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 we have shown in the case when there exists an adapted time-invariant filter, which locally recovers "well" the unknown signal, there is a numerically efficient construction of an adaptive filter which recovers the signals "almost as well". In the current paper we study the application of the proposed estimation techniques in the non-parametric regression setting. Namely, we propose an adaptive estimation procedure for "locally well-filtered" signals (some typical examples being smooth signals, modulated smooth signals and harmonic functions) and show that the rate of recovery of such signals in the ℓ p -norm on the grid is essentially the same as that rate for regular signals with nonhomogeneous smoothness.

Introduction

Let F = (Ω, Σ, P ) be a probability space. We consider the problem of recovering unknown complex-valued random field (s τ = s τ (ξ)) τ ∈Z d ξ∈Ω over Z d from * Corresponding author.

Email addresses: anatoli.juditsky@imag.fr (Anatoli Juditsky), nemirovs@isye.gatech.edu (Arkadi Nemirovski).

Preprint submitted to Elsevier Science noisy observations y τ = s τ + e τ .

(1)

We assume that the field (e τ ) of observation noises is independent of (s τ ) and is of the form e τ = σǫ τ , where (ǫ τ ) are independent of each other standard Gaussian complex-valued variables; the adjective "standard" means that ℜ(ǫ τ ), ℑ(ǫ τ ) are independent of each other N(0, 1) random variables.

We suppose that the observations (1) come from a function ("signal") f of continuous argument (which we assume to vary in the d-dimensional unit cube [0, 1] d ); this function is observed in noise along an n-point equidistant grid in [0, 1] d , and the problem is to recover f via these observations. This problem fits the framework of nonparametric regression estimation with a "traditional setting" as follows:

A. The objective is to recover an unknown smooth function f : [0, 1] d → R, which is sampled on the observation grid Γ n = {x τ = m -1 τ : 0 ≤ τ 1 , ..., τ d ≤ m} with (m+1) d = n, so that s τ = f (x τ ). The error of recovery is measured with some functional norm (or a semi-norm) • on [0, 1] d , and the risk of recovery f of f is the expectation E f ff 2 ;

B. The estimation routines are aimed at recovering smooth signals, and their quality is measured by their maximal risks, the maximum being taken over f running through natural families of smooth signals, e.g., Hölder or Sobolev balls;

C. The focus is on the asymptotic, as the volume of observations n goes to infinity, behavior of the estimation routines, with emphasis on asymptotically minimax (nearly) optimal estimates -those which attain (nearly) best possible rates of convergence of the risks to 0 as the observation sample size n → ∞.

Initially, the research was focused on recovering smooth signals with a priori known smoothness parameters and the estimation routines were tuned to these parameters (see, e.g., [START_REF] Ibragimov | On nonparametric estimation of regression[END_REF][START_REF] Pinsker | Optimal filtration of square-integrable signals in Gaussian noise[END_REF][START_REF] Ch | Optimal rates of convergence for nonparametric estimators[END_REF][START_REF] Ibragimov | Statistical Estimation[END_REF][START_REF] Birgé | Approximation dans les espaces métriques et théorie de l'estimation[END_REF][START_REF] Nemirovskii | On nonparametric estimation of smooth regression functions[END_REF][START_REF] Wahba | Spline models for observational data[END_REF][START_REF] Härdle | Applied Nonparametric Regression[END_REF][START_REF] Rosenblatt | Stochastic curve estimation[END_REF][START_REF] Yu | Asymptotic minimax estimation of regression function in additive model[END_REF][START_REF] Korostelev | Minimax theory of image reconstruction[END_REF]). Later on, there was a significant research on adaptive estimation. Adaptive estimation methods are free of a priori assumptions on the smoothness parameters of the signal to be recovered, and the primary goal is to develop the routines which exhibit asymptotically (nearly) optimal behavior on a wide variety of families of smooth functions (cf. [START_REF] Pinsker | Learning algorithm for nonparametric filtering[END_REF][START_REF] Lepskii | On a problem of adaptive estimation in Gaussian white noise[END_REF][START_REF] Lepskii | Asymptotically minimax adaptive estimation I: Upper bounds. Optimally adaptive estimates[END_REF][START_REF] Lepskii | Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[END_REF][START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF][START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Donoho | Wavelet shrinkage: Asymptopia? (with discussion and reply by the authors)[END_REF][START_REF] Juditsky | Wavelet estimators: Adapting to unknown smoothness[END_REF][START_REF] Birgé | From model selection to adaptive estimation[END_REF][START_REF] Donoho | Minimax risk over ℓ p balls for ℓ q losses[END_REF][START_REF] Goldenshluger | On spatially adaptive estimation of nonparametric regression[END_REF]). For a more compete overview of results on smooth nonparametric regression estimation see, for instance, [START_REF] Nemirovski | Topics in Non-parametric Statistics[END_REF]. 3The traditional focus on recovering smooth signals ultimately comes from the fact that such a signal locally can be well-approximated by a polynomial of a fixed order r, and such a polynomial is an "easy to estimate" entity. Specifically, for every integer T ≥ 0, the value of a polynomial p at an observation point x t can be recovered via (2T + 1) d neighboring observations {x τ : |τ jt j | ≤ T, 1 ≤ j ≤ d} "at a parametric rate" -with the expected squared error Cσ 2 (2T + 1) -d which is inverse proportional to the amount (2T + 1) d of the observations used by the estimate. The coefficient C depends solely on the order r and the dimensionality d of the polynomial. The corresponding estimate p(x t ) of p(x t ) is pretty simple: it is given by a "time-invariant filter", that is, by convolution of observations with an appropriate discrete kernel q (T ) = (q (T ) τ ) τ ∈Z d vanishing outside the box

