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NUMERICAL SOLUTION OF MAXWELL’S EQUATIONS IN

AXISYMMETRIC DOMAINS WITH THE FOURIER SINGULAR

COMPLEMENT METHOD

PATRICK CIARLET, JR. AND SIMON LABRUNIE

Abstract. We present an efficient method for computing numerically the so-
lution to the time-dependent Maxwell equations in an axisymmetric domain,
with arbitrary (not necessarily axisymmetric) data. The method is an exten-
sion of those introduced in [22] for Poisson’s equation, and in [4] for Maxwell’s
equations in the fully axisymmetric setting (i.e., when the data is also axisym-
metric). It is based on a Fourier expansion in the azimuthal direction, and
on an improved variant of the Singular Complement Method in the meridian
section. Thus, it can take into account the lack of regularity of the solution
when the domain features non-convex edges or vertices. Moreover, it can han-
dle noisy or approximate data which fail to satisfy the continuity equation,
by using either an elliptic correction method or a mixed formulation. We
give complete convergence analyses for both mixed and non-mixed formula-
tions. Neither refinements near the reentrant edges or vertices of the domain,
nor cut-off functions are required to achieve the desired convergence order in
terms of the mesh size, the time step and the number of Fourier modes used.

1. Introduction

There exist many methods to compute numerically the solution to Maxwell’s
equations. Among those methods, let us mention the edge finite element method,
introduced by Nédélec [37, 38]. This method proved very efficient for the static,
harmonic and eigenvalue problems related to Maxwell’s equations. To improve the
flexibility of the discretization, a discontinuous Galerkin method has been recently
introduced [33]. On the other hand, it is interesting for some applications to have
a continuous approximation of the electromagnetic field. In particular, it allows
to reduce the numerical noise, when the Maxwell solver is embedded in a time-
dependent Vlasov–Maxwell code. This is the method earlier introduced by Heintzé
et al. [6]. But the latter worked only in convex (curvilinear) polyhedra.

However, three-dimensional computations can be very expensive. In a number
of cases, one reduces the problem to two-dimensional equations by assuming that
the geometry is invariant by translation or by rotation. If in addition the data are
also invariant, then the problem can be further reduced to a single two-dimensional
problem (cf. [5, 4, 25]). When this is not the case, one has to consider a series
of two-dimensional problems, obtained by Fourier analysis. This approach, called
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the Fourier–Finite Element Method (FFEM), was initiated by Mercier–Raugel [35]
for elliptic problems. More recent developments include the works of Heinrich et
al. [31, 32], which relied on mesh refinement techniques, and also by the authors
and co-workers [21, 22], which relied on the Singular Complement Method (SCM).
Both techniques allow one to improve the convergence rate of the method. Recall
briefly the principle of the SCM: the space of solutions V is split with respect to
regularity in a regular subspace VR and a singular one VS , namely V = VR ⊕ VS .
When the domain is regular, i.e., convex or with a smooth boundary, there is no
singularity in the solutions of the Poisson or Maxwell equations, so that VS = {0}
and VR = V , and no singular complement is required. When this is not the case,
one enlarges the discrete space by adding some approximation of a singular field.
Combining this method with the Fourier analysis in the third dimension leads to
the so-called Fourier–Singular Complement Method (FSCM).

As it is well-known, when solving Maxwell’s equations in a non-convex and non-
smooth domain, with a continuous and conforming discretization, the discretized
spaces are always included in a closed, strict subspace VR of V . In other words,
one cannot hope to approximate the part of the field which belongs to VS [19]. In
particular, mesh refinement techniques fail. The SCM addresses this problem by
explicitly adding some singular complements. An alternative is the Weighted Regu-
larization Method of Costabel–Dauge [28], which recovers density of the discretized
spaces by measuring the electromagnetic fields in appropriately weighted Sobolev
spaces.

