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NUMERICAL SOLUTION OF MAXWELL’S EQUATIONS IN

AXISYMMETRIC DOMAINS WITH THE FOURIER SINGULAR

COMPLEMENT METHOD

PATRICK CIARLET, JR. AND SIMON LABRUNIE

Abstract. We present an efficient method for computing numerically the so-
lution to the time-dependent Maxwell equations in an axisymmetric domain,
with arbitrary (not necessarily axisymmetric) data. The method is an exten-
sion of those introduced in [20] for Poisson’s equation, and in [4] for Maxwell’s
equations in the fully axisymmetric setting (i.e., when the data is also axisym-
metric). It is based on a Fourier expansion in the azimuthal direction, and
on an improved variant of the Singular Complement Method in the meridian
section. When solving Maxwell’s equations, this method relies on continuous
approximations of the fields, and it is both H(curl)- and H(div)-conforming.
Also, it can take into account the lack of regularity of the solution when the
domain features non-convex edges or vertices. Moreover, it can handle noisy
or approximate data which fail to satisfy the continuity equation, by using
either an elliptic correction method or a mixed formulation. We give complete
convergence analyses for both mixed and non-mixed formulations. Neither
refinements near the reentrant edges or vertices of the domain, nor cutoff
functions are required to achieve the desired convergence order in terms of the
mesh size, the time step and the number of Fourier modes used.

1. Introduction

There exist many methods to compute numerically the solution to Maxwell’s
equations. Among those methods, let us mention the edge finite element method,
introduced by Nédélec [41, 42]. This method proved very efficient for the static,
harmonic and eigenvalue problems related to Maxwell’s equations. To improve the
flexibility of the discretization, a discontinuous Galerkin method has been recently
introduced [35]. On the other hand, it is interesting for some applications to have a
continuous approximation of the electromagnetic field, aimed at capturing both the
curl and the divergence of the fields. In particular, it allows to reduce the numerical
noise, when the Maxwell solver is embedded in a time-dependent Vlasov–Maxwell
code. This is the method earlier introduced by Heintzé et al. [6]. But the latter
worked only in convex (curvilinear) polyhedra.

However, three-dimensional computations can be very expensive. In a number
of cases, one reduces the problem to two-dimensional equations by assuming that
the geometry is invariant by translation or by rotation. If in addition the data are
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also invariant, then the problem can be further reduced to a single two-dimensional
problem (cf. [5, 4, 24]). When this is not the case, one has to consider a series
of two-dimensional problems, obtained by Fourier analysis. This approach, called
the Fourier–Finite Element Method (FFEM), was initiated by Mercier–Raugel [39]
for elliptic problems. More recent developments include: the works of Heinrich et
al. [33, 34], which relied on mesh refinement techniques; and also by the authors
and co-workers [19, 20], which relied on the Singular Complement Method (SCM).
Both techniques allow one to improve the convergence rate of the method. Recall
briefly the principle of the SCM: the space of solutions V is split with respect to
regularity in a regular subspace VR and a singular one VS , namely V = VR ⊕ VS .
When the domain is regular, i.e., convex or with a smooth boundary, there is no
singularity in the solutions of the Poisson or Maxwell equations, so that VS = {0}
and VR = V , and no singular complement is required. When this is not the case,
one enlarges the discrete space by adding some approximation of a singular field.
Combining this method with the Fourier analysis in the third dimension leads to
the so-called Fourier–Singular Complement Method (FSCM).

As it is well-known, functions defined by continuous finite elements are of H1 reg-
ularity.1 Consequently, when solving Maxwell’s equations in a non-convex and non-
smooth domain, with a continuous, H(curl)- and H(div)-conforming discretiza-
tion, the discretized spaces are always included in a closed, strict subspace VR of V .
In other words, one cannot hope to approximate the part of the field which belongs
to VS [5]. In particular, mesh refinement techniques fail. The SCM addresses this
problem by explicitly adding some singular complements. An alternate choice has
been devised recently by Nkemzi [43] to solve the time-harmonic Maxwell equations,
which combines singular complement and mesh refinement techniques. However,
the singular complement technique used in [43] requires the use of cutoff functions,
which are difficult to handle numerically (due to their fast variations), as proven in
[32]. Moreover, the time-dependent Maxwell equations are not easily solved when
one uses mesh refinement. Finally, the generalized Maxwell equations (see [7])
which require an explicit approximation of divergence of the fields, are not covered
by the theory developed in [43]. Another alternative is the Weighted Regularization
Method of Costabel–Dauge [27, 28, 22], which recovers density of the discretized
spaces by measuring the electromagnetic fields in appropriately weighted Sobolev
spaces.

In this article, we extend the FSCM to the solution of the time-dependent
Maxwell equations in an axisymmetric domain with arbitrary data. This work
is a generalisation of [4], where only axisymmetric data were considered, and no
convergence analysis was performed. Our analysis follows the spirit of [20], where
the FSCM was applied to the solution of Poisson’s equation. It also borrows the
“abstract error estimate” approach from [21], where we introduced a general frame-
work to analyse the discretisation of Maxwell’s equations by nodal (continuous) fi-
nite elements, while considering several ways of taking into account the divergence
condition satisfied by the fields. That is to say, the FSCM will be applied to a gen-
eralized version of Maxwell’s equations, introduced in [7]. Among others, one can

1For any piecewise polynomial vector field w defined on Ω ⊂ R
3, the conditions w ∈

H(curl; Ω) ∩ H(div;Ω), w ∈ H1(Ω)3, and w ∈ C0(Ω)3 are equivalent.
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handle data which do not satisfy the continuity equation; this is especially useful
when the Maxwell solver is embedded in a Vlasov–Maxwell code.

However, this article is not a straightforward application of [21]: in the latter
work, the whole computational domain was meshed by finite elements. Here, we use
finite elements in a two-dimensional section only, and a spectral method in the third
dimension. We treat the time-dependent equations, including the mixed formula-
tions, which are used in a variety of applications in order to enforce the divergence
condition. We note that one can approximate the time-harmonic equations using
the approach we develop hereafter. Furthermore, we analyse the error due to the
spectral analysis of the data, as in [11, 9] Finally, we propose an algorithm to
implement the FSCM.

Our analysis treats the non-singular case (VS = {0}) as a limiting case. This
specific instance of the FFEM will be referred to as the Fourier–Usual Nodal Finite
Element Method (FUNFEM). A Fourier–Weighted Regularisation Method could be
analysed in a similar manner; this might be quite technical, as one would have to
deal with doubly weighted Sobolev spaces. The weights inherent to the regularisa-
tion method would interact with those due to the use of cylindrical coordinates. On
the other hand, edge element methods cannot be processed within the same frame-
work. A mixed method, using edge elements conformal in a weightedH(curl)-type
space to solve the static Maxwell equations with axisymmetric data, was described
and analysed in [24]. In order to analyse a Fourier–Edge Element Method for time-
dependent Maxwell equations, one would have to combine this approach with that
of [23], as well as Fourier analysis.

The outline of the article is as follows. In section 2, we present the geometrical
setting, the various versions of the Maxwell equations which we study, as well as
the variational formulations in three dimensions and two dimensions. Then, in
section 3, we analyse the impact of the numerical Fourier analysis and truncation.
Next, in section 4, we provide mode-wise, abstract (method-independent) error
estimates. Section 5 describes the singularities of electromagnetic fields, and the
theoretical foundations of the (F)SCM. Practical approximation results are then
obtained in section 6. Section 7 discusses a possible implementation of the FSCM.

2. Equations and dimension reduction

2.1. Geometric setting and notations. In this article, we consider an axisym-
metric domain Ω, generated by the rotation of a polygon ω around one of its sides,
denoted γa. The boundary of ω is thus ∂ω = γa ∪ γb, where γb generates the
boundary Γ of Ω. We assume for simplicity that the domain Ω is simply connected,
with a connected boundary. The natural cylindrical coordinates will be denoted
by (r, θ, z). The geometrical singularities that may occur on Γ are circular edges and
conical vertices, which correspond respectively to off-axis corners of γb and to its
extremities. Figure 1 shows the various notations associated to these singularities;
a more complete description of the geometry of ω can be found in [2, 3].

As we know from these references, the initial- and boundary-value problems
associated with the (static or time-dependent) Maxwell equations will be singular,
i.e. their solution will generically not be in H1(Ω) — as it would be the case in
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Figure 1. Notations for the geometrical singularities; e: reentrant
edge; c: conical vertex.

a regular2 domain — iff there are reentrant edges or sharp vertices in Γ. Sharp
vertices are defined by the condition (see Figure 1):

(2.1) νc <
1

2
, where: νc := min

{
ν > 0 : Pν

(
cos

π

βc

)
= 0

}
,

and Pν denotes the Legendre function. This is satisfied iff π/βc > π/β⋆ ≃ 130◦48′.

We define the comparison operators . and ≈ as follows. a . b means a ≤ C b,
where C is a constant which depends only on the geometry, and not on the mesh
size h, the Fourier order k, or the data of the Maxwell problem. a ≈ b denotes the
conjunction of a . b and b . a.

2.2. Three-dimensional equations. We start from the classical Maxwell equa-
tions in vacuum:

∂E

∂t
− c2 curlB = − J

ε0
,

∂B

∂t
+ curlE = 0,

divE =
̺

ε0
,

divB = 0.

Let n denote the unit outward normal vector to the boundary, and assume that the
domain in which we solve Maxwell’s equations is surrounded by a perfect conductor,
which imposes,

(2.2) E × n = 0 and B · n = 0 on Γ.

The initial condition is simply

(2.3) (E,B)|t=0 = (E0,B0),

2Recall that a domain is regular if it is convex or if its boundary belongs to C1,1.
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for some given data (E0,B0). A necessary condition for these equations to be
well-posed is the continuity equation

(2.4) divJ +
∂̺

∂t
= 0.

Remark 2.1. One can extend our results to the case of composite materials (see [29,
37, 38, 22] for the treatment of singularities at the interfaces), or impose a Silver-
Müller absorbing boundary condition on a part of the boundary. For the latter, see
for instance [5, 4, 11].

In order to develop efficient finite element methods in our setting, it is prefer-
able to use equivalent second order formulations. Eliminating E and B between
the evolution equations, one finds that the electric and magnetic fields satisfy the
following vector wave equations

∂2E

∂t2
+ c2 curl curlE = − 1

ε0

∂J

∂t
,(2.5)

∂2B

∂t2
+ c2 curl curlB =

1

ε0
curlJ .(2.6)

The constraint equations (divergence and boundary conditions) still hold; moreover,
one has to supply the second-order problem with initial conditions for the time
derivatives:

∂E

∂t |t=0
= E1, where E1 = c2 curlB0 −

1

ε0
J |t=0,(2.7)

∂B

∂t |t=0
= B1, where B1 = − curlE0,(2.8)

and the extra boundary condition for the magnetic field:
(

c2 curlB − 1

ε0
J

)
× n = 0.

As they only involve the curl operator, the equations (2.5) and (2.6) are adapted
to discretisations by edge elements [23, 40]. If one wishes to use nodal finite elements
— which are generally more efficient for charged particle simulations, especially
Vlasov–Maxwell computations — one has to add terms related to the divergence
of the fields [6, 5, 4], yielding the “augmented” formulations:

∂2E

∂t2
+ c2 (curl curlE − grad divE) = − 1

ε0

∂J

∂t
− c2

ε0
grad ̺,(2.9)

∂2B

∂t2
+ c2 (curl curlB − grad divB) =

1

ε0
curlJ .(2.10)

Remark 2.2. In the time-harmonic regime, the addition of grad div terms is usually
called “regularization”, see among others [14, 26, 27, 15].

If one wants the divergence constraints to be explicitly preserved in time, even
though the data may not satisfy exactly (a discrete version of) the continuity equa-
tion (2.4), one can use “mixed” or saddle-point formulations. Here are the mixed
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augmented versions:

∂2E

∂t2
+ c2 (curl curlE − grad divE) + gradPE(2.11)

= − 1

ε0

∂J

∂t
− c2

ε0
grad ̺,

divE =
̺

ε0
;(2.12)

∂2B

∂t2
+ c2 (curl curlB − grad divB) + grad PB =

1

ε0
curlJ ,(2.13)

divB = 0.(2.14)

The mixed unaugmented versions simply lack the grad div terms. Setting P =
−c2 ∂tp, one obtains a formulation with elliptic correction [7] which does not have
a saddle-point structure, but actually is a non-mixed formulation with a modified
right-hand side devised to take into account the lack of charge conservation. It
can be studied much like the formulations (2.5)–(2.6) or (2.9)–(2.10), with ad hoc
hypotheses [21].

In the sequel, we shall concentrate on the various augmented formulations for
the electric field, and mention along the way the adaptations for the magnetic field.
For the sake of simplicity, we also set c = ε0 = 1.

2.3. Variational formulations in 3D. Consider L2(Ω) the Lebesgue space of
measurable and square integrable functions over Ω, with (· | ·) and ‖ · ‖0 its associ-
ated scalar product and norm, Hs(Ω) the scale of Sobolev spaces, for s ∈ R, and
◦
H1(Ω) the subspace of H1(Ω) made of elements with a vanishing trace on Γ = ∂Ω.
From now on, we adopt the notations L2(Ω) = L2(Ω)3, Hs(Ω) = Hs(Ω)3 and
Hs(Ω) :=

⋂
σ<s Hσ(Ω), Hs(Ω) :=

⋂
σ<sH

σ(Ω).

The electric field naturally belongs to the Sobolev space H0(curl; Ω), where

H(curl; Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)} ,

H0(curl; Ω) := {v ∈H(curl; Ω) : v × n|Γ = 0}.
At the same time, the augmented formulation, as described in Assous et al. [6], is
set in the functional space

X(Ω) := H0(curl; Ω) ∩H(div; Ω),

where: H(div; Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)}.
The space X(Ω) is compactly embedded in L2(Ω) [44]. As a consequence, when Γ
is connected, one can define an equivalent scalar product and norm on X(Ω), as

a(u,v) := (curlu | curl v) + (divu | div v), ‖u‖X := a(u,u)1/2.

In other words, the L2-norm is uniformly bounded by the X-norm for elements of
X(Ω): this is the so-called Weber inequality.