O T = {τ ∈ Z d : |τ j | ≤ T, 1 ≤ j ≤ d}: p(x t ) = τ ∈O T q (T ) τ y t-τ , then the estimation f of f (x t ) is taken as f = p(x t ).
Note that the kernel q (T ) is readily given by the degree r of the approximating polynomial, T and dimension d. The "classical" adaptation routines takes care of choosing "good" values of the approximation parameters (namely, T and r).

On the other hand, the polynomial approximation "mechanism" is supposed to be fixed once for ever. Thus, in those procedures the "form" of the kernel is considered as given in advance.

In the companion paper [START_REF] Juditsky | Nonparametric Denoising of Signals with Unknown Local Structure, I: Oracle Inequalities Accepted to[END_REF] (referred hereafter as Part I) we have introduced the notion of a well-filtered signal. In brief, the signal (s τ ) τ ∈Z d is T -well-filtered for some T ∈ N + if there is a filter (kernel) q = q (T ) ∈ O T which recovers (s τ ) in the box {u : |u -t| ≤ 3T } with the mean square error comparable with σT -d/2 : max

u:|u-t|≤3T E    |s u - τ ∈O T q (T ) τ y u-τ | 2    ≤ O(σ 2 T -d ).
The universe of these signals is much wider than the one of smooth signals.As we have seen in Part I that it contains, in particular, "modulated smooth signals" -sums of a fixed number of products of smooth functions and multivariate harmonic oscillations of unknown (and arbitrarily high) frequencies.

We have shown in Part I that whenever a discrete time signal (that is, a signal defined on a regular discrete grid) is well-filtered, we can recover this signal at a "nearly parametric" rate without a priori knowledge of the associated filter.

In other words, a well-filtered signal can be recovered on the observation grid basically as well as if it were an algebraic polynomial of a given order.

We are about to demonstrate that the results of Part I on recovering wellfiltered signals of unknown structure can be applied to recovering nonparametric signals which admit well-filtered local approximations. Such an extension has an unavoidable price -now we cannot hope to recover the signal well outside of the observation grid (a highly oscillating signal can merely vanish on the observation grid and be arbitrarily large outside it). As a result, in what follows we are interested in recovering the signals along the observation grid only and, consequently, replace the error measures based on the functional norms on [0, 1] d by their grid analogies.

The estimates to be developed will be "double adaptive", that is, adaptive with respect to both the unknown in advance structures of well-filtered approximations of our signals and to the unknown in advance "approximation rate" -the dependence between the size of a neighborhood of a point where the signal in question is approximated and the quality of approximation in this neighborhood. Note that in the case of smooth signals, this approximation rate is exactly what is given by the smoothness parameters. The results to follow can be seen as extensions of the results of [START_REF] Nemirovski | On nonparametric estimation of functions satisfying differential inequalities[END_REF][START_REF] Goldenshluger | Adaptive de-noising of signals satisfying differential inequalities[END_REF] (see also [START_REF] Nemirovski | Topics in Non-parametric Statistics[END_REF]) dealing with the particular case of univariate signals satisfying differential inequalities with unknown differential operators.

Nonparametric regression problem

We start with the formal description of the components of the nonparametric regression problem. 

Γ n = {x = m -1 α : α ∈ Z d , 0 ≤ α, |α| ≤ m}.
Let C([0, 1] d ) be the linear space of complex-valued fields over [0, 1] d . We associate with a signal f ∈ C([0, 1] d ) its observations along Γ n :

y ≡ y n f (ǫ) = {y τ ≡ y n τ (f, ǫ) = f (m -1 τ ) + e τ , e τ = σǫ τ } 0≤τ ≤m , (2) 
where {ǫ τ } τ ∈Z d are independent standard Gaussian complex-valued random noises. Our goal is to recover f | Γn from observations [START_REF] Birgé | Approximation dans les espaces métriques et théorie de l'estimation[END_REF]. In what follows, we write

f τ = f (m -1 τ ), [τ ∈ Z d , m -1 τ ∈ [0, 1] d ]
Below we use the following notations. For a set B ⊂ [0, 1] d , we denote by Z(B) the set of all t ∈ Z d such that m -1 t ∈ B. We denote • q,B the standard L p -norm on B:

g p,B =   x∈B |g(x)| p dx   1/p
, and |g| q,B its discrete analogy, so that

|g| q,B = m -d/q   τ ∈Z(B) |g τ | q   1/q . We set Γ o n = Γ n ∩ (0, 1) n = {m -1 t : t ∈ Z d , t > 0, |t| < m}. Let x = m -1 t ∈ Γ o n .
We say that a nonempty open cube

B h (x) = {u | |u i -x i | < h/2, i = 1, ..., d} centered at x is admissible for x, if B h (x) ⊂ [0, 1] n . For such a cube, T h (x) denotes the largest nonnegative integer T such that Z(B) ⊃ {τ ∈ Z d : |τ -t| ≤ 4T }.
For a cube

B = {x ∈ R d : |x i -c i | ≤ h/2, i = 1, .
.., d}, D(B) = h stands for the edge of B. For γ ∈ (0, 1) we denote

B γ = {x ∈ R d : |x i -c i | ≤ γh/2, i = 1, ..., d} the γ-shrinkage of B to the center of B.