In this article, we extend the FSCM to the solution of Maxwell’s equations in an
axisymmetric domain with arbitrary data. Our analysis treats the non-singular case
(VS = {0}) as a limiting case. This specific instance of the FFEM will be referred to
as the Fourier–Usual Nodal Finite Element Method (FUNFEM). Also, the FSCM
will be applied to a generalized version of Maxwell’s equations, introduced in [7] and
analyzed in [23] in a different geometrical setting. Among others, one can handle
data which do not satisfy the continuity equation. This is especially useful when
the Maxwell solver is embedded in a Vlasov–Maxwell code.

The outline of the article is as follows. In section 2, we present the geometrical
setting, the various versions of the Maxwell equations which we study, as well as
the variational formulations in three dimensions and two dimensions. Then, in
section 3, we analyze the impact of the numerical Fourier analysis and truncation.
Next, in section 4, we provide mode-wise, abstract (method-independent) error
estimates. Section 5 describes the singularities of electromagnetic fields, and the
theoretical foundations of the (F)SCM. Practical approximation results are then
obtained in section 6. Section 7 discusses a possible implementation of the FSCM.

2. Equations and dimension reduction

2.1. Geometric setting and notations. In this article, we consider an axisym-
metric domain Ω, generated by the rotation of a polygon ω around one of its sides,
denoted γa. The boundary of ω is thus ∂ω = γa ∪ γb, where γb generates the
boundary Γ of Ω. We assume for simplicity that the domain Ω is simply connected,
with a connected boundary. The natural cylindrical coordinates will be denoted
by (r, θ, z). The geometrical singularities that may occur on Γ are circular edges
and conical vertices, which correspond respectively to off-axis corners of γb and to



FOURIER SINGULAR COMPLEMENT METHOD FOR MAXWELL 3

its extremities. Figure 1 precises the various notations associated to these singu-
larities; a more complete description of the geometry of ω can be found in [2, 3].
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Figure 1. Notations for the geometrical singularities; e: reentrant
edge; c: conical vertex.

As we know from these references, the initial- and boundary-value problems
associated with the (static or time-dependent) Maxwell equations will be singular,
i.e. their solution will generically not be in H1(Ω) — as it would be the case in
a regular1 domain — iff there are reentrant edges or sharp vertices in Γ. Sharp
vertices are defined by the condition (see Figure 1):

(2.1) νc <
1

2
, where: νc := min

{
ν > 0 : Pν

(
cos

π

βc

)
= 0

}
,

and Pν denotes the Legendre function. This is satisfied iff π/βc > π/β⋆ ≃ 130◦48′.

We define the comparison operators . and ≈ as follows. a . b means a ≤ C b,
where C is a constant which depends only on the geometry, and not on the mesh
size h, the Fourier order k, or the data of the Maxwell problem. a ≈ b denotes the
conjunction of a . b and b . a.

2.2. Three-dimensional equations. We start from the classical Maxwell equa-
tions in vacuum:

∂E

∂t
− c2 curlB = − J

ε0
,

∂B

∂t
+ curlE = 0,

divE =
̺

ε0
,

divB = 0.

1Recall that a domain is regular if it is convex or if its boundary belongs to C1,1.
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Let n denote the unit outward normal vector to the boundary, and assume that the
domain in which we solve Maxwell’s equations is surrounded by a perfect conductor,
which imposes,

(2.2) E × n = 0 and B · n = 0 on Γ.

The initial condition is simply

(2.3) (E,B)|t=0 = (E0,B0),

for some given data (E0,B0). A necessary condition for these equations to be
well-posed is the continuity equation

(2.4) divJ +
∂̺

∂t
= 0.

Remark 2.1. One can extend our results to the case of composite materials (see [15]
for the treatment of singularities at the interfaces), or impose a Silver-Müller ab-
sorbing boundary condition on a part of the boundary. For the latter, see for
instance [5, 4, 11].

In order to develop efficient finite element methods, it is preferable to use equiva-
lent second order formulations. Eliminating E and B between the evolution equa-
tions, one finds that the electric and magnetic fields satisfy the following vector
wave equations

∂2E

∂t2
+ c2 curl curlE = − 1

ε0

∂J

∂t
,(2.5)

∂2B

∂t2
+ c2 curl curlB =

1

ε0
curlJ .(2.6)

The constraint equations (divergence and boundary conditions) still hold; moreover,
one has to supply the second-order problem with initial conditions for the time
derivatives:

∂E

∂t |t=0
= E1, where E1 = c2 curlB0 −

1

ε0
J |t=0,(2.7)

∂B

∂t |t=0
= B1, where B1 = − curlE0,(2.8)

and the extra boundary condition for the magnetic field:
(

c2 curlB − 1

ε0
J

)
× n = 0.

