carte-
sian frame axis x1. This axis is shown in Fig. 8
as segment AB of line P . The second cylinder
axis on segment CD of line Q is separated from
AB by common normal AC along the Cartesian
frame axis x3. The third cylinder axis cannot be
placed immediately but its direction is given by
line segment AX. When AX is projected on a
plane normal to this direction the two pairs of
parallel ruling lines on the first two cylinders are
shown to define the limits of these two cylinders.
There are four possible locations for the circular
section of the third cylinder. These are located
by intersecting line pairs that are respectively
parallel to a limit ruling of each of the first two
cylinders and offset by a distance equal to the
radius of the third cylinder. The third cylinder
axis chosen is shown as segment EF of line R.
Now the other two common normals GH and
JK, connecting EF to AB and to CD, can be
found and points P, Q, R placed on these and on
AC. These three points are where cylinder pairs
make contact.
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Figure 8: Three Contacting Cylinders of Various Radius and Axial Direction



3.1 Analytic Geometry
In what follows the axis of the third cylinder
will be defined on the intersection of a plane
pair. As in the case of offset lines on the plane
of projection, above, there are four such planes
that may be paired to locate four possible axes
of the third cylinder. Fig. 9 shows three touch-
ing cylinders of different radius and, for clarity,
with their axes mutually orthogonal. A sphere of
radius equal to the sum of the radii of the sec-
ond and third cylinders is placed anywhere on
the axis of the second. Then a plane is shown
tangent to the sphere and parallel to the second
and third cylinder axes. Again, for clarity, this
plane is not on the axis of the third cylinder but
it is easy to imagine the two planes which are.

Figure 9: Three Contacting Cylinders, a Sphere
and a Plane

4. CONCLUSION
Apart from providing an interesting and chal-
lenging exercise in solid modeling this problem
goes well beyond the issues of contacting cylin-
ders and tori. Specifically, the robust and effi-
cient computation of shortest distance between
points in the plane and in space and conics and
quadrics, respectively, is an active subject of
modern research in image processing for precise
camera aided inspection of industrial products,
e.g., [5].
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