Classes of locally well-filtered signals

Recall that we say that a function on [0, 1] d is smooth if it can be locally well-approximated by a polynomial. Informally, the the definition below sais that a continuous signal f ∈ C([0, 1]) d is locally well-filtered if f admits a good local approximation by a well-filtered discrete signal φ τ on Γ n (see Definition 1 of Section 2.1, Part I). 

(1) f ∈ C([0, 1] d );
(2) There exists a nonnegative function F ∈ L p (B), F p,B ≤ R, such that for every x = m -1 t ∈ Γ n ∩ intB and for every admissible for

x cube B h (x) contained in B there exists a field φ ∈ C(Z d ) such that φ ∈ S t 3T h (x) (0, ρ, T h (x)) (where the set S t L (θ, ρ, T ) of T -well filtered signals is defined in Definition 1 of Part I) and ∀τ ∈ Z(B h (x)) : |φ τ -f τ | ≤ h k-d/p F p,B h (x) . (3) 
In the sequel, we use for F k,ρ,p (B; R) also the shortened notation F[ψ], where ψ stands for the collection of "parameters" (k, ρ, p, B, R).

Remark 

D k g ℓ p,B ≤ R.
Let ω(ℓ) ∈ R d , and let

f (x) = ν ℓ=1 g ℓ (x) exp{iω T (ℓ)x}.
By the standard argument [START_REF] Besov | ski. Integral representations of functions and embedding theorems[END_REF], whenever x = m -1 t ∈ Γ n ∩ intB and B h (x) is admissible for x, the Taylor polynomial Φ x ℓ (•), of order k -1, taken at x, of f ℓ satisfies the inequality

u ∈ B h (x) ⇒ |Φ x ℓ (u) -f ℓ (u)| ≤ c 1 h k-d/p F ℓ p,B h (x) , where F ℓ (u) = |D k f ℓ (u)|
(here and in what follows, c i are positive constants depending solely on d, k

and ν). It follows that if Φ(u) = ν ℓ=1 Φ x ℓ (u) exp{iω T (ℓ)u} then u ∈ B h (x) ⇒ |Φ(u) -f (u)| ≤ h k-d/p F p,B h (x) , F = c 2 ν ℓ=1 F ℓ [⇒ F p,B ≤ c 3 R]. (4) 
Now observe that the exponential polynomial φ(τ ) = Φ(m -1 τ ) belongs to S t L (0, c 4 , T ) for any 0 ≤ T ≤ L ≤ ∞ (Proposition 10 of Part I). Combining this fact with (4), we conclude that f ∈ F k,ρ(ν,k,d),p (B, c(ν, k, d)R).

Accuracy measures

Let us fix γ ∈ (0, 1) and q ∈ [1, ∞]. Given an estimate f n of the restriction f | Γn of f on the grid Γ n , based on observations (2) (i.e., a Borel real-valued function of x ∈ Γ n and y ∈ C n ) and ψ = (k, ρ, p, B, R), let us characterize the quality of the estimate on the set F[ψ] by the worst-case risks

R q f n ; F[ψ] = sup f ∈F[ψ] E f n (•; y f (ǫ)) -f | Γn (•) 2 q,Bγ 1/2 .

Estimator construction

The recovering routine we are about to build is aimed at estimating functions from classes F k,ρ,p (B, R) with unknown in advance parameters k, ρ, p, B, R. The only design parameters of the routine is an a priori upper bound µ on the parameter ρ and a γ ∈ (0, 1).

Preliminaries

From now on, we denote by Θ = Θ (n) the deterministic function of observation noises defined as follows. For every cube B ⊂ [0, 1] d with vertices in Γ n , we consider the discrete Fourier transform of the observation noises reduced to B ∩Γ n , and take the maximum of modules of the resulting Fourier coefficients, let it be denoted θ B (e). By definition,

Θ ≡ Θ (n) = σ -1 max B θ B (e),
where the maximum is taken over all cubes B of the indicated type. By the origin of Θ (n) , due to the classical results on maxima of Gaussian processes (cf also Lemma 15 of Part I), we have

∀w ≥ 1 : Prob Θ (n) > w √ ln n ≤ exp - cw 2 ln n 2 , (5) 
where c > 0 depends solely on d.

Building blocks: window estimates

To recover a signal f via n = m d observations (2), we use point-wise window estimates of f defined as follows.