As they only involve the curl operator, the equations (2.5) and (2.6) are adapted
to discretisations by edge elements [24, 36]. If one wishes to use nodal finite elements
— which are generally more efficient for charged particle simulations, especially
Vlasov–Maxwell computations — one has to add terms related to the divergence
of the fields [6, 5, 4], yielding the “augmented” formulations:

∂2E

∂t2
+ c2 (curl curlE − grad divE) = − 1

ε0

∂J

∂t
− c2

ε0
grad ̺,(2.9)

∂2B

∂t2
+ c2 (curl curlB − grad divB) =

1

ε0
curlJ .(2.10)

Remark 2.2. In the time-harmonic regime, the addition of grad div terms is usually
called “regularization”, see among others [14, 27, 28, 16].
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If one wants the divergence constraints to be explicitly preserved in time, even
though the data may not satisfy exactly (a discrete version of) the continuity equa-
tion (2.4), one can use “mixed” or saddle-point formulations. Here are the mixed
augmented versions:

∂2E

∂t2
+ c2 (curl curlE − grad divE) + gradPE(2.11)

= − 1

ε0

∂J

∂t
− c2

ε0
grad ̺,

divE =
̺

ε0
;(2.12)

∂2B

∂t2
+ c2 (curl curlB − grad divB) + grad PB =

1

ε0
curlJ ,(2.13)

divB = 0.(2.14)

The mixed unaugmented versions simply lack the grad div terms. Setting P =
−c2 ∂tp, one obtains a formulation with elliptic correction which does not have a
saddle-point structure, but actually is a non-mixed formulation with a modified
right-hand side devised to take into account the lack of charge conservation. It can
be studied much like the formulations (2.5,2.6) or (2.9,2.10), with ad hoc hypothe-
ses [23].

In the sequel, we shall concentrate on the various formulations for the electric
field, and mention by the way the adaptations for the magnetic field. For the sake
of simplicity, we also set c = ε0 = 1.

2.3. Variational formulations in 3D. Consider L2(Ω) the Lebesgue space of
measurable and square integrable functions over Ω, with (· | ·) and ‖ · ‖0 its associ-
ated scalar product and norm, Hs(Ω) the scale of Sobolev spaces, for s ∈ R, and
◦
H1(Ω) the subspace of H1(Ω) made of elements with a vanishing trace on Γ = ∂Ω.
From now on, we adopt the notations L2(Ω) = L2(Ω)3, Hs(Ω) = Hs(Ω)3 and
Hs(Ω) :=

⋂
σ<s Hσ(Ω).

The electric field naturally belongs to the Sobolev space H0(curl; Ω), where

H(curl; Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)} ,

H0(curl; Ω) := {v ∈ H(curl; Ω) : v × n|Γ = 0}.
When considering augmented formulations, we shall use the Sobolev space

H(div; Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)}.
This leads to an augmented formulation for the electric field, as described in Assous
et al. [6], in the functional space

X(Ω) := H0(curl; Ω) ∩ H(div; Ω).

This space is compactly embedded in L2(Ω) [39]. As a consequence, when Γ is
connected, one can define an equivalent scalar product and norm on X(Ω), as

aW (u,v) := (curlu | curl v) + (divu | div v), ‖u‖X := aW (u,u)1/2.

In other words, the L2-norm is uniformly bounded by the X-norm for elements of
X(Ω): this is the so-called Weber inequality.
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In [23] we noticed that the various formulations of the vector wave equation
satisfied by the electric field can be recast in the abstract form:
Find E ∈ H1(0, T ; H) ∩ L2(0, T ; V ) such that

(2.15)
d2

dt2
(E(t) | F )H + a(E(t),F ) = (ψ(t) | F )H , ∀F ∈ V.