In [21] we noticed that the vector wave equation (2.9) satisfied by the electric
field can be recast in the form:
Find E ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;X(Ω)) such that

(2.15)
d2

dt2
(E(t) | F ) + a(E(t),F ) = (ψ(t) | F ), ∀F ∈ X(Ω).
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Above, we have set: (ψ | F ) = −(∂tJ | F ) + (̺ | divF ), i.e., ψ := −∂tJ − grad ̺.
In this article, we shall always assume that ψ belongs to L2(0, T ;L2(Ω)); so the
equation (2.15) admits a unique solution E ∈ C0(0, T ;X(Ω)) ∩ C1(0, T ;L2(Ω)) ∩
H2(0, T ;X(Ω)′) by the Lions variational theory [36]. This is the case if, e.g.,

J ∈ H1(0, T ;L2(Ω)) and ̺ ∈ L2(0, T ;
◦
H1(Ω)).

As far as the magnetic field is concerned, it is worth noting that the formula-
tion (2.10) does not belong in the framework of the Lions theory. Moreover, some
underlying integrations by parts and certain traces considered are not justified
a priori. The well-posedness can be proved by following [10].

The mixed augmented formulation is given as:
Find E ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;X(Ω)) and P ∈ L2(0, T ; L2(Ω)) such that

d2

dt2
(E(t) | F ) + a(E(t),F ) + b(F , P (t)) = (ψ(t) | F ), ∀F ∈X(Ω),(2.16)

b(E(t), q) = (̺(t) | q), ∀q ∈ L2(Ω).(2.17)

where we have set: b(v, q) := (q | div v). As remarked in [21], the well-posedness
result proved in [17, 7] for the mixed unaugmented formulation can be easily gen-
eralised to the mixed augmented one.

We complete this paragraph with a simple, but useful continuity result.

Proposition 2.3. Assume that J ∈ Hm+1(0, T ;L2(Ω)) and ̺ ∈ Hm(0, T ;
◦
H1(Ω)),

for some m ∈ N. Then the solution to the augmented formulation has the regularity
E ∈ Cm(0, T ;X(Ω)) ∩ Cm+1(0, T ;L2(Ω)), and satisfies the continuity estimate:

(2.18) ‖∂m+1
t E(t)‖0 + ‖∂m

t E(t)‖X . ‖J‖Hm+1(0,t;L2(Ω)) + ‖̺‖Hm(0,t;
◦

H1(Ω)).

Similarly, if J ∈ Hm+1(0, T ;L2(Ω)) and ̺ ∈ Cm(0, T ; L2(Ω))∩Hm+2(0, T ; H−1(Ω)),
then the solution to the mixed augmented formulation has the regularity E ∈ Cm(0, T ;X(Ω))∩
Cm+1(0, T ;L2(Ω)), P ∈ Cm(0, T ; L2(Ω)), with the continuity estimate:

(2.19)
‖∂m+1

t E(t)‖0 + ‖∂m
t E(t)‖X + ‖∂m

t P (t)‖0

. ‖J‖Hm+1(0,t;L2(Ω)) + ‖̺‖Cm(0,t;L2(Ω))∩Hm+2(0,t;H−1(Ω)).

Proof. If m = 0, these are the classical well-posedness results, see [36, 17, 7]. In the
general case, the above assumptions ensure that the variational formulations are
well-posed with J and ̺ replaced with ∂m

t J and ∂m
t ̺; therefore, they have a unique

solution satisfying the classical continuity estimate. Yet, this solution satisfies the
same equations (in the sense of distributions) as ∂m

t E or (∂m
t E, ∂m

t P ); we conclude
by the uniqueness of the temperate solution to a linear equation. �

2.4. Functional spaces in 2D. The scalar and vector fields defined on Ω will be
characterised through their Fourier series in θ, the coefficients of which are functions
defined on ω, viz.

w(r, θ, z) =
1√
2π

∑

k∈Z

wk(r, z) eikθ, resp. w(r, θ, z) =
1√
2π

∑

k∈Z

wk(r, z) eikθ,

and the truncated Fourier expansion of w at order N is:

(2.20) w[N ](r, θ, z) =
1√
2π

N∑

k=−N

wk(r, z) eikθ.
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The regularity of the function w (resp. w) in the scale Hs(Ω) (resp. Hs(Ω)), for
s ≥ 0, can be characterised by that of the (wk)k∈Z (resp. the cylindrical components
of the (wk)k∈Z: wk = wk

r er + wk
θeθ + wk

zez) in certain spaces of functions defined
over ω [12, §§II.1 to II.3], namely:

w ∈ Hs(Ω) ⇐⇒ ∀k ∈ Z, wk ∈ Hs
(k)(ω) and

∑

k∈Z

‖wk‖2
Hs

(k)
(ω) < ∞,

w ∈Hs(Ω) ⇐⇒ ∀k ∈ Z, wk ∈Hs
(k)(ω) and

∑

k∈Z

‖wk‖2
Hs

(k)
(ω) < ∞,

where the Hs
(k)(ω) and Hs

(k)(ω) are defined in turn with the help of two different

types of weighted Sobolev spaces. We shall now give these definitions for the values
of s and k chiefly needed in this article. The notations for the various spaces are
the same as in [12], where the interested reader can find the proofs and the most
general versions of the subsequent statements.3

First, for any τ ∈ R we consider the weighted Lebesgue space

L2
τ (ω) :=

{
w measurable on ω :

∫∫

ω

|w(r, z)|2 rτ dr dz < ∞
}

.

This space, as well as all the spaces introduced in this article, is a Hermitian space
of functions with complex values. The scale (Hs

τ (ω))s≥0 is the canonical Sobolev

scale built upon L2
τ (ω), defined for s ∈ N as:

Hs
τ (ω) :=

{
w ∈ L2

τ (ω) : ∂ℓ
r∂

m
z w ∈ L2

τ (ω), ∀ℓ, m s.t. 0 ≤ ℓ + m ≤ s
}

,

and by interpolation for s /∈ N. We denote by ‖ · ‖s,τ and | · |s,τ the canonical

norm and semi-norm of Hs
τ (ω). We also define the subspace

⋄
H1

1(ω) (of H1
1(ω))

of functions which vanish on γb: it is involved in the definition of the Fourier

coefficients of functions in
◦
H1(Ω).

A prominent role will be played by L2
1(ω), which appears to be the space of

Fourier coefficients (at all modes) of functions in L2(Ω); thus its scalar product is
also denoted (· | ·). Upon this space, we build another, dimensionally homogeneous
Sobolev scale (V s

1(ω))s≥0, defined as:

V s
1(ω) :=

{
w ∈ Hs

1(ω) : rℓ+m−s ∂ℓ
r∂

m
z w ∈ L2

1(ω), ∀ℓ, m s.t. 0 ≤ ℓ + m ≤ ⌊s⌋
}

,

where ⌊s⌋ denotes the integral part of s. One can check that the general definition
reduces to

V s
1(ω) =

{
w ∈ Hs

1(ω) : ∂j
rw
∣∣
γa

= 0, for all j ∈ N s.t. j < s − 1
}

,

when s is not an integer; while for the first values of s ∈ N, we have:

V 0
1(ω) = L2

1(ω), V 1
1(ω) = H1

1(ω) ∩ L2
−1(ω), V 2

1(ω) = H2
1(ω) ∩ H1

−1(ω).

The canonical norm of V s
1(ω) is denoted by ||| · |||s,1; it is equivalent to | · |s,1 except

for s ∈ N \ {0}.

3Much of this subsection parallels [43, §§2.2 to 2.4]. However, our statements are more general
than those of the latter work, which uses different notations for the weighted spaces, as in [39, 33].
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We are now ready to define the most useful spaces of Fourier coefficients.

Proposition 2.4. The spaces Hs
(k)(ω), for s ∈ [0, 2], are characterised as follows.

∀s ∈ [0, 1) :Hs
(k)(ω) = Hs

1(ω), ∀k ;

∀s ∈ [1, 2) :Hs
(0)(ω) = Hs

1(ω),

Hs
(k)(ω) = V s

1(ω), ∀|k| ≥ 1 ;

s = 2 : H2
(0)(ω) =

{
w ∈ H2

1(ω) : ∂rw ∈ L2
−1(ω)

}
,

H2
(±1)(ω) =

{
w ∈ H2

1(ω) : w|γa
= 0
}

,

H2
(k)(ω) = V 2

1(ω), ∀|k| ≥ 2.

Remark 2.5. The scales Hs
1(ω), V s

1(ω), and Hs
(k)(ω) (for all k) can be extended to

negative values of the exponent s, by the usual duality procedure with respect to
the pivot space, which is L2

1(ω) in all cases. Thus the Hs
(k)(ω), for s < 0, appear as

the spaces of Fourier coefficients of functions in Hs(Ω), see §3 below.

Proposition 2.6. The spaces Hs
(k)(ω), for 0 ≤ s < 2, are characterised as follows.

s = 0 : H0
(k)(ω) = L2

1(ω) := L2
1(ω)3, ∀k ;

∀s ∈ (0, 1) :Hs
(k)(ω) = Hs

1(ω)3, ∀k ;

s = 1 : H1
(0)(ω) = V 1

1(ω) × V 1
1(ω) × H1

1(ω),

H1
(±1)(ω) =

{
(wr, wθ, wz) ∈ H1

1(ω) × H1
1(ω) × V 1

1(ω) : wr ± i wθ ∈ L2
−1(ω)

}
,

H1
(k)(ω) = V 1

1(ω)3, ∀|k| ≥ 2 ;

∀s ∈ (1, 2) :Hs
(0)(ω) = V s

1(ω) × V s
1(ω) × Hs

1(ω),

Hs
(±1)(ω) =

{
(wr, wθ, wz) ∈ Hs

1(ω) × Hs
1(ω) × V s

1(ω) : wr ± i wθ|γa
= 0
}

,

Hs
(k)(ω) = V s

1(ω)3, ∀|k| ≥ 2.

For |k| < s, the space Hs
(k)(ω) is endowed with the natural norm ‖ · ‖s,(k) given by

the above definition, while for |k| ≥ s the canonical norm is:

(2.21) ‖w‖2
s,(k) = ‖w‖2

s,1 + |k|2s ‖r−sw‖2
0,1.

With this definition, there holds the equivalence of norms:

‖w‖2
Hs(Ω) ≈

∑

k∈Z

‖wk‖2
s,(k) .

Remark 2.7. In order to take into account the conditions on γa for the modes
k = ±1, we shall sometimes use the following representation for the vector fields
in Hs

(±1)(ω): w = w+ e+ + w− e− + wz ez, with w± = 1√
2

(wr ∓ i wθ) and e± =
1√
2

(er ± i eθ). Thus, w ∈ H1
(1)(ω) has a component w+ on γa, while w− vanishes

in a weak sense [2, Proposition 3.18]; and conversely for w ∈H1
(−1)(ω).

Let us now examine the space of relevant Fourier coefficients for the electromag-
netic fields. One easily checks that for w ∈ H1(Ω), resp. w ∈ L2(Ω) such that
∆w ∈ L2(Ω), there holds:

gradw =
1√
2π

∑

k∈Z

gradk wk eikθ, resp. ∆w =
1√
2π

∑

k∈Z

∆k wk eikθ,
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while for w ∈H(div; Ω), resp. H(curl; Ω):

divw =
1√
2π

∑

k∈Z

divkw
k eikθ, resp. curlw =

1√
2π

∑

k∈Z

curlkw
k eikθ.

Above, the operators for the mode k are defined as:

gradk w :=
∂w

∂r
er +

ik

r
w eθ +

∂w

∂z
ez ; ∆k w :=

1

r

∂

∂r

(
r

∂w

∂r

)
− k2

r2
w +

∂2w

∂z2
;

divkw :=
1

r

∂(r wr)

∂r
+

ik

r
wθ +

∂wz

∂z
; (curlkw)r :=

ik

r
wz − ∂wθ

∂z
;

(curlkw)θ :=
∂wr

∂z
− ∂wz

∂r
; (curlkw)z :=

1

r

(
∂(r wθ)

∂r
− ik wr

)
.

As an immediate consequence, we have the following characterisation.

Proposition 2.8. Let X(k)(ω) be the space

X(k)(ω) :=
{
v ∈ L2

1(ω) : curlk v ∈ L2
1(ω) and divk v ∈ L2

1(ω) and v × n|γb
= 0
}

,

endowed with the canonical norm ‖v‖2
X,(k) := ‖ curlk v‖2

0,1 + ‖ divk v‖2
0,1.

The field u belongs to X(Ω) iff, for all k ∈ Z, its Fourier coefficients uk ∈
X(k)(ω), and the sum

∑
k∈Z

‖uk‖2
X,(k) is finite. In this case, it is equal to ‖u‖2

X .

A similar result holds for the magnetic boundary condition.

These spaces enjoy an important property.

Proposition 2.9. The space X(k)(ω) is independent of k, for |k| ≥ 2.

Proof. In the seminal work by Birman and Solomyak [13], the following result is
proved. Any field u ∈X(Ω) can be decomposed as:

u = uBS − gradϕ, where:(2.22)

uBS ∈Xreg(Ω) :=X(Ω) ∩H1(Ω),(2.23)

ϕ ∈ Φ(Ω) :=

{
ϕ ∈

◦
H1(Ω) : ∆ϕ ∈ L2(Ω)

}
(2.24)

and: ‖uBS‖1 + ‖ϕ‖1 + ‖∆ϕ‖0 . ‖u‖X .(2.25)

Let us expand u in Fourier series: u(r, θ, z) = 1√
2π

∑
k∈Z

uk(r, z) eikθ, and similarly

for uBS and ϕ. The decomposition of the operator grad on the spectral basis (see
above) shows that, for each mode k ∈ Z, the following splitting holds:

(2.26) uk = uk
BS − gradk ϕk = uk

BS − (ik/r)ϕk eθ − grad0 ϕk.

Furthermore, the decomposition of the Laplace operator, and Propositions 2.4, 2.6
and 2.8 imply the following regularity properties:

uk
BS ∈Xreg

(k)(ω) =
{
u ∈H1

(k)(ω) : u× n|γb
= 0
}

,(2.27)

ϕk ∈ Φ(k)(ω) =

{
ϕ ∈ H1

(k)(ω) ∩
⋄
H1

1(ω) : ∆kϕ ∈ L2
1(ω)

}
;(2.28)

By Proposition 2.6 we know that the space H1
(k)(ω), and hence Xreg

(k)(ω), is inde-

pendent of k for |k| ≥ 2. The same holds for Φ(k)(ω), as a consequence of [20,

Thm 3.2]. This same theorem also shows that functions in Φ(k)(ω) are of V 2
1 regu-

larity near the axis γa. Therefore, (ik/r)ϕk is locally of V 1
1 regularity. Elsewhere,
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this function is of H1 regularity and vanishes on γb. All together, we see that the
vector field (ik/r)ϕk eθ belongs to the regular space Xreg

(k)(ω). Thus, (2.26) shows

that:

∀k ∈ Z, uk ∈ Xreg
(k)(ω) + grad0 Φ(k)(ω).