Let us fix a point x = m -1 t ∈ Γ o n ; our goal is to build an estimate of f (x). Let B h (x) be an admissible window for x. We associate with this window an estimate f h n = f h n (x; y n f (ǫ)) of f (x) defined as follows. If the window is "very small", specifically, h ≤ m -1 , so that x is the only point from the observation grid Γ n in B h (x), we set T h (x) = 0 and f h n = y t . For a larger window, we choose the largest nonnegative integer T = T h (x) such that

Z(B h (x)) ⊃ {τ : |τ -t| ≤ 4T }
and apply Algorithm A of Part I to build the estimate of f t = f (x), the design parameters of the algorithm being (µ, T h (x)). Let the resulting estimate be denoted by

f h n = f h n (x; y n f (ǫ)).
To characterize the quality of the estimate

f h n = f h n (x; y n f (ǫ)), let us set Φ µ (f, B h (x)) = min p max τ ∈Z(B h (x)) |p τ -f τ | : p ∈ S t 3T h (x) (0, µ, T h (x)) .
Lemma 2 One has

(f τ ) ∈ S t 3T h (x) (θ, µ, T h (x)), θ = Φ µ (f, B h (x))(1 + µ) (2T + 1) d/2 . ( 6 
)
Assuming that h > m -1 and combining [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF] with the result of Theorem 4 of Part I we come to the following upper bound on the error of estimating f (x) by the estimate f h n (x; •):

|f (x) -f h n (x; y f (ǫ))| ≤ C 1 Φ µ (f, B h (x)) + σ √ nh d Θ (n) (7) 
(note that (2T h (x) + 1) -d/2 ≤ C 0 (nh d ) -1/2
). For evident reasons (7) holds true for "very small windows" (those with h ≤ m -1 ) as well.

The adaptive estimate

We are about to "aggregate" the window estimates f h n into an adaptive estimate, applying Lepskii's adaptation scheme in the same fashion as in [START_REF] Lepskii | Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[END_REF][START_REF] Goldenshluger | On spatially adaptive estimation of nonparametric regression[END_REF][START_REF] Goldenshluger | Adaptive de-noising of signals satisfying differential inequalities[END_REF].

Let us fix a "safety factor" ω in such a way that the event Θ (n) > ω √ ln n is "highly un-probable", namely,

Prob Θ (n) > ω √ ln n ≤ n -4(µ+1) ; (8) 
by ( 5), the required ω may be chosen as a function of µ, d only. We are to describe the basic blocks of the construction of the adaptive estimate.

"Good" realizations of noise. Let us define the set of "good realizations of noise" as

Ξ n = {ǫ | Θ (n) ≤ ω √ ln n}. (9) 
Now [START_REF] Donoho | Minimax risk over ℓ p balls for ℓ q losses[END_REF] implies the "conditional" error bound

ǫ ∈ Ξ n ⇒ |f (x) -f h n (x; y f (ǫ))| ≤ C 1 [Φ µ (f, B h (x)) + S n (h)] , S n (h) = σ √ nh d ω √ ln n. (10) 
Observe that as h grows, the "deterministic term" Φ µ (f, B h (x)) does not decrease, while the "stochastic term" S n (h) decreases.

The "ideal" window. Let us define the ideal window B * (x) as the largest admissible window for which the stochastic term dominates the deterministic one:

B * (x) = B h * (x) (x), h * (x) = max{h | h > 0, B h (x) ⊂ [0, 1] d , Φ µ (f, B h (x)) ≤ S n (h)}. ( 11 
)
Note that such a window does exist, since S n (h) → ∞ as h → +0. Besides this, since the cubes B h (x) are open, the quantity Φ µ (f, B h (x)) is continuous from the left, so that

0 < h ≤ h * (x) ⇒ Φ µ (f, B h (x)) ≤ S n (h). (12) 
Thus, the ideal window B * (x) is well-defined for every x possessing admissible windows, i.e., for every x = Γ o n = {m -1 t : t ∈ Z d , 0 < t, |t| < m}. Normal windows. Assume that ǫ ∈ Ξ n . Then the errors of all estimates f h n (x; y) associated with admissible windows smaller than the ideal one are dominated by the corresponding stochastic terms:

ǫ ∈ Ξ n , 0 < h ≤ h * (x) ⇒ |f (x) -f h n (x; y f (ǫ))| ≤ 2C 1 S n (h) (13) 
(by ( 10) and ( 12)). Let us fix an ǫ ∈ Ξ n (and thus -a realization y of the observations) and let us call an admissible for x window B h (x) normal, if the associated estimate f h n (x; y) differs from every estimate associated with a smaller window by no more than 4C 1 times the stochastic term of the latter estimate, i.e.

Window B h (x) is normal      B h (x) is admissible ∀h ′ , 0 < h ′ ≤ h : | f h ′ n (x; y) -f h n (x; y)| ≤ 4C 1 S n (h ′ ) [y = y f (ǫ)] (14) 
Note that if x ∈ Γ o n , then x possesses a normal window, specifically, the window B m -1 (x). Indeed, this window contains a single observation point, namely, x itself, so that the corresponding estimate, same as every estimate corresponding to a smaller window, by construction coincides with the observation at x, so that all the estimates f h ′ n (x; y), 0 < h ′ ≤ m -1 , are the same. Note also that (13) implies that

(!) If ǫ ∈ Ξ n , then the ideal window B * (x) is normal.
The adaptive estimate f n (x; y). The property of an admissible window to be normal is "observable" -given observations y, we can say whether a given window is or is not normal. Besides this, it is clear that among all normal windows there exists the largest one B + (x) = B h + (x) (x). The adaptive estimate f n (x; y) is exactly the window estimate associated with the window B + (x). Note that from (!) it follows that (!!) If ǫ ∈ Ξ n , then the largest normal window B + (x) contains the ideal window B * (x).