In this article, we shall always assume that ψ belongs to L2(0, T ; H), so the above
equation admits a unique solution E ∈ C0(0, T ; V ) ∩ C1(0, T ; H) ∩ H2(0, T ; V ′) by
the Lions variational theory [34]. More specifically:

• The plain VF corresponds to H = L2(Ω), V = H0(curl; Ω), a(u,v) =
apl(u,v) := (curlu | curl v), ψ = −∂tJ . It is well posed if J ∈ H1(0, T ;L2(Ω)).

• The augmented VF is given by H = L2(Ω), V = X(Ω), a(u,v) = aW (u,v),
and (ψ | v)H = −(∂tJ | v) + (̺ | div v), i.e., ψ := −∂tJ − grad ̺. It is

well posed if, e.g., J ∈ H1(0, T ;L2(Ω)) and ̺ ∈ L2(0, T ;
◦
H1(Ω)).

Here and in the sequel, the notation (· | ·), without any subscript, refers to the scalar
product in L2(Ω) or L2(Ω), or in the trace of these spaces in a meridian half-plane
(see §2.4). As far as the magnetic field is concerned, it is worth noting that the
formulations (2.6) and (2.10) do not belong in the framework of the Lions theory.
Moreover, some underlying integration by parts and certain traces considered are
not justified a priori. The well-posedness can be proved by following [10].

As for the mixed formulations, they are given as:
Find E ∈ H1(0, T ; H) ∩ L2(0, T ; V ) and P ∈ L2(0, T ; Q) such that

d2

dt2
(E(t) | F )H + a(E(t),F ) + b(F , P (t)) = (ψ(t) | F )H , ∀F ∈ V,(2.16)

b(E(t), q) = Q′〈̺(t), q〉Q, ∀q ∈ Q.(2.17)

Namely:

• In the mixed unaugmented VF: H, V, a = apl, ψ are the same as in the

plain formulation, while Q =
◦
H1(Ω) and b(v, q) = bpl(v, q) :=

−(v | grad q).
• In the mixed augmented VF: H, V, a = aW , ψ are the same as in the

augmented formulation, Q = L2(Ω) and b(v, q) = bW (v, q) := (q | div v).

As remarked in [23], the well-posedness result proved in [18, 7] for the mixed unaug-
mented formulation can be easily generalised to the mixed augmented cases. Above,
we recalled the unaugmented, or “usual”, variational formulations for illustrative
purposes. However, in the sequel, we will focus on the augmented formulations.

We complete this paragraph with a simple, but useful continuity result.

Proposition 2.3. Assume that J ∈ Hm+1(0, T ;L2(Ω)) and ̺ ∈ Hm(0, T ;
◦
H1(Ω)),

for some m ∈ N. Then the solution to the augmented formulation has the regularity
E ∈ Cm(0, T ;X(Ω)) ∩ Cm+1(0, T ;L2(Ω)), and satisfies the continuity estimate:

(2.18) ‖∂m+1
t E(t)‖0 + ‖∂m

t E(t)‖X . ‖J‖Hm+1(0,t;L2(Ω)) + ‖̺‖Hm(0,t;
◦

H1(Ω)).

Similarly, if J ∈ Hm+1(0, T ;L2(Ω)) and ̺ ∈ Cm(0, T ; L2(Ω))∩Hm+2(0, T ; H−1(Ω)),
then the solution to the mixed augmented formulation has the regularity E ∈ Cm(0, T ;X(Ω))∩
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Cm+1(0, T ;L2(Ω)), P ∈ Cm(0, T ; L2(Ω)), with the continuity estimate:

(2.19)
‖∂m+1

t E(t)‖0 + ‖∂m
t E(t)‖X + ‖∂m

t P (t)‖0

. ‖J‖Hm+1(0,t;L2(Ω)) + ‖̺‖Cm(0,t;L2(Ω))∩Hm+2(0,t;H−1(Ω)).