Assume for the moment that u has a single Fourier mode, i.e., let u(r, θ, z) =
1√
2π
uk0(r, z) eik0θ, for any uk0 ∈X(k0)(ω). Setting k = k0 in the above statement,

we see thatX(k0)(ω) ⊂Xreg
(k0)(ω)+grad0 Φ(k0)(ω). The converse inclusion is proved

by a similar argument. Finally, X(k0)(ω) = X
reg
(k0)(ω) + grad0 Φ(k0)(ω), which is

independent of k0 for |k0| ≥ 2.

Finally, we prove that the decomposition is continuous. With the equivalence of
norms statements in Propositions 2.6 and 2.8, the bound (2.25) becomes:

∑

k∈Z

‖uk
BS‖2

1,(k) + ‖ϕk‖2
1,(k) + ‖∆kϕk‖2

0,1 . ‖uk0‖2
X,(k0).

On the left-hand side, the contribution of the mode k0 is, of course, less than the
sum. Evidently, it is possible to replace all others coefficients uk

BS and ϕk with 0

without changing the value of uk0 = uk0

BS −gradk0
ϕk0 . Substituting the symbol k

for k0, we finally obtain:

(2.29) ‖uk
BS‖1,(k) + ‖ϕk‖1,(k) + ‖∆kϕk‖0,1 . ‖uk‖X,(k) ,

for any uk ∈X(k)(ω). Moreover, the linearity of the differential operators and their
decomposition on the spectral basis imply that (2.26)–(2.29) hold for all Fourier
coefficients of all u ∈ X(Ω). �

Combining the decomposition (2.26) with the description of primal singularities
of the Laplacian ∆k in [12, §II.4], one characterises the regularity of these spaces
in the Sobolev scale.

Theorem 2.10. The following statements hold true. (See Figure 1 and Eq. (2.1)
for the meaning of αe and νc.)

(1) The elements of X(k)(ω) are locally regular, i.e. H1
(k), except in the neigh-

bourhood of the reentrant edges and, for k = 0, of the sharp vertices.
(2) The space X(0)(ω) is continuously embedded in Hs

(0)(ω) for s < sM :=

min{αe : e reentrant edge ; νc + 1
2 : c sharp vertex}.

(3) The space X(k)(ω), |k| ≥ 1 is continuously embedded in Hs
(k)(ω) for s <

αmin := min{αe : e reentrant edge}.
(4) Consequently, X(Ω) is continuously embedded in Hs(Ω) for s < sM . The

bound is sharp.

The Birman–Solomyak decomposition also holds with the magnetic boundary
condition. In this case, there are no singularities in the vicinity of conical vertices,
whatever their aperture [3, 30]; hence, the space is continuously embedded inHs(Ω)
for s < αmin.

2.5. Dimension reduction. The linearity of Equations (2.15) or (2.16,2.17), to-
gether with the orthogonality of the different Fourier modes in L2(Ω), implies that
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the Fourier coefficients (Ek,Bk) of E and B are solutions to similar formulations,
with the operators curlk and divk. Namely, let us define:

ak(u,v) = (curlk u | curlk v) + (divk u | divk v) ;(2.30)

bk(v, q) = (divk v | q).

Then, we have the augmented formulation:
Find Ek ∈X(k)(ω) such that, for all F ∈X(k)(ω):

(2.31)
d2

dt2
(Ek(t) | F ) + ak(Ek(t),F ) = (ψk(t) | F ).

And the mixed augmented formulation writes:
Find (Ek, P k) ∈X(k)(ω) × L2

1(ω) such that, for all (F , q) ∈X(k)(ω) × L2
1(ω):

d2

dt2
(Ek(t) | F ) + ak(Ek(t),F ) + bk(F , P k(t)) = (ψk(t) | F ),(2.32)

bk(Ek(t), q) = (̺k(t) | q).(2.33)

Remark 2.11. Alternatively, the function (r, θ, z) 7→ Ek(r, z) eikθ (defined in Ω) ap-

pears as the solution to (2.9) with single-mode sources Jk(r, z) eikθ and ̺k(r, z) eikθ.

The same holds for (r, θ, z) 7→ (Ek(r, z) eikθ, P k(r, z) eikθ) as a solution to (2.11,2.12).
This allows to transpose directly many known results from the three-dimensional
framework to that of the weighted spaces adapted to each mode.

3. Analysis of the truncation error of the Fourier expansion

In order to evaluate this error, we introduce (as usual) the following scales of
anisotropic Sobolev spaces.

Definition 3.1. Let W (Ω) be any Hilbert space of functions defined in Ω, and
s ≥ 0. The space Hs,W (Ω) is defined:

• when s is an integer, as the space of functions in W (Ω) such that all their
partial derivatives in θ, up to order s, belong to W (Ω);

• otherwise, by appropriate interpolation between H⌊s⌋,W (Ω) and H⌊s⌋+1,W (Ω).

In both cases, Hs,W (Ω) is a Hilbert space for its canonical norm. For the sake
of simplicity, we shall denote Hm,s(Ω) := Hs,Hm

(Ω) and Hm,s(Ω) := Hs,Hm

(Ω)
when W (Ω) = Hm(Ω) or Hm(Ω).

In order to describe this regularity in spectral terms, we assume from now on
that W (Ω) fulfils either one of the following properties.

• Either, W (Ω) is continuously embedded in L2(Ω)d, d ∈ {1, 3}. Then, the
Fourier coefficients (wk)k∈Z of w ∈ W (Ω) are defined in the usual way. Let
(W(k)(ω))k∈Z be the spaces of such coefficients; their norms can be chosen

such as to have: ‖w‖2
W (Ω) ≈

∑
k∈Z

‖wk‖2
W(k)(ω).

• Or, W (Ω) is the dual space of a space V (Ω), itself continuously and densely
embedded in L2(Ω)d, seen as the pivot space. Then, the (wk)k∈Z are defined
by duality. The spaces W(k)(ω) which they span appear as the duals of the

subspaces V(k)(ω) of L2
1(ω)d. If the (V(k)(ω))k∈Z satisfy an equivalence of

norms result as above, so do the (W(k)(ω))k∈Z.

Then, it is standard matter to check (see e.g. [16, Thm 1.1]) the following result.
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Lemma 3.2. Let W (Ω) and (W(k)(ω))k∈Z as in one of the two above cases, and
s ≥ 0. The following equivalence of norms holds:

(3.1) ∀w ∈ Hs,W (Ω), ‖w‖2
Hs,W (Ω) ≈

∑

k∈Z

(1 + |k|2s) ‖wk‖2
W(k)(ω),

from which one deduces the truncation estimate

(3.2) ∀w ∈ Hs,W (Ω), ∀N ≥ 1,
∥∥∥w − w[N ]

∥∥∥
2

W (Ω)
. N−2s ‖w‖2

Hs,W (Ω),

for the truncated Fourier expansion w[N ] defined in (2.20).

The next Proposition is an immediate consequence of Lemma 3.2.

Proposition 3.3. Assume that the electric field has the regularity E ∈ C0(0, T ; Hσ,X(Ω))∩
C1(0, T ;H0,σ(Ω)), for some σ ≥ 0. There holds:

∀t ∈ [0, T ], ‖Ė[N ]
(t) − Ė(t)‖2

0 + ‖E[N ](t) −E(t)‖2
X .

N−2σ
{
‖Ė(t)‖2

H0,σ(Ω) + ‖E(t)‖2
Hσ,X(Ω)

}
,(3.3)

for any fixed integer N ≥ 2.

Above, the notation Ė is simply ∂tE. It is worth noting that such a regularity
in θ for the solution to Maxwell’s equations can follow from a similar regularity
assumption for the data: roughly speaking, the direction θ is orthogonal to the
singularities and “it does not see them”.

Proposition 3.4. Assume that, for some m ∈ N and σ > 0, the data satisfy

J ∈ Hm+1(0, T ;H0,σ(Ω)), ̺ ∈ Hm(0, T ;
◦
H1,σ(Ω)) in the augmented formulation,

̺ ∈ Cm(0, T ; H0,σ(Ω))∩Hm+2(0, T ; H−1,σ(Ω)) in the mixed augmented formulation.
Then, the electric field has the regularity Cm(0, T ; Hσ,X(Ω))∩Cm+1(0, T ;H0,σ(Ω)),
with continuous dependence.

Proof. We examine the case m = 0; the general case can be deduced by combining
the following ideas with those of Proposition 2.3. By Remark 2.11, we can write
the continuity estimate for the solution to (2.31):

‖Ėk
(t)‖2

0,1+‖Ek(t)‖2
X,(k) . ‖ψk‖2

L2(0,t;L2
1(ω)) . ‖Jk‖2

H1(0,t;L2
1(ω))+‖̺k‖2

L2(0,t;
◦

H1
(k)(ω)).

Then, we multiply this bound by (1 + |k|2σ), and add the bounds for the values
k = −N to N :

N∑

k=−N

(1 + |k|2σ)
{
‖Ėk

(t)‖2
0,1 + ‖Ek(t)‖2

X,(k)

}

.

N∑

k=−N

(1 + |k|2σ)
{
‖Jk‖2

H1(0,t;L2
1(ω)) + ‖̺k‖2

L2(0,t;
◦

H1
(k)(ω))

}

If J ∈ H1(0, t;H0,σ(Ω)) and ̺ ∈ L2(0, t;
◦
H1,σ(Ω)), then the right-hand side is

bounded by the squared norms of J and ̺ in these spaces when N → ∞, ac-
cording to Lemma 3.2. Thus, the same Lemma implies that Ė(t) ∈ H0,σ(Ω) and
E(t) ∈ Hσ,X(Ω), and that their squared norms are controlled by the aforemen-
tioned squared norms of J and ̺. Of course, the same reasoning holds for the
solution to (2.32,2.33). �
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Before ending this section, it must be observed that in many practical situations
the Fourier coefficients ̺k and Jk cannot be computed exactly. So they have to be
approximated by quadrature formulas. Introducing the nodes θm := 2mπ/(2N+1),
for −N ≤ m ≤ N , we define the approximate Fourier coefficients and approximate
truncated expansion of the function w by the formulas:

wk
⋆(r, z) :=

√
2π

2N + 1

N∑

m=−N

w(r, θm, z) e−ikθm ;(3.4)

w
[N ]
⋆ (r, θ, z) :=

1√
2π

N∑

k=−N

wk
⋆ (r, z) eikθ.(3.5)

These approximate coefficients are the same as in [12, 11, 9]; however, we shall need
slightly more general approximation estimates than in those References.

Proposition 3.5. Let s > t ≥ 0 such that s− t > 1
2 . The following estimates hold

for all w ∈ Hs,W (Ω):

‖w[N ]
⋆ − w[N ]‖2

W (Ω) . N−2s ‖w‖2
Hs,W (Ω) ;(3.6)

N∑

k=−N

(1 + |k|2t) ‖wk − wk
⋆‖2

W(k)(ω) . N−2(s−t) ‖w‖2
Hs,W (Ω).(3.7)

Proof. The first estimate is a particular case of the second; both rely on the
identity [16]: wk

⋆ =
∑

ℓ∈Z
wk+(2N+1) ℓ. One can easily adapt the proof of [12,

Proposition VI.4.1], remarking that only regularity in θ is involved; see also [16,
Thm 1.2]. �

The linearity of Maxwell’s equations and the previous Proposition imply the
following results.

Proposition 3.6. Let ̺k
⋆(t), Jk

⋆(t), Ek
⋆(t), P k

⋆ (t) and ̺
[N ]
⋆ (t), J [N ]

⋆ (t), E[N ]
⋆ (t), P

[N ]
⋆ (t)

be defined as in (3.4) and (3.5), at each instant t.

(1) Ek
⋆, respectively (Ek

⋆ , P k
⋆ ), is the solution to (2.31), resp. (2.32)–(2.33), with

data (̺k,Jk) replaced with (̺k
⋆ ,Jk

⋆).

(2) E[N ]
⋆ , respectively (E[N ]

⋆ , P
[N ]
⋆ ) is the solution to (2.15), resp. (2.16)–(2.17),

with data (̺,J) replaced with (̺
[N ]
⋆ ,J [N ]

⋆ ).
(3) Assuming E ∈ C0(0, T ; Hσ,X(Ω)) ∩ C1(0, T ;H0,σ(Ω)), for some σ > 1

2 , we
have:

∀t ∈ [0, T ], ‖Ė[N ]
(t) − Ė[N ]

⋆ (t)‖2
0 + ‖E[N ](t) −E[N ]

⋆ (t)‖2
X .(3.8)

N−2σ
{
‖Ė(t)‖2

H0,σ(Ω) + ‖E(t)‖2
Hσ,X(Ω)

}
.

In the following Section, we shall examine the discretisation of the variational
formulations (2.31) and (2.32,2.33), with data (̺k

⋆ ,Jk
⋆).

4. Discretisations and abstract approximation results

4.1. General framework. The discretisation of the variational formulations for
each mode k, viz. (2.31) or (2.32,2.33) will follow the usual principles. We suppose
that we are given a family of regular triangulations (Th)h>0 of the meridian do-
main ω. The space of electric fields X(k)(ω) will be approached by nodal elements,
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complemented by singular functions in the case of the SCM. Thus, for the UNFEM
we use:

(4.1) X
h
(k) = X

reg;h
(k) :=

{
vh ∈ C0(ω)3 ∩X(k)(ω) : vh|T ∈ Pκ(T )3, ∀T ∈ Th

}
,

(κ ≥ 1 is an integer and Pκ(T ) denotes the set of polynomials of degree at most κ
over T ) seen as a subspace of X(k)(ω). Whereas, for the SCM, we use the space

(4.2) X
h
(k) = X

reg;h
(k) ⊕ X

sing;h
(k) ,

where the singular complement X
sing;h
(k) will be described in §§5.1 and 6.1.