By definition of a normal window, under the premise of (!!) we have

| f h + (x) n (x; y) -f h * (x) n (x; y)| ≤ 4C 1 S n (h * (x)),
and we come to the conclusion as follows: (*) If ǫ ∈ Ξ n , then the error of the estimate f n (x; y) ≡ f h + (x) n (x; y) is dominated by the error bound [START_REF] Donoho | Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from d-dimensional singularities in R n[END_REF] associated with the ideal window:

ǫ ∈ Ξ n ⇒ | f n (x; y) -f (x)| ≤ 5C 1 Φ µ (f, B h * (x) (x)) + S n (h * (x)) . ( 15 
)
Thus, the estimate f n (•; •) -which is based solely on observations and does not require any a priori knowledge of the "parameters of well-filterability of f " -possesses basically the same accuracy as the "ideal" estimate associated with the ideal window (provided, of course, that the realization of noises is not "pathological": ǫ ∈ Ξ n ). Note that the adaptive estimate f n (x; y) we have built depends solely on "design parameters" µ, γ (recall that C 1 depends on µ, γ), the volume of observations n and the dimension d.

Main result

Our main result is as follows: 

Theorem 3 Let γ ∈ (0, 1), µ ≥ 1 be an integer, let F = F k,ρ
P -1 n 2kp+d(p-2) 2dp ≥ R σ n ln n ≥ P [D(B)] -2kp+d(p-2) 2p ( 16 
)
where D(B) is the edge of the cube B.

Then for every q ∈ [1, ∞] the worst case, with respect to F, q-risk of the adaptive estimate f n (•, •) associated with the parameter µ can be bounded as follows: ,k,d,q) , where

R q f n ; F = sup f ∈F E f n (•; y f (ǫ)) -f (•) 2 q,Bγ 1/2 (17) 
≤ P R σ 2 ln n R 2 n β(p,k,d,q) [D(B)] dλ(p
β(p, k, d, q) =        k 2k+d , when q ≤ (2k+d)p d , k+d( 1 q -1 p ) 2k+d-2d p , when q > (2k+d)p d , λ(p, k, d, q) =      1 q -d (2k+d)p , when q ≤ (2k+d)p d , 0 
, when q > (2k+d)p d (recall that here B γ is the concentric to B γ times smaller cube).

Note that the rates of convergence to 0, as n → ∞, of the risks R q f n ; F of our adaptive estimate on the families F = F k,ρ,p (B; R) are exactly the same as those stated by Theorem 3 from [START_REF] Nemirovskii | On nonparametric estimation of smooth regression functions[END_REF] (see also [START_REF] Lepskii | Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[END_REF][START_REF] Donoho | Wavelet shrinkage: Asymptopia? (with discussion and reply by the authors)[END_REF][START_REF] Goldenshluger | On spatially adaptive estimation of nonparametric regression[END_REF][START_REF] Nemirovski | Topics in Non-parametric Statistics[END_REF]) in the case of recovering non-parametric smooth regression functions from Sobolev balls. It is well-known that in the smooth case the latter rates are optimal in order, up to logarithmic in n factors. Since the families of locally well-filtered signals are much wider than local Sobolev balls (smooth signals are trivial examples of modulated smooth signals!), it follows that the rates of convergence stated by Theorem 3 also are nearly optimal.

Simulation examples

In this section we present the results of a small simulation study of the adaptive filtering algorithm applied to the 2-dimensional de-noising problem. The simulation setting is as follows: we consider real-valued signals

y τ = s τ + e τ , τ = (τ 1 , τ 2 ) ∈ {1, ..., m} 2 , e (1,1) , ..., e (m, 
m) being independent standard Gaussian random variables. The problem is to estimate, given observations (y τ ), the values of the signal (f xτ ) on the grid Γ m = {m -1 τ, 1 ≤ τ 1 , τ 2 ≤ m}, and f (x τ ) = s τ . The value m = 128 is common to all experiments.

We consider signals which are sums of three harmonic components:

s τ = α[sin(m -1 ω T 1 τ + θ 1 ) + sin(m -1 ω T 2 τ + θ 2 ) + sin(m -1 ω T 3 τ + θ 3 )];
the frequencies ω i and the phase shifts θ i , i = 1, ..., 3 are drawn randomly from the uniform distribution over, respectively, [0, ω max ] 3 and [0, 1] 3 and the coefficient α is chosen to obtain the signal-to-noise ratio equal to one.

In the simulations we present here we compared the result of adaptive recovery with T = 10 to that of a "standard nonparametric recovery", i.e. the recovery by the locally linear estimator with square window. We have done k = 100 independent runs for each of eight values of ω max , ω max = {1.0, 2.0, 4.0, 8.0 16.0, 32.0, 64.0, 128.0}.