Proof. If m = 0, these are the classical well-posedness results, see [34, 18, 7]. In the
general case, the above assumptions ensure that the variational formulations are
well-posed with J and ̺ replaced with ∂m

t J and ∂m
t ̺; therefore, they have a unique

solution satisfying the classical continuity estimate. Yet, this solution satisfies the
same equations (in the sense of distributions) as ∂m

t E or (∂m
t E, ∂m

t P ); we conclude
by the uniqueness of the temperate solution to a linear equation. �

2.4. Functional spaces in 2D. The scalar and vector fields defined on Ω will be
characterised through their Fourier series in θ, the coefficients of which are functions
defined on ω, viz.

w(r, θ, z) =
1√
2π

∑

k∈Z

wk(r, z) eikθ, resp. w(r, θ, z) =
1√
2π

∑

k∈Z

wk(r, z) eikθ,

and the truncated Fourier expansion of w at order N is:

(2.20) w[N ](r, θ, z) =
1√
2π

N∑

k=−N

wk(r, z) eikθ.

The regularity of the function w (resp. w) in the scale Hs(Ω) (resp. Hs(Ω))
can be characterised by that of the (wk)k∈Z (resp. the cylindrical components of
the (wk)k∈Z: wk = wk

r er + wk
θeθ + wk

zez) in certain spaces of functions defined
over ω [12, §§II.1 to II.3], namely:

w ∈ Hs(Ω), s ≥ 0 ⇐⇒ ∀k ∈ Z, wk ∈ Hs
(k)(ω),

w ∈ Hs(Ω), s ≥ 0 ⇐⇒ ∀k ∈ Z, wk ∈ Hs
(k)(ω),

where the Hs
(k)(ω) and Hs

(k)(ω) are defined in turn with the help of two different

types of weighted Sobolev spaces. We shall now give these definitions for the values
of s and k chiefly needed in this article. The notations for the various spaces are
the same as in [12], where the interested reader can find the proofs and the most
general versions of the subsequent statements.

First, for any τ ∈ R we consider the weighted Lebesgue space

L2
τ (ω) :=

{
w measurable on ω :

∫∫

ω

|w(r, z)|2 rτ dr dz < ∞
}

.

This space, as well as all the spaces introduced in this article, is a Hermitian space
of functions with complex values. The scale (Hs

τ (ω))s≥0 is the canonical Sobolev

scale built upon L2
τ (ω), defined for s ∈ N as:

Hs
τ (ω) :=

{
w ∈ L2

τ (ω) : ∂ℓ
r∂

m
z w ∈ L2

τ (ω), ∀ℓ, m s.t. 0 ≤ ℓ + m ≤ s
}

,

and by interpolation for s /∈ N. We denote by ‖ · ‖s,τ and | · |s,τ the canonical norm

and semi-norm of Hs
τ (ω). We also define the subspace

⋄
H1

1(ω) of functions which
vanish on γb: it is involved in the definition of the Fourier coefficients of functions

in
◦
H1(Ω).
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A prominent role will be played by L2
1(ω), which appears to be the space of

Fourier coefficients (at all modes) of functions in L2(Ω); thus its scalar product is
also denoted (· | ·). Upon this space, we build another, dimensionally homogeneous
Sobolev scale (V s

1(ω))s≥0, defined as:

V s
1(ω) :=

{
w ∈ Hs

1(ω) : rℓ+m−s ∂ℓ
r∂

m
z w ∈ L2

1(ω), ∀ℓ, m s.t. 0 ≤ ℓ + m ≤ ⌊s⌋
}

,

where ⌊s⌋ denotes the integral part of s. One can check that the general definition
reduces to

V s
1(ω) =

{
w ∈ Hs

1(ω) : ∂j
rw
∣∣
γa

= 0, for 0 ≤ j < s − 1
}

,

when s is not an integer; while for the first values of s ∈ N, we have:

V 0
1(ω) = L2

1(ω), V 1
1(ω) = H1

1(ω) ∩ L2
−1(ω), V 2

1(ω) = H2
1(ω) ∩ H1

−1(ω).

The canonical norm of V s
1(ω) is denoted by ||| · |||s,1; it is equivalent to | · |s,1 except

for s ∈ N
∗.

We are now ready to define the most useful spaces of Fourier coefficients.

Proposition 2.4. The spaces Hs
(k)(ω), for s ∈ [0, 2], are characterised as follows.