The multiplier space Q = L2
1(ω) of the mixed formulation will be approached by

the space Qh, which will also be generated by nodal finite elements. We will always
choose the couple (Xh

(k), Qh) such as to satisfy the two usual requirements, namely,

the ellipticity of ak on the discrete kernel of bk, and a uniform (with respect to h)
discrete inf-sup condition. For the UNFEM and SCM, one can use Qh = Pκ−1,h,
the space of Pκ−1 finite elements seen as a subspace of L2(Ω). This amounts to
using the well-known Pκ − Pκ−1 Taylor–Hood finite element [31, pp. 176 ff.].

As for the time discretisation, we shall concentrate upon a totally implicit scheme
which is inconditionally stable [21]. An explicit variant will be briefly discussed at
the end of §6. The time mesh being defined by the instants tn = n τ , the value
of the field u at time tn is denoted un; for its k-th Fourier coefficient uk, we
shall write uk;n. If this field is defined in continuous time, its successive time
derivatives are denoted u̇k;n = ∂tu

k(tn), ük;n = ∂2
tu

k(tn), etc. The discrete time
derivatives of the field uk are given by: ∂τu

k;n := τ−1 (uk;n−uk;n−1), or ∂2τu
k;n :=

(2τ)−1 (uk;n − uk;n−2).

4.2. Fully discrete formulations. For the augmented formulations, the totally
implicit scheme writes:

Find Ek;n+1
h ∈ Xh

(k) such that, for all F h ∈ Xh
(k),

(∂2
τE

k;n+1
h | F h) + ak(Ek;n+1

h ,F h)(4.3)

= −(∂τJ
k;n+1
⋆ | F h) + (̺k;n+1

⋆ | divF h) ;

This equation must be supplemented with initial conditions; so one sets:

E
k;0
h = ΠhE

k
0 , E

k;1
h solution to:(4.4)

τ−2 (Ek;1
h −Ek;0

h − τ ΠhE
k
1 | F h) + ak(Ek;1

h − 1
2 E

k;0
h ,F h)(4.5)

= −(∂τJ
k;1
⋆ − 1

2∂τJ
k;0
⋆ | F h) + (̺k;1

⋆ − 1
2̺k;0

⋆ | divF h) .

The operator Πh is an interpolation/projection operator which depends on the
numerical method.

As a natural extension, we have the mixed augmented formulation:

Find (Ek;n+1
h , P k;n+1

h ) ∈ Xh
(k) × Qh such that, for all (F h, qh) ∈ Xh

(k) × Qh,

(∂2
τE

k;n+1
h | F h) + ak(Ek;n+1

h ,F h) + bk(F h, P k;n+1
h )(4.6)

= −(∂τJ
k;n+1
⋆ | F h) + (̺k;n+1

⋆ | divF h) ;

bk(Ek;n+1
h , qh) = (̺k;n+1

⋆ | qh).(4.7)
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4.3. Mode-wise estimates. To obtain such estimates, we suppose that there ex-
ists a subspaceXs(Ω) ⊂X(Ω), to which the solution to Maxwell’s equation belongs
provided the data are regular enough, and such that its spaces of Fourier coefficients
Xs

(k)(ω) satisfy an approximation inequality of the form:

(4.8) ∀u ∈ Xs
(k)(ω), ∃uh ∈ X

h
(k), ‖u− uh‖X,(k) . ǫ(s, h, k) ‖u‖X,s,(k).

Moreover, the anisotropic Sobolev space Hσ,Xs

(Ω) will be denoted Xs,σ(Ω), for
the sake of simplicity. The construction of this space and the establishment of
the approximation inequality will be carried out in §§5 and 6. For the moment,
we assume that the data and the solution are regular enough, typically E ∈
H2(−δ, T ;Xs,q+σ(Ω)) ∩ H3(−δ, T ;H0,σ(Ω)) and J ∈ H2(−δ, T ;H0,σ(Ω)), where
σ > 1

2 and q ∈ [1, 2], and δ is a small multiple of the time step τ . The relevance of
these conditions will be examined in §6.3 below.

Proposition 4.1. Let
(
E

k;n
h

)

n
be the solution to the discrete formulation (4.3).

The following error estimates hold:

‖∂τE
k;n
h − Ėk;n

⋆ ‖2
0,1 + ‖Ek;n

h −Ek;n
⋆ ‖2

X,(k) . m(s, h, k) ,(4.9)

‖Ek;n
h −Ek;n

⋆ ‖2
0,1 . m(s, h, k) ,(4.10)

where m(s, h, k) := ǫ(s, h, k)2 ‖Ek
⋆‖2

H2(Xs
(k)

(ω))

+ τ2
[
‖Ek

⋆‖2
H3(L2

1(ω)) + ‖Jk
⋆‖2

H2(L2
1(ω))

]
.

Proof. This follows, mutatis mutandis, from the estimates of [21, §5], thanks to the
interpretation of (4.3) as the trace, in a meridian half-plane, of a 3D formulation
in which the sources have only one Fourier mode. �

Now we examine the mixed augmented formulation, following the lines of [21, §7].
The usual difficulty in the numerical analysis of mixed problems is the derivation of
a uniform (with respect to h) discrete inf-sup condition (disc). Here, this issue is
compounded by that of the dependence of this condition on the Fourier mode k. To
our knowledge, no disc uniform in both h and k has been yet derived for Maxwell
or other mixed equations. So, we shall work with a (maybe not optimal) condition,
which is uniform in h, but depends weakly on k.

Lemma 4.2. For the P2–P1 Taylor–Hood element, there exists a constant β, inde-
pendent of h and k, such that:

(4.11) ∀qh ∈ Qh, sup
vh∈X

h
(k)

bk(vh, qh)

‖vh‖X,(k)
≥ β (1 + |k|)−1 ‖qh‖0,1 .

Proof. In [9, Lemma 3.5], the following disc is proven for the Stokes problem:

(4.12) ∀qh ∈ Qh(k), sup
vh∈H

⋄

h(k)

(divk vh | qh)

‖vh‖1,(k)
≥ β̃ (1 + |k|)−1 ‖qh‖0,1 .

For k 6= 0, one has Qh(k) = Qh, whereas Qh(0) = {qh ∈ Qh :

∫∫

ω

qh r dr dz = 0}.
Then H⋄

h(k) is

H
⋄
h(k) :=

{
wh ∈ C0(ω)3 ∩

◦
H1

(k)(ω) : wh|K ∈ P2(K)3, ∀K ∈ Th

}
,
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thus, it is a subspace of our Xh
(k). According for instance to [1, Rmk 2.6], there

holds |w|1 = ‖w‖X , for all w ∈
◦
H1(Ω), and it follows that ‖w‖1,(k) = ‖w‖X,(k)

for w ∈
◦
H1

(k)(Ω). So, one can replace the norm ‖vh‖1,(k) with ‖vh‖X,(k) in (4.12),

for all vh ∈ H⋄
h(k). For k 6= 0, this implies (4.11) since the supremum is greater on

the bigger space Xh
(k).

For k = 0, one has to deal with discrete Lagrange multipliers whose mean value
over Ω is not 0 (recall that Qh = Qh(0) ⊕ R). This difficulty can be overcome by

using an ad hoc discrete field of Xh
(0) to provide a lower bound in (4.11) for qh = 1.

A similar result has been already obtained in [18, pp. 830–831] in an unweighted
framework, and its proof can be easily adapted to our case. Let us sketch briefly
how it is obtained. Consider γ′, a side of γb that does not include any conical
vertex. One checks easily that there exists v′ ∈ C2(ω) such that: the support of
v′|∂ω is a compact subset of γ′; the support of v′ is included in {(r, z) : r ≥ r0}
for some r0 > 0; last,

∫
γ′ v′r dr = 1. Defining v′ = v′ n|γ′ , one has v′ ∈ C2(ω)2 and

(div0 v
′ | 1) = 1.

Then, one builds a suitable approximation v′h of v′, and v′h = v′h n|γ′ , such that
(div0 v

′
h | 1) = 1. Thanks to the smoothness of v′, one has ‖v′h‖X,(0) . 1. For

qh ∈ R, one now derives the lower bound in (4.11) by choosing v′h as the ad hoc test-
field. Finally, given any qh ∈ Qh, let us split it as qh = qh(0)+qh, with qh(0) ∈ Qh(0)

and qh ∈ R. One derives (4.11) by choosing vh = αvh(0) + qhv
′
h, with vh(0) a test-

field achieving the condition for qh(0) (since we already know that (4.11) holds
when qh spans Qh(0)), and α ∈ R. An ad hoc value of α is obtained by elementary
computations (using for instance Young’s inequality), leading to condition (4.11),
for any qh ∈ Qh. �

With this result, we can derive two important properties. The first is the so-
called strong approximability of the kernel of bk; we recall that the continuous and
discrete kernels are defined as:

K(k)(ω) :=
{
v ∈ X(k)(ω) : bk(v, q) = 0, ∀q ∈ L2

1(ω)
}

,

K
h
(k) :=

{
vh ∈ X

h
(k) : bk(vh, qh) = 0, ∀qh ∈ Qh

}
.

The second is the error estimate between the solution to the static mixed problem:
Given f ∈ X(k)(ω)′ and g ∈ L2

1(ω), find (u, p) ∈ X(k)(ω) × L2
1(ω) such that,

∀(v, q) ∈ X(k)(ω) × L2
1(ω):

ak(u,v) + bk(v, p) = 〈f ,v〉,(4.13)

bk(u, q) = (g | q),(4.14)

and that of its finite element discretisation, which writes:
Find (uh, ph) ∈ Xh

(k) × Qh such that, ∀(vh, qh) ∈ Xh
(k) × Qh:

ak(uh,vh) + bk(vh, ph) = 〈f ,vh〉,(4.15)

bk(uh, qh) = (g | qh).(4.16)

Proposition 4.3. The following approximation inequality holds:
(4.17)

∀u ∈K(k)(ω)∩Xs
(k)(ω), ∃uh ∈ K

h
(k), ‖uh−u‖X,(k) . (1+|k|) ǫ(s, h, k) ‖u‖X,s,(k) .
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Therefore, if the solution (u, p) to (4.13)–(4.14) belongs to Xs
(k)(ω) × H1

1(ω), the
following estimate holds:

(4.18) ‖uh − u‖X,(k) + ‖ph − p‖0,1 . (1 + |k|) ǫ(s, h, k) ‖u‖X,s,(k) + h ‖p‖1,1 .

Proof. Use [31, Chapter II, Thm 1.1] and the previous lemma; the p part of the
error is bounded using the weighted Clément operator of [8, §4.3]. �

The analysis of [21, §7] can be carried over to our case. Compared with their
counterparts in that article, the error estimate (4.18) and the approximation in-
equality (4.17) contain a factor 1 + |k| in front of ǫ(s, h, k). Also, it is better to use
L2

1 error estimates for (4.15,4.16) derived from the Weber inequality than derived
from the Nitsche trick, which yields a bound in (1 + k2) ǫ(s, h, k)2. The term of
higher power in h is of no use, being hidden by other terms with a smaller exponent;
thus, the higher power in k appears unwelcome.

Proposition 4.4. Let
(
E

k;n
h , P k;n

h

)

n
be the solution to the discrete formulation

(4.6)–(4.7). The following error estimates hold:

‖∂τE
k;n
h − Ėk;n

⋆ ‖2
0,1 + ‖Ek;n

h −Ek;n
⋆ ‖2

X,(k) . m′(s, h, k) ,(4.19)

‖Ek;n
h −Ek;n

⋆ ‖2
0,1 . m′(s, h, k) ,(4.20)

where m′(s, h, k) := (1 + k2) ǫ(s, h, k)2 ‖Ek
⋆‖2

H2(Xs
(k)

(ω))

+ τ2
[
‖Ek

⋆‖2
H3(L2

1(ω)) + ‖Jk
⋆‖2

H2(L2
1(ω))

]
.

5. Theoretical foundations of the SCM and FSCM

In this section, we describe the fields in X(Ω) near the edges and vertices and
study the regularising properties of the elliptic operators associated to the forms
ak(·, ·) and a(·, ·).

We use the notations of Figure 1: near any corner j of ∂ω, we choose two
neighbourhoods ωj ⊂⊂ ω′

j which stay away from the other corners and from the

sides which do not contain j. Local polar coordinates (ρj , φj) are used in ω′
j; we

choose a cutoff function ηj , depending on ρj only, such that ηj ≡ 1 in ωj and ηj ≡ 0
outside ω′

j . The symbol j will be replaced by e (resp. c), when the corner is off-axis
(resp. on the axis), i.e. it is the trace of a circular edge (resp. a conical vertex). For
any off-axis corner e, we denote ae = r(e) its distance to the z-axis, and φ0

e the
angle between the r-axis and the side φe = 0. Near an on-axis corner c, we always
take φc = 0 on the axis γa.

5.1. Description of singularities. Let u be an arbitrary field in X(Ω). We start
from the Birman–Solomyak decomposition (2.26) at the mode k: uk = uk

BS −
gradk ϕk, with uk

BS ∈ Xreg
(k)(ω), ϕk ∈ Φ(k)(ω), see (2.27), (2.28). We combine this
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with the regular-singular decomposition of the functions in Φ(k)(ω) from [12, §II.4]:

ϕ0 = ϕ0
∗ +

∑

r.e

λe
0 Se

0 +
∑

s.v.

λc
0 Sc

0 ; ϕk = ϕk
∗ +

∑

r.e

λe
k Se

k for |k| ≥ 1 ;(5.1)

with: ϕk
∗ ∈ H2

(k)(ω) ∩
⋄
H1

1(ω), ∀k,

Se
k(ρe, φe) = ηe(ρe) e−|k| ρe ραe

e sin(αeφe),(5.2)

Sc
0(ρc, φc) = ηc(ρc) ρνc

c Pνc
(cosφc).(5.3)

Thus we arrive at:

u0 = u0
∗ −

∑

r.e

λe
0 grad0 Se

0 −
∑

s.v.

λc
0 grad0 Sc

0 ;(5.4)

uk = uk
∗ −

∑

r.e

λe
k gradk Se

k for |k| ≥ 1 ;(5.5)

with: uk
∗ = uk

BS − gradk ϕk
∗ ∈Xreg

(k)(ω) ∀k.

The above decompositions are hardly adapted to numerical computations, as the
singular fields used in them depend on the mode and contain cutoff functions. This
point will be addressed below. However, they have nice properties which we now
state.