In Table 1 we summarize the results for the mean integrated squared error (MISE) of the estimation,

MISE = 1 100m 2 100 j=1 (m,m) τ =(1,1) ( s (j) τ -s (j) τ ) 2 .
The observed phenomenon is rather expectable: for slowly oscillating signals the quality of the adaptive recovery is slightly worse than that of "standard recovery", which are tuned for estimation of regular signals. When we rise the frequency of the signal components, the adaptive recovery stably outperforms the standard recovery. Finally, standard recovery is clearly unable to recover highly oscillating signals (cf Figures 1234).

as required in (6). 2

Proof of Theorem 3

In the main body of the proof, we focus on the case p, q < ∞; the case of infinite p and/or q will be considered at the concluding step 5 0 . Let us fix a family of well-filtered signals F = F k,ρ,p d (B; R) with the parameters satisfying the premise of Theorem 3 and a function f from this class. Recall that by the definition of F there exists a function F ≥ 0, F p,B ≤ R, such that for all x = m -1 t ∈ (intB) ∩ Γ n and all h, B h (x) ⊂ B:

Φ µ (f, B h (x)) ≤ P 1 h k-d/p Ω(f, B h (x)), Ω(f, B ′ ) =   B ′ F p (u)du   1/p . ( 18 
)
From now on, P (perhaps with sub-or superscripts) are quantities ≥ 1 depending on µ, d, γ, p only and nonincreasing in p > d.

1 0 . We need the following auxiliary result:

Lemma 4 Assume that n k-d/p d √ ln n ≥ P 1 (µ + 3) k-d/p+d/2 R σω . ( 19 
)
Given a point x ∈ Γ n ∩ B γ , let us choose the largest h = h(x) such that

(a) : h ≤ (1 -γ)D(B), (b) 
: P 1 h k-d/p Ω(f, B h (x)) ≤ S n (h). ( 20 
)
Then h(x) is well-defined and

h(x) ≥ m -1 . ( 21 
)
Besides this, the error at x of the adaptive estimate f n as applied to f can be bounded as follows:

| f n (x; y) -f (x)| ≤ C 2 S n (h(x))1{ǫ ∈ Ξ n } + σΘ (n) 1{ǫ ∈ Ξ n } (22) 
Proof: The quantity h(x) is well-defined, since for small positive h the left hand side in (20.b) is close to 0, while the right hand side one is large. From [START_REF] Goldenshluger | On spatially adaptive estimation of nonparametric regression[END_REF] it follows that h = m -1 satisfies (20.a), so that B m -1 (x) ⊂ B. Moreover, (19.b) implies that P 1 m -k+d/p R ≤ S n (m -1 ); the latter inequality, in view of Ω(f, B m -1 (x)) ≤ R, says that h = m -1 satisfies (20.b) as well. Thus, h(x) ≥ m -1 , as claimed in [START_REF] Yu | Asymptotic minimax estimation of regression function in additive model[END_REF].

Consider the window B h(x) (x). By (20.a) it is admissible for x, while from (20.b) combined with [START_REF] Elad | A generalized uncertainty principle and sparse representation in pairs of bases[END_REF] we get Φ µ (f, B h(x) (x)) ≤ S n (h). It follows that the ideal window B * (x) of x is not smaller than B h(x) (x).

Assume that ǫ ∈ Ξ n . Then, according to [START_REF] Donoho | Sparse components of images and optimal atomic decompositions[END_REF], we have

| f n (x; y) -f (x)| ≤ 5C 1 Φ µ (f, B h * (x) (x)) + S n (h * (x)) . (23) 
Now, by the definition of an ideal window, Φ µ (f, B h * (x) (x)) ≤ S n (h * (x)), and the right hand side in [START_REF] Ibragimov | On nonparametric estimation of regression[END_REF] does not exceed 10C 1 S n (h * (x)) ≤ 10C 1 S n (h(x)) (recall that, as we have seen, h * (x) ≥ h(x)), as required in [START_REF] Härdle | Applied Nonparametric Regression[END_REF]. Now let ǫ ∈ Ξ n . Note that f n (x; y) is certain estimate f h (x; y) associated with a centered at x and admissible for x cube B h (x) which is normal and such that h ≥ m -1 (the latter -since the window B m -1 (x) always is normal, and B h (x) is the largest normal window centered at x). Applying [START_REF] Donoho | Curvelets and curvilinear integrals[END_REF] with

h ′ = m -1 (so that f h ′ n (x; y) = f (x) + σǫ t ), we get |(f (x) + σǫ t ) -f n (x; y)| ≤ 4C 1 S n (m -1 ), whence |f (x) -f n (x; y)| ≤ σ|ǫ t | + 4C 1 S n (m -1 ) ≤ σΘ (n) + 4C 1 σω √ ln n ≤ C 2 Θ (n)
(recall that we are in the situation ǫ ∈ Ξ n , whence ω √ ln n ≤ Θ (n) ). We have arrived at [START_REF] Härdle | Applied Nonparametric Regression[END_REF]. 2

Now we are ready to complete the proof. Assume that (19) takes place, and let us fix q, 2k+d d p ≤ q < ∞.