∀s ∈ [0, 1) :Hs
(k)(ω) = Hs

1(ω), ∀k ;

∀s ∈ [1, 2) :Hs
(0)(ω) = Hs

1(ω),

Hs
(k)(ω) = V s

1(ω), ∀|k| ≥ 1 ;

s = 2 : H2
(0)(ω) =

{
w ∈ H2

1(ω) : ∂rw ∈ L2
−1(ω)

}
,

H2
(±1)(ω) =

{
w ∈ H2

1(ω) : w|γa
= 0
}

,

H2
(k)(ω) = V 2

1(ω), ∀|k| ≥ 2.

Remark 2.5. The scales Hs
1(ω), V s

1(ω), and Hs
(k)(ω) (for any k) can be extended

to negative values of the exponent s, by the usual duality procedure with respect
to the pivot space, which is L2

1(ω) in all cases.

Proposition 2.6. The spaces Hs
(k)(ω), for 0 ≤ s < 2, are characterised as follows.

s = 0 : H0
(k)(ω) = L2

1(ω) := L2
1(ω)3, ∀k ;

∀s ∈ (0, 1) :Hs
(k)(ω) = Hs

1(ω)3, ∀k ;

s = 1 : H1
(0)(ω) = V 1

1(ω) × V 1
1(ω) × H1

1(ω),

H1
(±1)(ω) =

{
(wr, wθ, wz) ∈ H1

1(ω) × H1
1(ω) × V 1

1(ω) : wr ± i wθ ∈ L2
−1(ω)

}
,

H1
(k)(ω) = V 1

1(ω)3, ∀|k| ≥ 2 ;

∀s ∈ (1, 2) :Hs
(0)(ω) = V s

1(ω) × V s
1(ω) × Hs

1(ω),

Hs
(±1)(ω) =

{
(wr, wθ, wz) ∈ Hs

1(ω) × Hs
1(ω) × V s

1(ω) : wr ± i wθ|γa
= 0
}

,

Hs
(k)(ω) = V s

1(ω)3, ∀|k| ≥ 2.

For |k| < s, the space Hs
(k)(ω) is endowed with the natural norm ‖ · ‖s,(k) given by

the above definition, while for |k| ≥ s the canonical norm is:

(2.21) ‖w‖2
s,(k) = ‖w‖2

s,1 + |k|2s ‖r−sw‖2
0,1.
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With this definition, there holds the equivalence of norms:

‖w‖2
Hs(Ω) ≈

∑

k∈Z

‖wk‖2
s,(k) .

Remark 2.7. In order to take account of the conditions on γa for the modes k = ±1,
we shall sometimes use the following representation for the vector fields in Hs

(±1)(ω):

w = w+ e+ + w− e− + wz ez, with w± = 1√
2

(wr ∓ i wθ) and e± = 1√
2

(er ± i eθ).

Thus, w ∈ H1
(1)(ω) has a component w+ on γa, while w− vanishes in a weak

sense [2, Proposition 3.18]; and conversely for w ∈ H1
(−1)(ω).

Let us now examine the space of relevant Fourier coefficients for the electromag-
netic fields. One easily checks that for w ∈ H1(Ω), resp. w ∈ L2(Ω) such that
∆w ∈ L2(Ω), there holds:

gradw =
1√
2π

∑

k∈Z

gradk wk eikθ, resp. ∆w =
1√
2π

∑

k∈Z

∆k wk eikθ,

while for w ∈ H(div ; Ω), resp. H(curl; Ω):

divw =
1√
2π

∑

k∈Z

divkw
k eikθ, resp. curlw =

1√
2π

∑

k∈Z

curlkw
k eikθ.

Above, the operators for the mode k are defined as:

gradk w :=
∂w

∂r
er +

ik

r
w eθ +

∂w

∂z
ez ; ∆k w :=

1

r

∂

∂r

(
r

∂w

∂r

)
− k2

r2
w +

∂2w

∂z2
;

divkw :=
1

r

∂(r wr)

∂r
+

ik

r
wθ +

∂wz

∂z
; (curlkw)r :=

ik

r
wz − ∂wθ

∂z
;

(curlkw)θ :=
∂wr

∂z
− ∂wz

∂r
; (curlkw)z :=

1

r

(
∂(r wθ)

∂r
− ik wr

)
.