Lemma 5.1. The singularity coefficients λj
k satisfy the bounds:

|λe
0| . ‖u0‖X,(0), ∀e, |λc

0| . ‖u0‖X,(0), ∀c ;(5.6)

|λe
k| . |k|αe−1 ‖uk‖X,(k), ∀e, ∀|k| ≥ 1.(5.7)

As a consequence, ‖λe
k gradk Se

k‖X,(k) . ‖uk‖X,(k) and ‖uk
∗‖X,(k) . ‖uk‖X,(k);

thus, the series
∑
uk
∗ eikθ and

∑
λe

k (gradk Se
k) eikθ for any reentrant edge e con-

verge in X(Ω).

Proof. Let fk := divk(uk − uk
BS) = −∆kϕk. By the continuity estimate (2.29),

we have ‖fk‖0,1 . ‖uk‖X,(k). The coefficients λj
k are clearly the same in (5.4)

or (5.5) and in (5.1); yet the latter satisfy: |λj
k| . ‖fk‖0,1 for |k| ≤ 1 and |λe

k| .

|k|αe−1 ‖fk‖0,1 for |k| ≥ 2, as shown in [20], respectively Equations (36,49) and
Lemma 3.1 of this Reference. Hence (5.6) and (5.7).

On the other hand, it is easy to check (calculating like in Lemma 5.5 of [3]) that
‖ gradk Se

k‖X,(k) = ‖∆k Se
k‖0,1 . |k|1−αe . Thus, ‖λe

k gradk Se
k‖X,(k) . ‖uk‖X,(k)

for all e and finally ‖uk
∗‖X,(k) . ‖uk‖X,(k). �

Similar decompositions and estimates hold in the magnetic case (recall the ab-
sence of vertex singularities in this case), with Se

k(ρe, φe) = ηe(ρe) e−|k| ρe ραe
e cos(αeφe).

5.2. Regularity results. As we remarked in Theorem 2.10, the global regularity
of the electromagnetic field is quite low. In order to have good approximation
properties, one has to estimate the regularity of the regular part of the field, which
is approximated by finite elements. We shall see that it can be limited by all edges
and vertices — not only the reentrant or sharp ones. Moreover, even with very
smooth data, it can be hardly better than H1; this condition requires the use of
the modified Clément operator defined in §6.2.
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Definition 5.2. The space Xs
(k)(ω), for s ≥ 1, is the subspace of all uk ∈X(k)(ω)

whose regular part uk
∗ , as defined in (5.4) or (5.5), belongs to Hs

(k)(ω). Its norm is
chosen as:

k = 0 : ‖u0‖2
X,s,(0) := ‖u0

∗‖2
s,(0) +

∑

r.e.

|λe
0|2 +

∑

s.v.

|λc
0|2 ;(5.8)

|k| ≥ 1 : ‖uk‖2
X,s,(k) := ‖uk

∗‖2
s,(k) +

∑

r.e.

|k|2(1−αe) |λe
k|2 .(5.9)

As a particular case, X1
(k)(ω) =X(k)(ω), and the norms are equivalent.

The spaceXs(Ω) is the subspace of all u ∈X(Ω) such that its Fourier coefficients
uk belong to Xs

(k)(ω) for all k. It is endowed with the canonical norm ‖u‖2
X,s :=∑

k∈Z
‖uk‖2

X,s,(k).

The finiteness of the norm ‖u‖X,s if uk ∈ Xs
(k)(ω) for all k follows from

Lemma 5.1. The latter, together with the well-known [2, §4] equivalence of the
norms ‖ · ‖X and ‖ · ‖1 on Xreg(Ω), hence of ‖ · ‖X,(k) and ‖ · ‖1,(k) on Xreg

(k)(ω),

yields the equivalence of norms ‖ · ‖X and ‖ · ‖X,1 on X(Ω).

Definition 5.3. Let νk;ℓ
c be the ℓ-th singularity exponent of the Laplacian (with

Dirichlet boundary condition) at the conical vertex c for the Fourier mode k, i.e. the
ℓ-th smallest positive root of P k

ν (cos π/βc) = 0. (Thus, νc = ν0;1
c .)

The limiting regularisation exponent of the Laplacian at the mode k is sk
∆ :=

min Sk, where the set Sk is defined as a function of |k| as:

S0 =
{
αe : e salient edge ; 2 αe : e reentrant edge ;

ν0;1
c + 1

2 : c non-sharp vertex ; ν0;2
c + 1

2 : c sharp vertex
}

;

S1 =
{
αe : e salient edge ; 2 αe : e reentrant edge ; ν1;1

c + 1
2 : c any vertex

}
;

Sk =
{
αe : e salient edge ; 2 αe : e reentrant edge

}
, k ≥ 2.

The limiting regularisation exponent of the Maxwell operator at the mode 0 is

s0
⋆ := min

(
αe : e salient edge ; 2 αe : e reentrant edge ;

ν0;1
c + 1

2 : c non-sharp vertex ; ν0;1
c + 3

2 : c sharp vertex
)

;

while for the modes |k| ≥ 1, one has sk
⋆ = sk

∆. Notice [12, p. 48] that the only
exponents ν whose value is possibly less than 2 are ν0;1

c , ν0;2
c , and ν1;1

c , the latter
two being always greater than 1. This is the reason why, for |k| ≥ 2, regularity is
limited by the edges only.

The global limiting regularisation exponent of the Maxwell operator is s⋆ :=
min(s0

⋆, s
1
⋆) = mink∈Z sk

⋆ .

Remark 5.4. We see that s⋆ < 2 as soon as one edge aperture is greater than π/2. As
for the conical vertices, there holds sk

⋆ < 2 for |k| = 0, 1 when the aperture is greater
than ϑ|k|, with ϑ0 ≃ 68◦8′ and ϑ1 ≃ 114◦48′. As a consequence, P1 finite elements
will be sufficient for non-mixed formulations (including correction methods) in most
situations. When using mixed formulations, however, one has to use P2 elements
for the field (and P1 for the multiplier) in order to have the theoretical framework



FOURIER SINGULAR COMPLEMENT METHOD FOR MAXWELL 21

for proving convergence, see Lemma 4.2 and Propositions 4.3 & 4.4. This is what
we assume in the rest of this article.

Proposition 5.5. Let f ∈ X(Ω)′ and g ∈ L2(Ω), and let (u, p) ∈ X(Ω) × L2(Ω)
be the solution to:

a(u,v) + b(v, p) = 〈f ,v〉, ∀v ∈X(Ω),(5.10)

b(u, q) = (g | q), ∀q ∈ L2(Ω).(5.11)

If f ∈ Hs−2(Ω) and g ∈ Hs−1(Ω) for some s ∈ [1, sk
⋆), then uk ∈ Xs

(k)(ω) and

pk ∈ Hs
(k)(ω). Consequently, u ∈ Xs(Ω) and p ∈ Hs(Ω) for s < s⋆.

Proof. Thanks to [2], we can adapt the result of [25, Thm 5.2] to the case of the
axisymmetric domain: the (non-unique) Birman–Solomyak decomposition (2.22)
can be chosen such that

f ∈Hs−2(Ω) and g ∈ Hs−1(Ω) =⇒
∆ϕ ∈ Hs−1(Ω) and uBS ∈Hσ+1(Ω), and p ∈ Hτ+1(Ω),

for: σ ≤ s − 1 and σ < min
{
αe, µ

D
c + 1

2 , µN
c + 1

2

}
,

τ ≤ s − 1 and τ < min
{
αe, µ

D
c + 1

2

}
,

where µD
c (resp. µN

c ) is the smallest singularity exponent of the Laplacian with
Dirichlet (resp. Neumann) boundary condition at the vertex c. Moreover, this
decomposition is continuous with respect to the norms ‖f‖s−2 and ‖g‖s−1. We
remark that µD

c coincides with ν0;1
c ; moreover, it is known [30] that µN

c ≥ µN > 0.84.
Thus, at least for s < 2.34, there holds uBS ∈Hs(Ω) and p ∈ Hs(Ω) iff s < 1 + αe

(reentrant edges) and s < ν0;1
c + 3

2 (sharp vertices).

Reasoning mode by mode (see Remark 2.11), we thus have uk
BS ∈ Hs

(k)(ω),

pk ∈ Hs
(k)(ω) and ∆k ϕk ∈ Hs−1

(k) (ω). By Thms II.4.10 and II.4.11 of [12], the latter

property implies that ϕk
∗ (defined in (5.1)) belongs to Hs+1

(k) (ω), i.e. gradk ϕk
∗ ∈

Hs
(k)(ω) for s < sk

∆. Finally, we notice that for any reentrant edge, 2αe < 1 + αe;

and one can check that ν0;1
c + 1 ≤ ν0;2

c for all values of the aperture π/βc, the
equality being possible only if βc = 1. (For the values ν ≤ 2, see Figure II.4.1
in [12]). Hence the conclusion. �

Proposition 5.6. Let u ∈ X(Ω) and s < s⋆; then u belongs to Xs(Ω) iff
(curlu, divu) ∈Hs−1(Ω) × Hs−1(Ω).

Proof. Assume (curlu, divu) ∈Hs−1(Ω)×Hs−1(Ω). It is easy to check that (u, 0)
is the solution to (5.10,5.11), with g = divu and f = curl curlu − grad divu ∈
Hs−2(Ω). Hence u ∈ Xs(Ω) by the previous proposition.

Conversely, u ∈ X(Ω) implies (curlk u
k
∗ , divk u

k
∗) ∈ Hs−1

(k) (ω) × Hs−1
(k) (ω) for

all k. As far as the singular parts are concerned, there holds curlk gradk Sj
k = 0

and divk gradk Sj
k = ∆k Sj

k. When j is the reentrant edge e, this function vanishes
near the axis and is smooth everywhere except near e. In addition, in ωe, one finds
by direct computations:

∆k Se
k = ∆

⊥
Se

k + l.s.t. = e−|k| ρe ραe−1
e sin(αeφe) {|k| ρe − (1 + 2αe) |k|} + l.s.t.

Here, ∆
⊥

denotes the Laplacian in the (r, z) plane, and l.s.t. means less singular
terms. Therefore, ∆k Se

k ∈ Hαe(ωe), and globally ∆k Se
k ∈ Hs−1

(k) (ω) since αe >



22 PATRICK CIARLET, JR. AND SIMON LABRUNIE

2αe − 1 ≥ s − 1. Now, for a sharp vertex c, one checks that ∆0 Sc
0 vanishes

in ωc, and is smooth elsewhere. All together, we have thus (curlk u
k, divk u

k) ∈
Hs−1

(k) (ω) × Hs−1
(k) (ω) for all k, i.e. (curlu, divu) ∈Hs−1(Ω) × Hs−1(Ω). �

The above results can be rephrased for the magnetic boundary condition, pro-
vided one adapts the results of [25] to this case, and uses the description of conical
singularities from [30].

6. Practical approximation results

6.1. Mode-independent singular fields. For the practical purpose of the SCM,

the singular parts can be described with other singular fields x
k,j
S . Generally speak-

ing, these fields should be easy to compute and satisfy the following conditions.

(1) They are independent of k for |k| ≥ 2.
(2) They are smooth (i.e., at least Cκ+1 if Pκ elements are used) away from the

relevant edge or vertex j.
(3) Near the edge or vertex j, they are equal to − gradk Sj

k +wk
j , where wk

j ∈
H

sj

(k)(ωj) for some sj > 1 large enough.

(4) They satisfy the suitable condition of the mode k on γa.
(5) They satisfy the electric boundary condition on γb.

The last two conditions imply that the regular and singular parts of the field satisfy
separately the relevant boundary conditions on ∂ω, so the latter can be treated as
essential for the regular part. Conditions 2 and 3 ensure, first, that the singularity
coefficients will be the same as in (5.4) and (5.5), and then, that the regular part
will not be “polluted” by terms not smooth enough to guarantee a good convergence
rate of the finite elements. Finally, the first condition appears mandatory in order
to keep the overall cost of the method at a reasonable level. There is, however, a
price to pay: one has to assume some extra regularity in θ for the field.

We now construct such singular fields. Let Se = −(r/ae) grad0 [ραe
e sin(αeφe)]

and Sc = − grad0 [ρνc
c Pνc

(cosφc)]; their expression in the basis (er, eθ, ez) writes:

Se = − r

ae
αe ραe−1

e




sin((αe − 1)φe − φ0

e)
0

cos((αe − 1)φe − φ0
e)



 ;(6.1)

Sc = −ρνc−1




νc Pνc

(cosφc) sinφc + P 1
νc

(cosφc) cosφc

0
−νc Pνc

(cos φc) cosφc + P 1
νc

(cosφc) sin φc



 .(6.2)

These fields obviously satisfy Conditions 1 and 2. For the vertex singular field Sc,
Condition 4 for k = 0 follows from the properties of Legendre functions, and Con-
dition 3 is trivially satisfied since this field is exactly equal to − grad0 Sc

0 in ωc

(where ηc ≡ 1). As far as Se is concerned, its three components vanish on the axis
thanks to the factor (r/ae), hence Condition 4 is satisfied for all modes. Then, we
shall see below that Se +gradk Se

k is equal in ωe to ραe
e g(φe)+higher-order terms,

cf. (6.9) below. This belongs to H1+αe(ωe) = H1+αe

(k) (ωe), since the function g(φe)

and the higher-order terms are smooth.

On the other hand, Se and Sc do not satisfy Condition 5, except on the side(s)
of γb that touch the corner e or c. Therefore, we take the following
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Definition 6.1. Let x
0,e
S := −(r/ae)σ

e, where σe is grad0 [ραe
e sin(αeφe)] minus

a lifting of its tangential trace on γb, which is smooth. Similarly, x
0,c
S is defined as

Sc minus a lifting of its tangential trace on γb, which is smooth.

For the coherence of our notations, we set x
k,e
S = x

0,e
S for all k; but let us

emphasize that these fields are independent of k.

Lemma 6.2. For any field u ∈ X(Ω), its Fourier coefficient uk can be decomposed
as:

k = 0 : u0 = u0
R +

∑

r.e.

λe
0 x

0,e
S +

∑

s.v.

λc
0 x

0,c
S ,(6.3)

|k| ≥ 1 : uk = uk
R +

∑

r.e.

λe
k x

k,e
S ,(6.4)

where: uk
R ∈Xreg

(k)(ω) ; x
k,e
S ∈ X(k)(ω), ∀k ; x

0,c
S ∈ X(0)(ω) ;

x
k,e
S + gradk Se

k ∈H1+αe

(k) (ωe), x
k,e
S is smooth elsewhere;

x
0,c
S = − grad0 Sc

0 in ωc, x
0,c
S is smooth elsewhere.