2 0 . Let us denote σ n = σ ln n n . Note that for every x ∈ Γ n ∩ B γ either h(x) = (1 -γ)D(B), or h(x) = σ n P 1 Ω(f, B h(x) (x)) 2p 2kp+(p-2)d , what means that P 1 h k-d/p (x)Ω(f, B h(x) (x)) = S n (h(x)). ( 24 
)
Let U, V be the sets of those x ∈ B n γ ≡ Γ n ∩ B γ for which the first or, respectively, the second of this possibilities takes place. If V is nonempty, let us partition it as follows. 1) We can choose

x 1 ∈ V (V is finite!) such that h(x) ≥ h(x 1 ) ∀x ∈ V. After x 1 is chosen, we set V 1 = {x ∈ V | B h(x) (x) ∩ B h(x 1 ) (x 1 ) = ∅}.
2) If the set V \V 1 is nonempty, we apply the construction from 1) to this set, thus getting x 2 ∈ V \V 1 such that h(x) ≥ h(x 2 ) ∀x ∈ V \V 1 , and set

V 2 = {x ∈ V \V 1 | B h(x) (x) ∩ B h(x 2 ) (x 2 ) = ∅}. If the set V \(V 1 ∪ V 2 )
still is nonempty, we apply the same construction to this set, thus getting x 3 and V 3 , and so on. The outlined process clearly terminates after certain step (since V is finite). On termination, we get a collection of M points x 1 , ..., x M ∈ V and a partition

V = V 1 ∪ V 2 ∪ ... ∪ V M
with the following properties:

(1) The cubes B h(x 1 ) (x 1 ), ..., B h(x M ) (x M ) are mutually disjoint;

(2) For every ℓ ≤ M and every x ∈ V ℓ we have h

(x) ≥ h(x ℓ ) and B h(x) (x) ∩ B h(x ℓ ) (x ℓ ) = ∅.
We claim that also (3) For every ℓ ≤ M and every x ∈ V ℓ one has

h(x) ≥ max [h(x ℓ ); x -x ℓ ∞ ] . (25) 
Indeed, h(x) ≥ h(x ℓ ) by (ii), so that it suffices to verify (25) in the case when

x -x ℓ ∞ ≥ h(x ℓ ). Since B h(x) (x) intersects B h(x ℓ ) (x ℓ ), we have x -x ℓ ∞ ≤ 1 2 (h(x) + h(x ℓ )). Whence h(x) ≥ 2 x -x ℓ ∞ -h(x ℓ ) ≥ x -x ℓ ∞ ,
which is what we need. 3 0 . Let us set B n γ = Γ n ∩ B γ . Assume that ǫ ∈ Ξ n . When substituting h(x) = (1γ)[D(B)] for x ∈ U, we have by [START_REF] Härdle | Applied Nonparametric Regression[END_REF]:

f n (•; y) -f (•) q q,Bγ ≤ C q 2 m -d q x∈B n γ S q n (h(x)) = C q 2 m -d q x∈U S q n (h(x)) + C q 2 m -d q M ℓ=1 x∈V ℓ S q n (h(x)) = C q 2 m -d q x∈U σ n ((1 -γ)D(B)) d/2 q + C q 2 m -d q M ℓ=1 x∈V ℓ S q n (h(x))
[by [START_REF] Juditsky | Wavelet estimators: Adapting to unknown smoothness[END_REF]] ≤ C q 3 σ q n m -d q M ℓ=1 x∈V ℓ (max [h(x ℓ ), xx ℓ ∞ ]) -dq 2 + C q 3 σ q n [D(B)]

d(2-q) 2 ≤ C q 4 σ q n M ℓ=1
(max [h(x ℓ ), xx ℓ ∞ ]) -dq 2 dx + C q 3 σ q n [D(B)] d(2-q) 2 5 0 . When combining ( 26) and ( 27), we get ; J , where

E f n (•; y) -f (•) 2 q,Bγ
J 2 = E 1{ǫ ∈ Ξ n }C 2 σ 2 Θ 2 (n) ≤ C 2 2 σ 2 P 1/2 {ǫ ∈ Ξ n } E Θ 4 (n) 1/2
≤ C 9 σ 2 n -2(µ+1) ln n (we have used ( 5) and ( 8)). Thus, when [START_REF] Goldenshluger | On spatially adaptive estimation of nonparametric regression[END_REF] holds, for all d < p < ∞ and all q, 2k+d d p ≤ q < ∞ we have [D(B)] dλ(p,k,d,q)

E f n (•; y) -f (•) 2 q,Bγ 1 
(recall that q ≥ 2k+d d p, so that λ(p, k, d, q) = 0).

We conclude the bound [START_REF] Donoho | Beamlets and multiscale image analysis[END_REF] for the case of d < p < ∞, ∞ > q ≥ 2k+d d p. When passing to the limit as q → ∞, we get the desired bound for q = ∞ as well. Now let d < p < ∞ and 1 ≤ q ≤ q * ≡ 2k+d d p. By the Hölder inequality and in view of mD(B) ≥ 1 we have |g| q,Bγ ≤ C 10 |g| q * ,Bγ |B γ | 1 q -1 q * , and thus R q f n ; F ≤ C 10 R q * f n ; F [D(B)] d( 1 q -1 q * ) .