In order to use the decompositions (6.3) and (6.4) for numerical computations,
we have to check their stability in the various norms used for the fields. This is the
purpose of the next two Lemmas.

Lemma 6.3. The following bounds hold for all modes k and for 1 ≤ s < 1 + αe:

‖xk,e
S ‖X,(k) ≈ ‖Se‖X,(k) . 1 + |k| ;(6.5)

‖xk,e
S + gradk Se

k‖0,−1 ≈ ‖Se + gradk Se
k‖0,−1 . 1 ;(6.6)

‖xk,e
S + gradk Se

k‖s,1 ≈ ‖Se + gradk Se
k‖s,1 . 1 + |k|s−αe .(6.7)

Proof. The estimate for Se in (6.5) follows from simple calculations, see (7.3)

and (7.4) below. As for x
k,e
S , we remark that, as the tangential trace of grad0 [ραe

e sin(αeφe)]

on γb is smooth, there exists a continuous lifting in Hκ+1
1 (ω)3. Then, multiplying

by −(r/ae) we obtain a continuous lifting in Hκ+1
1 (ω)3 ∩ V 1

1(ω)3, whose norm is
independent of k. Thus:

(6.8) ‖xk,e
S − Se‖s,1 + ‖xk,e

S − Se‖0,−1 . 1, for 1 ≤ s < 2.

Note that neither x
k,e
S nor Se belong to Hs

1(ω)3, but their difference does. Then,
using the equivalence of the norms ‖ · ‖X,(k) and ‖ · ‖1,(k) for regular fields, we get

the estimate for x
k,e
S in (6.5).

We now establish the estimates for Se in (6.6) and (6.7); once we have them, the

bounds for x
k,e
S will follow thanks to (6.8). The calculations are quite tedious, so we

will only sketch them. The integrals defining the squared norms ‖Se +gradk Se
k‖2

s,1

and ‖Se+gradk Se
k‖2

0,−1 are made of three contributions, corresponding to different
parts of the domain ω.

(1) The region where the cutoff function ηe ≡ 0. There, gradk Se
k = 0, so the

result is independent of k.
(2) The region where ηe varies. In this part of the domain, ρe ≥ ρ > 0 and

r ≥ r > 0, so the norm of gradk Se
k (which is smooth there) in any Sobolev

space is exponentially decreasing in |k|, and one can bound the contribution
by a constant.
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(3) The region where ηe ≡ 1, viz. ωe. There, we have the following expres-
sion for gradk Se

k — for the sake of legibility, we generally drop the edge
subscript e:

e−|k| ρ ρα−1




α sin((α − 1)φ − φ0) − |k| ρ sin(αφ) cos(φ + φ0)

ik r−1 ρ sin(αφ)
α cos((α − 1)φ − φ0) − |k| ρ sin(αφ) sin(φ + φ0)



 .

To compare the previous expression with (6.1), we keep in mind that r = a +
ρ cos(φ + φ0), and that the function E defined as E(x) = (ex − 1)/x is smooth.
Thus, we arrive at the following form for we

k := Se + gradk Se
k:

we
k = |k| e−|k| ρ ρα g1(φ) + |k|E(−|k| ρ) ρα g2(φ)(6.9)

+ ik r−1 e−|k| ρ ρα g3(φ) + ρα g4(φ),

:= w1 +w2 +w3 +w4,

where all the functions gi(φ) are smooth and independent of k.

We begin by estimating the norm ‖we
k‖L2

−1(ωe). As we are away from the axis,

it is bounded above and below by ‖we
k‖L2(ωe). Actually, we calculate a Lp norm

which will be needed below. The p-th power of the norm of w1 is bounded as

‖w1‖p
Lp(ωe) =

∫∫

ωe

|k|p e−p |k| ρ ρpα |g1(φ)|p ρ dρ dφ

≤ Cp,α

∫ +∞

0

|k|p e−p |k| ρ ρpα+1 dρ

= Cp,α |k|p
∫ +∞

0

e−p ξ

(
ξ

|k|

)pα+1
dξ

|k| . |k|p−pα−2.

The calculation goes the same for w2 and w3 (as r−1 is bounded from above and
from below in ωe); as for w4, its norm is independent of k. Hence the bounds:

∀p ≤ 2/(1 − α), ‖we
k‖Lp(ωe) . 1 ; ‖we

k‖L2
−1(ωe) ≈ ‖we

k‖L2(ωe) . 1.

The bound (6.6) follows, given that the contributions of the other parts of the
domain are also bounded.

Then we proceed with the norm ‖we
k‖Hs

1(ωe). It is bounded above and be-

low by ‖we
k‖Hs(ωe); in turn, a Sobolev injection allows us to bound the latter

by ‖we
k‖W 2,p(ωe) ≈ ‖we

k‖Lp(ωe) + |we
k|W 2,p(ωe), with p = 2/(3 − s). If s < 1 + α,

then p < 2/(2 − α) < 2/(1 − α), and the Lp(ωe) norm is bounded by a constant.
To bound the W 2,p(ωe) semi-norm, we have to estimate the Lp(ωe) norms of

∂2w

∂ρ2
,

1

ρ

∂2w

∂ρ ∂φ
− 1

ρ2

∂w

∂φ
,

1

ρ2

∂2w

∂φ2
+

1

ρ

∂w

∂ρ
,

where w is any cylindrical component of any wi. It is easy to see that, for the
components of w1, these functions are linear combinations of terms of the form

|k|3 e−|k| ρ ρα h1(φ), |k|2 e−|k| ρ ρα−1 h2(φ), |k| e−|k| ρ ρα−2 h3(φ),

where the hi(φ) are smooth and independent of k. Computing as above, we find
that all these terms have their norm bounded by |k|3−α−2/p = |k|s−α. A simi-
lar calculation can be done for w2 and w3 (as r−1 is smooth in ωe, there holds
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‖w3‖W 2,p(ωe) . ‖k e−|k| ρ ρα g3(φ)‖W 2,p(ωe)); while the norm of w4 is once more
constant. Finally:

‖we
k‖Hs

1(ωe) . ‖we
k‖W 2,p(ωe) . 1 + |k|s−α.

This bound, together with the estimates on the contributions of the other parts of
the domain, leads to (6.7). �

Of course, a similar result holds for the sharp vertices at the mode 0.

Lemma 6.4. Assume that 1 ≤ s < ν0;1
c + 3

2 . The singular parts associated to the
sharp vertices satisfy:
(6.10)

‖x0,c
S ‖X,(0) ≈ ‖Sc‖X,(0) . 1 ; ‖x0,c

S + grad0 Sc
0‖s,1 ≈ ‖Sc + grad0 Sc

0‖s,1 . 1.

As a consequence of the previous two Lemmas and the definition of the norm
‖ · ‖X,s,(k) we have:

Lemma 6.5. Assume that 1 ≤ s < s⋆. The regular and singular parts in (6.3)
and (6.4) satisfy, for all u ∈ X(Ω) or Xs(Ω):

‖u0
R‖X,(0) . ‖u0‖X,(0), ‖λj

0 x
0,j
S ‖X,(0) . ‖u0‖X,(0) ;(6.11)

‖u0
R‖s,1 . ‖u0‖X,s,(0) ;(6.12)

for the mode k = 0, while for |k| ≥ 1 there holds:

‖uk
R‖X,(k) . (1 + |k|α⋆

) ‖uk‖X,(k),(6.13)

‖λe
k x

k,e
S ‖X,(k) . (1 + |k|αe) ‖uk‖X,(k) ;(6.14)

‖uk
R‖s,1 . (1 + |k|s−1) ‖uk‖X,s,(k) , ‖uk

R‖0,−1 . ‖uk‖X,s,(k) .(6.15)

Above, we have set α⋆ := max{αe < 1}. As a consequence, the series
∑
uk

R eikθ

and
∑

λe
k x

k,e
S eikθ for any reentrant edge e, converge in X(Ω) for all u ∈ H1,X(Ω).

For the numerical implementation, one can also orthonormalise the basis (xk,j
S )j

and compute basis vectors (xk,j
S⊥)j which are orthogonal to one another and to the

regular space Xreg
(k)(ω) with respect to the bilinear form ak(·, ·) for |k| ≤ 2. This is

the approach taken, at the discrete level, in §7. The adaptation to the magnetic
boundary condition is once more immediate, with Se = −(r/ae) grad0 [ραe

e cos(αeφe)].

6.2. The Clément operator. We briefly explain its construction, which follows
§§4.3 and 4.4 of [8]. For each node ai in the principal lattice of the triangulation, one
selects a triangle Ti which contains ai. Then, one introduces πi, the L2

1-orthogonal
projection operator onto Pκ(Ti): for any w ∈ L1

1(Ti), πiw ∈ Pκ(Ti) and

∀p ∈ Pκ(Ti),

∫∫

Ti

(w − πiw) p r dω = 0.

Let us begin with the case of regular fields. In order to enforce the various boundary
conditions for the different modes, one classifies the nodes into four categories:

(1) the interior nodes, which do not stand on ∂ω;
(2) the nodes standing on the axis γa, excluding the extremities;
(3) those on the sides of the physical boundary γb, excluding the corners;
(4) the corners, at the intersection of γa and γb, or of two sides of γb;
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one denotes Kℓ = {i : the node ai is of category ℓ}, for ℓ = 1, . . . , 4. Notice that:
(i) the outgoing normal and tangent vectors νi and τ i are unambiguously defined
at each node of category 2 or 3, since the sides are straight; (ii) the regular fields
vanish at the nodes of category 4.

Definition 6.6. Let ϕi be the basis function associated with ai. The regularisation

operator Πσ
h;k : L2

1(ω) → X
reg;h
(k) for the mode k and the boundary condition σ

(σ = ν is the electric b.c., σ = τ is the magnetic b.c.) is the sum Πσ
h;k :=

Π1
h +Π2

h;k +Π3;σ
h , where:

Π1
hu(x) :=

∑

i∈K1

{πiur(ai) er + πiuθ(ai) eθ + πiuz(ai) ez} ϕi(x) ;(6.16)

Π2
h;0u(x) :=

∑

i∈K2

πiuz(ai) ez ϕi(x) ;(6.17)

Π2
h;±1u(x) :=

∑

i∈K2

πiu±(ai) e± ϕi(x) ; Π2
h;ku(x) := 0 for |k| ≥ 2 ;(6.18)

Π
3;ν
h u(x) :=

∑

i∈K3

πiuν(ai)νi ϕi(x) ;(6.19)

Π
3;τ
h u(x) :=

∑

i∈K3

{πiuτ (ai) τ i + πiuθ(ai) eθ} ϕi(x).(6.20)

This operator automatically satisfies the electric or magnetic boundary condition
on the physical boundary γb, as well as the boundary condition for regular fields of
the mode k on the axis γa. Let us investigate its approximation properties.

Proposition 6.7. Let u ∈ Hs
1(ω)3∩V 1

1(ω)3 such that u×n = 0, resp. u ·n on γb.
The following estimate holds for s ∈ [1, κ + 1]:

(6.21) h−1
∥∥u−Πσ

h;ku
∥∥

0,1
+
∣∣∣∣∣∣u−Πσ

h;ku
∣∣∣∣∣∣

1,1
. hs−1 {‖u‖s,1 + ‖u‖0,−1} .

Hence, for |k| ≥ 2, s ∈ [1, 2] and u ∈Hs
(k)(ω) ∩X(k)(ω):

(6.22)
∥∥u−Πσ

h;ku
∥∥2

1,(k)
. h2s−2 (1 + |k|2)

{
‖u‖2

s,1 + ‖u‖2
0,−1

}
.

Proof. For integral values of s, the estimate (6.21) is obtained by following the proof
of [8] step by step. To extend it to other values, we rely on interpolation arguments
in suitable scales of weighted spaces. We give the detail in the case s ∈ (1, 2), which
is the one needed in the framework of this article.

It is known (see §2.4) that the following spaces are equal, algebraically and
topologically, for 1 < s < 2:

(6.23) V s
1(ω) = Hs

(1)(ω) = Hs
1(ω) ∩ V 1

1(ω) = {w ∈ Hs
1(ω) : w = 0 on γa}.

For s = 1, the first two equalities hold; for s = 2, the last three spaces are
equal, while V 2

1(ω) is algebraically and topologically embedded in them. Thus,
for s ∈ (1, 2), Hs

1(ω) ∩ V 1
1(ω) appears as the interpolate of order s − 1 between

V 1
1(ω) and H2

1(ω) ∩ V 1
1(ω): this amounts to do interpolation in the scale (Hs(Ω))s

in the special case of scalar functions having only one non-zero Fourier mode, cor-
responding to k = 1.
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Assume now that u ∈ H2
1(ω)3 ∩ V 1

1(ω)3, with u × n|γb
= 0. The magnetic

boundary condition can be handled in the same manner. The bound (6.21) holds
for s = 1 and s = 2; the above interpolation property implies that it is also true

for all s ∈ [1, 2]. As the definition (2.21) implies: ‖·‖2
1,(k) . (1 + |k|2)

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

1,1
, the

estimate (6.22) follows. In order to extend it to the case of u ∈Hs
(k)(ω)∩X(k)(ω),

i.e., u ∈ Hs
1(ω)3 ∩ V 1

1(ω)3 with u × n|γb
= 0, we need a density argument which

we now give.

First, we know [2, Proposition 4.7 & Remark 4.3] that X(Ω) ∩ C∞(Ω)3 is
dense within Xreg(Ω); with suitable adaptations, the same proof shows the den-
sity in X(Ω) ∩ H2(Ω). Then, an interpolation argument in the scale Hs(Ω)
yields the density in X(Ω) ∩Hs(Ω). As a consequence, X(Ω) ∩H2(Ω) is dense
in X(Ω) ∩Hs(Ω). For the modes |k| ≥ 2, this means that X(k)(ω) ∩H2

(k)(ω) =

{u ∈ V 2
1(ω)3 : u× n|γb

= 0} is dense within X(k)(ω) ∩Hs
(k)(ω). A fortiori, this is

true for the bigger space {u ∈ H2
1(ω)3 ∩ V 1

1(ω)3 : u× n|γb
= 0}. �

The operators corresponding to the modes |k| ≤ 1 can be estimated likewise
(taking care of the conditions satisfied by the various components on the axis),
giving an error in hs−1 ‖u‖1,(k). Thus, when the singular space is null, we get the
approximation result (4.8) with:

(6.24) Xs
(k)(ω) := Hs

(k)(ω) ∩X(k)(ω), ǫ(s, h, k) = hs−1 (1 + |k|).
Now we proceed with the general case. Near a geometrical singularity j = e

or c, the numerical space Xh
(k) is spanned by the finite elements plus the singular

field Sj ; away from it, the singular field is generally (according to the details of the
numerical method) represented by an interpolate, or a lifting of its trace. This is of
no importance, since Sj is C∞ there, so the approximation will be as good as the
finite elements allow. For instance, the Lagrange interpolation operator Ih satisfies
the following bound for w ∈ Hs

1(ω)3 ∩ V 1
1(ω)3 and s ∈ [2, κ + 1]:

h−1 ‖w − Ihw‖0,1 +
∣∣∣∣∣∣w − Ihw

∣∣∣∣∣∣
1,1

. hs−1 ‖w‖s,1 ,

see Proposition 6.1 in [39] and Proposition 4.1 in [8]. Globally, Xh
(k) can be thus

described as:

X
h
(k) = X

reg;h
(k) ⊕

⊕

g.s.

spanx
k,j;h
S , where:

x
k,j;h
S ∈X(k)(ω), x

k,j;h
S = Sj on ωj , ‖xk,j;h

S − x
k,j
S ‖X,(k) . hκ (1 + |k|).

Consequently, we can define a modified operator Πσ
h;k on X(k)(ω) as follows:

Πσ
h;k : u = uR +

∑

g.s.

λj x
k,j
S 7−→ Πσ

h;kuR +
∑

g.s.

λj x
k,j;h
S .(6.25)

Combining Lemma 6.5 with the estimate (6.22) for regular fields, one immediately
obtains:

Proposition 6.8. The operator Πσ
h;k satisfies the following bound, for any k and

u ∈ Xs
(k)(ω):

(6.26)
∥∥u− Πσ

h;ku
∥∥2

X,(k)
. h2s−2 (1 + |k|2s) ‖u‖2

X,s,(k) .
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Hence the general form of the approximation result (4.8):

(6.27) Xs
(k)(ω) as in Definition 5.2, ǫ(s, h, k) = hs−1 (1 + |k|s).

6.3. Error estimates for the FUNFEM and FSCM. We recall that the ap-
proximate numerical solution is reconstructed by the formula:

{E[N ];n
h , P

[N ];n
h }(r, θ, z) :=

1√
2π

N∑

k=−N

{Ek;n
h , P k;n

h }(r, z) eikθ,

where
(
E

k;n
h

)

n
, resp.

(
E

k;n
h , P k;n

h

)

n
is the solution to the fully discrete mode-wise

augmented (resp. mixed augmented) formulation.

Theorem 6.9. Assume that E ∈ H2(−δ, T ;Xs,q+σ(Ω))∩H3(−δ, T ;H0,σ(Ω)) and
J ∈ H2(−δ, T ;H0,σ(Ω)), where σ > 1

2 , s ∈ (1, s⋆) and q is defined according to the
numerical method, in the following way:

UNFEM SCM
Non-mixed 1 s
Mixed 2 1 + s

Then we have the error estimates on the reconstructed solutions:

‖∂τE
[N ];n
h − Ėn‖2

0 + ‖E[N ];n
h −En‖2

X ≤ M1 (h2s−2 + τ2 + N−2σ),(6.28)

‖E[N ];n
h −En‖2

0 ≤ M2 (h2s−2 + τ2 + N−2σ).(6.29)

The constants Mi depend on the norms of E and J in the aforementioned spaces.

Remark 6.10. Provided that the data J(t) and ̺(t) are smooth enough, we recall
(see §5.2) that E(t) belongs automatically to Xs(Ω), for 1 ≤ s < s⋆.

Proof. Adding the estimates (4.9) or (4.19) from k = −N to N , with the values
of ǫ(s, h, k) given by (6.24) or (6.27), we obtain:

‖∂τE
[N ];n
h − Ė[N ];n

⋆ ‖2
0 + ‖E[N ];n

h −E[N ];n
⋆ ‖2

X . MN (E,J) :=

h2s−2
N∑

k=−N

(1 + |k|2q) ‖Ek
⋆‖2

H2(Xs
(k)

(ω)) + τ2
[
‖E[N ]

⋆ ‖2
H3(L2(Ω)) + ‖J [N ]

⋆ ‖2
H2(L2(Ω))

]
.

Using Proposition 3.5, we bound:

MN(E,J) . h2s−2
[
‖E[N ]‖2

H2(Xs,q(Ω)) + N−2σ ‖E‖2
H2(Xs,q+σ(Ω))

]

+ τ2
[
‖J [N ]‖2

H2(L2(Ω)) + N−2σ ‖J‖2
H2(H0,σ(Ω))

]

+ τ2
[
‖E[N ]‖2

H3(L2(Ω)) + N−2σ ‖E‖2
H3(H0,σ(Ω))

]
.

Then we use the triangle inequality: ‖E[N ];n
h − En‖2

X . ‖E[N ];n
h − E[N ];n

⋆ ‖2
X +

‖E[N ];n
⋆ −E[N ];n‖2

X +‖E[N ];n−En‖2
X , and similarly for the L2 norm of the time de-

rivative. The last two errors are bounded by Propositions 3.3 and 3.6; hence (6.28).
The bound (6.29) is obtained in the same manner. �
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Remark 6.11. Combining the arguments of Propositions 3.4 and 5.5, we see that
the hypotheses:

ψ ∈ H2(−δ, T ;H0,q+σ(Ω)), Ë ∈ H2(−δ, T ;H0,q+σ(Ω)), ̺ ∈ H2(−δ, T ;
◦
H1,q+σ(Ω)),

together imply E ∈ H2(−δ, T ;Xs,q+σ(Ω)). The second condition clearly implies
E ∈ H4(−δ, T ;H0,σ(Ω)). In the augmented formulation, the three conditions

are satisfied if e.g. J ∈ H4(−δ, T ;H0,q+σ(Ω)) and ̺ ∈ H3(0, T ;
◦
H1,q+σ(Ω)) ∩

H5(0, T ; H−1,s(Ω)). In the mixed augmented formulation, it is enough to have

J ∈ H4(−δ, T ;H0,q+σ(Ω)) and ̺ ∈ H2(0, T ;
◦
H1,q+σ(Ω)) ∩ H4(0, T ; H−1,q+σ(Ω)).

Remark 6.12. If the Fourier coefficients ̺k, Jk are exactly known, it is sufficient to
assume E ∈ H2(−δ, T ;Xs,q(Ω))∩C0(0, T ;X1,σ(Ω))∩C1(0, T ;H0,σ(Ω)) (for σ > 0)
and J ∈ H2(−δ, T ;L2(Ω)).

Remark 6.13. The analyses of §4.3 and Theorem 6.9 can be extended to explicit
time schemes. For instance, one can replace the augmented (4.3) and mixed aug-
mented (4.6) formulations with the explicit centred versions:

(∂2
τE

k;n+1
h | F h) + ak(Ek;n

h ,F h)(6.30)

= −(∂2τJ
k;n+1
⋆ | F h) + (̺k;n

⋆ | divF h),

resp. (∂2
τE

k;n+1
h | F h) + ak(Ek;n

h ,F h) + bk(F h, P k;n+1
h )(6.31)

= −(∂2τJ
k;n+1
⋆ | F h) + (̺k;n

⋆ | divF h),

which are formally of higher order in time, and computationally very efficient when
mass lumping is used. If J is known at the instants tn+1/2, the derivative ∂2τJ

k;n+1
⋆

can be replaced by ∂τJ
k;n+1/2
⋆ , without changing the order of the scheme.

As in [21], one shows that the L2-error on the field is indeed of order 2 in τ :
provided the fields are regular enough, the estimates (4.10) and (4.20) become
respectively:

‖Ek;n
h −Ek;n

⋆ ‖2
0,1 . ǫ(s, h, k)2 ‖Ek

⋆‖2
H2(Xs

(k)
(ω))(6.32)

+ τ4
[
‖Ek

⋆‖2
H4(L2

1(ω)) + ‖Jk
⋆‖2

H3(L2
1(ω))

]
,

‖Ek;n
h −Ek;n

⋆ ‖2
0,1 . (1 + k2) ǫ(s, h, k)2 ‖Ek

⋆‖2
H2(Xs

(k)
(ω))(6.33)

+ τ4
[
‖Ek

⋆‖2
H4(L2

1(ω)) + ‖Jk
⋆‖2

H3(L2
1(ω))

]
.

On the other hand, the bounds (4.9) or (4.19) hold without change. Furthermore,
all these estimates are valid under the CFL condition Λ τ2 < 4, where the Rayleigh

quotient Λ := sup
vh∈X

h
(k)

‖vh‖2
X,(k)

‖vh‖2
0,1

should behave as Λ . h−2 + |k|2.

Under the assumptions E ∈ H2(−δ, T ;Xs,q+σ(Ω)) ∩ H4(−δ, T ;H0,σ(Ω)) and
J ∈ H3(−δ, T ;H0,σ(Ω)), where s, q and σ are as in Theorem 6.9, we obtain the
bound (6.28) on the reconstructed solution, and the L2 estimate:

(6.34) ‖E[N ];n
h −En‖2

0 ≤ M3 (h2s−2 + τ4 + N−2σ).

But they are valid under a CFL condition strongly dependent on the number of
Fourier modes used. Thus, explicit schemes may be difficult to use in practice
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unless the fields are very regular in θ (i.e. σ is large enough), which allows one to
use very few modes.

7. Numerical algorithms

A practical implementation of the SCM in the case where the data are axisym-
metric was exposed in [4]. In the case of general data, the method can be applied
to the equations of the mode 0. Let us recall the principle of the SCM [5]: the

basis of the singular space X
sing;h
(0) is computed, once and for all, as a first part of

the algorithm, before solving the Maxwell evolution problem in the suitable space

Xh
(0) = X

reg;h
(0) ⊕ X

sing;h
(0) . These various versions of the SCM also take advantage of

the following specific points:

• At the mode 0, the Maxwell equations decouple into problems involving the
meridian (r, z) and azimuthal (θ) components, which are orthogonal, both
in L2

1(ω) and X(0)(ω). Moreover, the azimuthal components are regular
and are not affected by the divergence constraint.

• The singular space is spanned by suitably chosen fields: e.g. the gradients of
singular functions of the Laplacian, or fields orthogonal to the regular space;
this yields simple expressions of the various terms coupling the regular and
singular parts in the variational formulations.

We now present an extension of this approach to the modes k 6= 0. The principle

consists in choosing an orthogonal complement (thus Xh
(k) = X

reg;h
(k)

⊥
⊕ X

sing;h
(k) ) for

the modes |k| ≤ 2, while the modes ±2 serve as the “fundamental modes” for the
higher modes |k| > 2, thanks to the stabilisation of spaces for these modes (see
Proposition 2.9). This is the method already used in [20] for the Poisson problem.

Thus, at the continuous level, the practical decomposition of the solution to
Maxwell’s equations is chosen as at the end of §6.1:

Ek;n = Ek;n
reg +

∑

j

κk;n
j x

ℓ(k),j
S⊥ , where: Ek;n

reg ∈Xreg
(k)(ω),(7.1)

ℓ(k) = k for |k| ≤ 1, ℓ(k) = 2 sign(k) for |k| ≥ 2,

j ∈ {e, c} for k = 0, j ∈ {e} for |k| ≥ 1 ;

moreover, the basis (xk,j
S⊥)j is orthonormal, and orthogonal to the regular spaceXreg

(k)(ω) =

X
reg
(ℓ(k))(ω) with respect to the form aℓ(k)(·, ·).

7.1. Computation of a basis of the singular space X
sing;h
(k) , for |k| ≤ 2. At

the discrete level, we define the counterparts of the various terms in (7.1):

(7.2) E
k;n
h = E

k;n
reg;h +

∑

j

κk;n
j;h x

ℓ(k),j;h
S⊥ , where: E

k;n
reg;h ∈ X

reg;h
(k) ,

and the numerical singular fields x
k,j;h
S⊥ (|k| ≤ 2) are computed as follows. In the

first step, one defines the fields

x
k,j;h
S := Sj + x̂k,j;h, such that x

k,j;h
S ∈X(k)(ω) and x

k,j;h
S ⊥ak

X
reg;h
(k) ,
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i.e. the non-principal part x̂k,j;h of the field belongs to the finite element space and
satisfies the appropriate variational formulation and boundary conditions, namely:

ak(x̂k,j;h,wh) = −ak(Sj ,wh)

= −(curlk Sj | curlkwh) − (divk Sj | divkwh), ∀wh ∈ X
reg;h
(k) ;

x̂k,j;h × n = −Sj × n on γb , for |k| ≤ 2 ;

x̂0,j;h · er = 0 and x̂0,j;h · eθ = 0 on γa ,

x̂±1,j;h · e∓ = 0 and x̂±1,j;h · ez = 0 on γa , x̂±2,j;h = 0 on γa.

Above, we have curl0 Sc = 0 and div0 Sc = −∆0[ρ
νc Pνc

(cosφc)] = 0, while for the
edge singularity:

divk Se = −2αe

ae
ραe−1

e sin((αe − 1)φe − φ0
e) ;(7.3)

curlk Se =
αe ραe−1

e

ae




−ik cos((αe − 1)φe − φ0

e)
cos((αe − 1)φe − φ0

e)
ik sin((αe − 1)φe − φ0

e)



 .(7.4)

These fields belong to L2
1(ω); the corresponding integrals should be computed by an

appropriate quadrature formula in the neighbourhood of the corner e; elsewhere,
the usual mass matrix can be used, cf. [4, §4.4].

At the end of this step, the singular complement X
sing;h
(k) is defined as the space

generated by the (xk,j;h
S )j , for |k| ≤ 2 and j in the relevant set of singularities.

The stabilisation of spaces then allows to set X
sing;h
(k) = X

sing;h
(2) for |k| ≥ 2; notice

furthermore that X
sing;h
(−2) = X

sing;h
(2) as we shall see below. Thus, the total space Xh

(k)

is spanned by the usual nodal finite elements plus (Se)e, for all k, and also plus
(Sc)c, for k = 0: we are in the framework of §6, which validates the error estimates.