Combining this observation with the (already proved) bound (17) associated with q = q * , we see that [START_REF] Donoho | Beamlets and multiscale image analysis[END_REF] is valid for all q ∈ [1, ∞], provided that d < p < ∞. Passing in the resulting bound to limit as p → ∞, we conclude the validity of ( 17) for all p ∈ (d, ∞], q ∈ [1, ∞]. 2 

  Let for τ ∈ Z d , |τ | = max{|τ 1 |, ..., |τ d |}, and let τ ≤ m for some a ∈ N denote τ i ≤ m, i = 1, ..., d. Let m be a positive integer, n = (m + 1) d , and let

Definition 1

 1 Let B ⊂ [0, 1] d be a cube, k be a positive integer, ρ ≥ 1, R ≥ 0 be reals, and let p ∈ (d, ∞]. The collection B, k, ρ, R, p specifies the family F k,ρ,p (B, R) of locally well-filtered on B signals f defined by the following requirements:

  The motivating example of locally well-filtered signals is that of modulated smooth signals as follows. Let a cube B ⊂ [0, 1]

d , p ∈ (d, ∞], positive integers k, ν and a real R ≥ 0 be given. Consider a collection of ν functions g 1 , ..., g ν ∈ C([0, 1] d ) which are k times continuously differentiable and satisfy the constraint ν ℓ=1

  ,p (B; R) be a family of locally well-filtered signals associated with a cube B ⊂ [0, 1]

d with mD(B) ≥ 1, ρ ≤ µ and p > d. For properly chosen P ≥ 1 depending solely on µ, d, p, γ and nonincreasing in p > d the following statement holds true: Suppose that the volume n = m d of observations (2) is large enough, namely,

  1/2 ≤ C 8 max σ n [D(B)]

	d(2/q-1) 2	; P 4 R	R σ n	2β(p,k,d,q)

  Now it is easily seen that if P ≥ 1 is a properly chosen function of µ, d, γ, p nonincreasing in p > d and (16) takes place then (1) assumption[START_REF] Goldenshluger | On spatially adaptive estimation of nonparametric regression[END_REF] holds, (2) the right hand side in[START_REF] Lepskii | On a problem of adaptive estimation in Gaussian white noise[END_REF] does not exceed the quantity

			d(2/q-1) 2	, P 4 R	σ n R	2β(p,k,d,q)	,	C	1/2 9 σ n (µ+1) √ ln n	  .	(28)
	P R	σ n R	2β(p,k,d,q)	= P R	R σ n	2β(p,k,d,q)		

/2 ≤ C 8 max   σ n [D(B)]

Our "brief outline" of adaptive approach to nonparametric regression would be severely incomplete without mentioning a novel approach aimed at recovering nonsmooth signals possessing sparse representations in properly constructed functional systems[START_REF] Chen | Atomic decomposition by basis pursuit[END_REF][START_REF] Donoho | Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from d-dimensional singularities in R n[END_REF][START_REF] Candés | Ridgelets: a key to high-dimensional intermittency?[END_REF][START_REF] Donoho | Wedgelets: nearly minimax estimation of edges[END_REF][START_REF] Donoho | Orthonormal ridgelets and linear singularities[END_REF][START_REF] Donoho | Ridge functions and orthonormal ridgelets[END_REF][START_REF] Donoho | Curvelets and curvilinear integrals[END_REF][START_REF] Donoho | Sparse components of images and optimal atomic decompositions[END_REF][START_REF] Donoho | Uncertainty principle and ideal atomic decomposition[END_REF][START_REF] Donoho | Beamlets and multiscale image analysis[END_REF][START_REF] Starck | The curvelet transform for image denoising[END_REF][START_REF] Elad | A generalized uncertainty principle and sparse representation in pairs of bases[END_REF]. This promising approach is completely beyond the scope of our paper.

Appendix

We denote C(Z d ) the linear space of complex-valued fields over Z d . A field r ∈ C(Z d ) with finitely many nonzero entries r τ is called a filter. We use the commun notation ∆ j , j = 1, ..., d, for the "basic shift operators" on C(Z d ):

and denote r(∆)x the output of a filter r, the input to the filter being a field x ∈ C(Z d ), so that (r(∆)x) t = τ r τ x t-τ .

Proof of Lemma 2.

To save notation, let B = B h (x) and T = T h (x). Let p ∈ C(Z d ) be such that p ∈ S t 3T (0, µ, T ) and

, due to h(x) ≥ m -1 , see [START_REF] Yu | Asymptotic minimax estimation of regression function in additive model[END_REF]. Further, note that

in view of q ≥ 2k+d d p, k ≥ 1 and p > d, and

[by [START_REF] Ibragimov | Statistical Estimation[END_REF]] = C q 6 σ q n M ℓ=1

2k-2d/p+d ≥ p in view of q ≥ 2k+d d p, so that

d(q-2) p(2k-2d/p+d) (see [START_REF] Elad | A generalized uncertainty principle and sparse representation in pairs of bases[END_REF] and take into account that the cubes B h(x ℓ ) (x ℓ ), ℓ = 1, ..., M, are mutually disjoint by (i)). We conclude that for ǫ ∈ Ξ n

4 0 . Now assume that ǫ ∈ Ξ n . In this case, by [START_REF] Härdle | Applied Nonparametric Regression[END_REF],

Hence, taking into account that mD(B) ≥ 1, 

Observation

Standard recovery Adaptive recovery