The second step consists in orthormalising the basis of X
sing;h
(k) , i.e. one determines

the fields

x
k,j;h
S⊥ =

∑

i

ck,j;h
i x

k,i;h
S s.t. ak(xk,i;h

S⊥ ,xk,j;h
S⊥ ) = δi,j ,

for |k| ≤ 2 and i, j in the relevant set of singularities. This involves the computation
of the scalar products

ak(xk,j;h
S ,xk,i;h

S ) = ak(x̂k,j;h, x̂k,i;h) + ak(Sj , x̂
k,i;h) + ak(x̂k,j;h,Si) + ak(Sj ,Si);

the first term is computed by the stiffness matrix, while the other three need the
same treatment near the corners as above. Then the orthonormalisation itself is
performed by the usual Schmidt or Arnoldi procedure.

7.2. Solution of the evolution problem. The solution of the mixed augmented
evolution problem at the mode 0 follows the principle of [4, §4.3], except that we
are now using orthogonal complements. As said above, the azimuthal component
of E0 is regular; it is solution to a wave-like equation which can be easily solved
by nodal finite elements [4, §2.3]. We now expose the solution of the meridian
problem. Notice that the orthogonalisation procedure only modifies the meridian

components, so the x
0,j;h
S⊥ are meridian.
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We use the following notations: u = ur er + uz ez is the meridian component
of u; the scalar curl (or rotational) and divergence operators of meridian fields are:

rotu := ∂ruz − ∂zur, div u := r−1 ∂r(r ur) + ∂zuz,

and the bilinear forms a0 and b0 reduce to

a0(u,v) = (rotu | rotv) + (div u | div v), b0(u, p) = (div u | p).

Now, we are able to put the splitting (7.2) (restricted to the meridian components)
into the suitable variational formulation. As an example, we show the totally
implicit, mixed augmented formulation (4.6)–(4.7), with the time index n+1 shifted
to n. The adaptation to the non-mixed case is obvious. Taking successively as test

functions Fh ∈ X
reg;h
(0) and x

0,i;h
S⊥ in (4.6), and then qh ∈ Qh in (4.7), we arrive at

the coupled mixed problem:

Find (E0;n
reg;h, P 0;n

h ) ∈ X
reg;h
(0) × Qh and −→κ 0;n

h =
(
κ0;n

j;h

)

j
∈ RNe+Nc (4) such that, for

all (Fh, i, qh) ∈ X
reg;h
(0) × {e, c} × Qh:

∂2
τ

(
E

0;n
reg;h | Fh

)
+
∑

∂2
τκ0;n

j;h

(
x

0,j;h
S⊥ | Fh

)
+ a0

(
E

0;n
reg;h,Fh

)
(7.5)

+ b0

(
Fh, P 0;n

h

)
= −

(
∂τJ

0;n
⋆ | Fh

)
+
(
̺0;n

⋆ | div Fh

)
,

∂2
τ

(
E

0;n
reg;h | x0,i;h

S⊥

)
+
∑

∂2
τκ0;n

j;h

(
x

0,j;h
S⊥ | x0,i;h

S⊥

)
+ κ0;n

i;h(7.6)

+ b0

(
x

0,i;h
S⊥ , P 0;n

h

)
= −

(
∂τJ

0;n
⋆ | x0,i;h

S⊥

)
+
(
̺0;n

⋆ | div x
0,i;h
S⊥

)
,

b0

(
E

0;n
reg;h, qh

)
+
∑

κ0;n
j;h b0

(
x

0,j;h
S⊥ , qh

)
=
(
̺0;n

⋆ | qh

)
.(7.7)

The summation runs on all singularities j ∈ {e, c}. The numerical solution of this
problem then follows the principle of [4, §4.3].

The method for the modes k = ±1 is similar, as the singular fields are adapted to
these modes. The differences are: the meridian and azimuthal components cannot
be decoupled, as they are not orthogonal for the form a±1(·, ·), and the boundary
condition on the axis γa mixes them. Instead, one has to use the basis (e+, e−, ez),
as remarked above (cf. Remark 2.7). Moreover, there are no singularities at the
sharp vertices. Thus, we arrive at the following formulation:

Find (Ek;n
reg;h, P k;n

h ) ∈ X
reg;h
(k) × Qh and −→κ k;n

h =
(
κk;n

e;h

)

e
∈ RNe such that, for all

(F h, i, qh) ∈ X
reg;h
(k) × {e} × Qh:

∂2
τ

(
E

k;n
reg;h | F h

)
+
∑

∂2
τκk;n

e;h

(
x

k,e;h
S⊥ | F h

)
+ ak

(
E

k;n
reg;h,F h

)
(7.8)

+ bk

(
F h, P k;n

h

)
= −

(
∂τJ

k;n
⋆ | F h

)
+
(
̺k;n

⋆ | divk F h

)
,

∂2
τ

(
E

k;n
reg;h | xk,i;h

S⊥

)
+
∑

∂2
τκk;n

e;h

(
x

k,e;h
S⊥ | xk,i;h

S⊥

)
+ κk;n

i;h(7.9)

+ bk

(
x

k,i;h
S⊥ , P k;n

h

)
= −

(
∂τJ

k;n
⋆ | xk,i;h

S⊥

)
+
(
̺k;n

⋆ | divk x
k,i;h
S⊥

)
,

bk

(
E

k;n
reg;h, qh

)
+
∑

κk;n
e;h bk

(
x

k,e;h
S⊥ , qh

)
=
(
̺k;n

⋆ | qh

)
.(7.10)

This time, the summation runs on the reentrant edges e only.

4Ne and Nc are the numbers of reentrant edges and sharp vertices.
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We now examine the cases of the modes |k| ≥ 2. First, we show that the
meridian and azimuthal components are orthogonal w.r.t. the form ak(·, ·). Let
u, v be vector fields in the space

H(k)(curlk, divk; ω) :=
{
w ∈ L2

−1(ω) : curlkw ∈ L2
1(ω) and divkw ∈ L2

1(ω)
}

.

A simple integration by parts shows

ak(u,v) = a0(u,v) + k2
(u

r

∣∣∣
v

r

)
(7.11)

+ (curl uθ | curl vθ) + k2
(uθ

r

∣∣∣
vθ

r

)
+ ik B(u,v)

:= ak(u,v) + ak(uθ, vθ) + ik B(u,v),

where the vector curl of a scalar field is defined as curl w := −∂zw er+r−1 ∂r(r w) ez .
Thanks to the absence of singularities at the sharp vertices, the fields inX(k)(ω) are

of H1
(k) regularity near the axis, and thus automatically belong to ∈ L2

−1(ω). (The

same holds for the magnetic boundary condition). The boundary term B(u,v) is
equal to

B(u,v) =

∫

γb

{(u · n) vθ − uθ (v · n)} dγ,

so it vanishes when u× n = v × n = 0 (and likewise when u · n = v · n = 0). As
far as the form bk is concerned, there holds:

bk(u, p) = b0(u, p) + ik
(uθ

r

∣∣∣ p
)

.

Unlike the mode 0, the divergence constraint mixes the meridian and azimuthal
components. Fully decoupling these components is therefore possible in the non-
mixed formulation (4.3) only.

The formula (7.11) has several consequences. First, ak = a−k, so the orthogonal-

isation procedure of §7.1 gives x
−2,e;h
S⊥ = x

2,e;h
S⊥ . Moreover, given that the azimuthal

component of Se is zero, and the azimuthal component of any field in X(k)(ω) is
regular (recall the proof of Proposition 2.9), the orthogonalisation procedure only

modifies the meridian components of Se, and so the x
2,e;h
S⊥ are meridian. Finally,

there holds:

(7.12) ak(u,v) = a2(u,v) + (k2 − 4)
(u

r

∣∣∣
v

r

)
:= a2(u,v) + (k2 − 4) [u | v]−1.

If we take successively as test functions F h ∈ X
reg;h
(k) and x

0,i;h
S⊥ in (4.6), and take

into account the orthogonality of the basis
(
x

2,e;h
S⊥

)

e
for the form a2, we arrive at

the coupled mixed problem:

Find (Ek;n
reg;h, P k;n

h ) ∈ X
reg;h
(k) × Qh and −→κ k;n

h =
(
κk;n

e;h

)

e
∈ RNe such that, for all
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(F h, i, qh) ∈ X
reg;h
(k) × {e} × Qh:

∂2
τ

(
E

k;n
reg;h | F h

)
+
∑

∂2
τκk;n

e;h

(
x

2,e;h
S⊥ | F h

)
+ ak

(
E

k;n
reg;h,F h

)
(7.13)

+ (k2 − 4)
∑

κk;n
e;h

[
x

2,e;h
S⊥ | F h

]

−1
+ bk

(
F h, P k;n

h

)

= −
(
∂τJ

k;n
⋆ | F h

)
+
(
̺k;n

⋆ | divk F h

)
,

∂2
τ

(
E

k;n
reg;h | x2,i;h

S⊥

)
+
∑

∂2
τκk;n

e;h

(
x

2,e;h
S⊥ | x2,i;h

S⊥

)
+ κk;n

i;h(7.14)

+ (k2 − 4)
∑

κk;n
e;h

[
x

2,e;h
S⊥ | x2,i;h

S⊥

]

−1
+ b0

(
x

2,i;h
S⊥ , P k;n

h

)

= −
(
∂τJ

k;n
⋆ | x2,i;h

S⊥

)
+
(
̺k;n

⋆ | divk x
2,i;h
S⊥

)
,

bk

(
E

k;n
reg;h, qh

)
+
∑

κk;n
e;h b0

(
x

2,e;h
S⊥ , qh

)
=
(
̺k;n

⋆ | qh

)
.(7.15)

The summation runs on the reentrant edges e.

From a numerical point of view, notice that the various terms in (7.5–7.7), (7.8–

7.10), and (7.13–7.15) involving the x
k,j;h
S⊥ correspond to integrals with singular

integrands near the geometrical singularities; similarly, the integrals defining the
forms ak(·, ·) and [· | ·]−1 need special care near the axis γa. See [4, §4.4] for an
efficient implementation.

7.3. Miscellaneous. Let us now explain briefly the decoupling of meridian and
azimuthal components in the non-mixed formulation.

The meridian component E
k;n
reg;h is solution to a problem similar to (7.13)–(7.14),

without the bk and b0 terms, and with div instead of divk.
As for the azimuthal component, we recall that it is regular. Indeed, at the

continuous level, Ek := Ek
θ belongs to H1

(k)(ω) ∩
⋄
H1

1(ω) = V 1
1(ω) ∩

⋄
H1

1(ω), and is

solution to (cf. (2.31)):

(7.16)
〈
Ëk, F

〉
+ak(Ek, F ) = −

(
J̇k | F

)
+ik

(
̺k

r

∣∣∣ F

)
, ∀F ∈ V 1

1(ω)∩
⋄
H1

1(ω).

This is a wave-like equation whose strong form writes:

∂2
t Ek − ∆1E

k + (k2/r2)Ek = −∂tJ
k + (ik/r) ̺k ;

its numerical solution by nodal finite elements is no difficulty. The azimuthal com-
ponents of fields in Xh

(k) belong to

V h
◦ =

{
wh ∈ C0(ω)3 : vh|T ∈ Pκ(T ), ∀T ∈ Th, and vh|∂ω = 0

}
.

Taking an azimuthal test function in (4.3), we arrive at the following formulation:

∂2
τ

(
Ek;n

h | Fh

)
+ ak(Ek;n

h , Fh) = −
(
∂τJk;n

⋆ | Fh

)
+ ik

(
̺k;n

⋆

r

∣∣∣ Fh

)
∀Fh ∈ V h

◦ .

Finally, we show that the overall cost of the method can be slightly reduced, as

in [19, 20], by setting κk;n
e;h := 0 for |k| large enough, i.e., setting Ek;n

h := E
k;n
reg;h,
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where Ek;n
reg;h is the solution to the mixed augmented problem:

Find (Ek;n
reg;h, P k;n

h ) ∈ X
reg;h
(k) × Qh such that, for all (F h, qh) ∈ X

reg;h
(k) × Qh:

∂2
τ

(
E

k;n
reg;h | F h

)
+ ak

(
E

k;n
reg;h,F h

)
+ bk

(
F h, P k;n

h

)
(7.17)

= −
(
∂τJ

k;n
⋆ | F h

)
+
(
̺k;n

⋆ | divk F h

)
,

bk

(
E

k;n
reg;h, qh

)
=
(
̺k;n

⋆ | qh

)
,(7.18)

or of the similar explicit centred or non-mixed versions.

To see that this can be done without deteriorating the convergence rate, we

remark that |κk;n
e;h | . |λk;n

e;h |, where λk;n
e;h is the singularity coefficient of Ek;n

h defined

as in (5.5). Then, using (5.7) and (7.12), we bound:

‖Ek;n
h −Ek;n

reg;h‖2
X,(k) .

∑∣∣∣κk;n
e;h

∣∣∣
2

‖x2,e;h
S⊥ ‖2

X,(k)

.
∑

|k|2αe−2 ‖Ek;n
h ‖2

X,(k)

[
1 + (k2 − 4) ‖x2,e;h

S⊥ ‖2
0,−1

]

. |k|2α⋆ ‖Ek;n‖2
X,(k),

where α⋆ = maxe{αe < 1} (the maximum runs over reentrant edges). The squared
error of the SCM is controlled by h2s−2 |k|2q, where q = s in the non-mixed case
and q = 1+ s in the mixed case, if one recalls the required regularity of the electric
field in Theorem 6.9. Thus, one can neglect the singular part provided that

|k|α⋆

. hs−1 |k|q, i.e. |k| ≥ C⋆ h− s−1
q−α⋆ , for some constant C⋆.

As α⋆ < 1, we see that the exponent of h, viz. − s−1
q−α⋆ , is always less than 1 in

absolute value.
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Appl. Sci. 22, 243–258 (1999).
27. M. Costabel, M. Dauge. Weighted regularization of Maxwell equations in polyhedral do-

mains. A rehabilitation of nodal finite elements. Numer. Math. 93, 239–277 (2002).
28. M. Costabel, M. Dauge. Computation of resonance frequencies for Maxwell equations in

non smooth domains. In Computational Methods for Wave Propagation in Direct Scattering,
Lecture Notes in Comp. Sc. and Eng. 31, Springer, Berlin, 2003.

29. M. Costabel, M. Dauge, S. Nicaise. Singularities of Maxwell interface problems.
Modél. Math. Anal. Num. 33, 627–649 (1999).

30. M. Dauge, M. Pogu. Existence et régularité de la fonction potentiel pour des écoulements
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41. J.-C. Nédélec. Mixed finite elements in R

3, Numer. Math. 35, pp. 315-341 (1980).
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