As an immediate consequence, we have the following characterisation.

Proposition 2.8. The field u ∈ X(Ω) iff, for any k ∈ Z, its Fourier coefficient
uk ∈ X(k)(ω), where:

X(k)(ω) :=
{
v ∈ L2

1(ω) : curlk v ∈ L2
1(ω) and divk v ∈ L2

1(ω) and v × n|γb
= 0
}

.

This space is endowed with the canonical norm ‖v‖2
X,(k) := ‖curlk v‖2

0,1+‖divk v‖2
0,1;

so one has: ‖v‖2
X

=
∑

k∈Z
‖v‖2

X,(k).

Similar results hold for the magnetic boundary condition.

These spaces enjoy an important property.

Proposition 2.9. The space X(k)(ω) is invariant for |k| ≥ 2.

Proof. This stems from the fundamental result by Birman and Solomyak [13]:
X(Ω) = Xreg(Ω) + gradΦ(Ω), where Xreg(Ω) = X(Ω) ∩ H1(Ω) and

Φ(Ω) =

{
ϕ ∈

◦
H1(Ω) : ∆ϕ ∈ L2(Ω)

}
. For the mode k, this implies:

X(k)(ω) = X
reg
(k)(ω) + gradk Φ(k)(ω), where:(2.22)

X
reg
(k)(ω) =

{
u ∈ H1

(k)(ω) : u× n|γb
= 0
}

and(2.23)

Φ(k)(ω) =

{
ϕ ∈ H1

(k)(ω) ∩
⋄
H1

1(ω) : ∆kϕ ∈ L2
1(ω)

}
.(2.24)
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By Proposition 2.6 we know that the space H1
(k)(ω) is invariant for |k| ≥ 2. The

same holds for Φ(k)(ω), as a consequence of [22, Thm 3.2]. This theorem also

shows that any ϕ ∈ Φ(k)(ω) is of V 2
1 regularity near the axis γa. Therefore, the

azimuthal or θ-component of gradk ϕ, which is (ik/r)ϕ, is locally of V 1
1 regularity.

Elsewhere, this function is of H1 regularity and vanishes on γb. All together, we
see that the vector field (ik/r)ϕ eθ belongs to the regular space X

reg
(k)(ω). Thus,

the azimuthal component of the space gradk Φ(k)(ω) is included in X
reg
(k)(ω), which

does not depend on k.
On the other hand, the meridian (r, z) components of the operator gradk are

also independent of k; as Φ(k)(ω) is invariant, we see that the meridian components
of the space gradk Φ(k)(ω) are also invariant. Hence the conclusion. �

Moreover, combining the decomposition (2.22) with the description of primal
singularities of the Laplacian ∆k in [12, §II.4], one characterises the regularity of
these spaces in the Sobolev scale.

Theorem 2.10. The following statements hold true. (See Figure 1 and Eq. (2.1)
for the meaning of αe and νc.)

(1) The elements of X(k)(ω) are locally regular, i.e. H1
(k), except in the neigh-

bourhood of the reentrant edges and, for k = 0, of the sharp vertices.
(2) The space X(0)(ω) is continuously embedded in Hs

(0)(ω) for s < sM :=

min{αe : e reentrant edge ; νc + 1
2 : c sharp vertex}.

(3) The space X(k)(ω), |k| ≥ 1 is continuously embedded in Hs
(k)(ω) for s <

αmin := min{αe : e reentrant edge}.
(4) Consequently, X(Ω) is continuously embedded in Hs(Ω) for s < sM . The

bound is sharp.

The Birman–Solomyak decomposition also holds with the magnetic boundary
condition. In this case, there are no singularities in the vicinity of conical vertices,
whatever their aperture [3, 29]; hence, the space is continuously embedded in Hs(Ω)
for s < αmin.

2.5. Dimension reduction. The linearity of Equations (2.15) or (2.16–2.17), to-
gether with the orthogonality of the different Fourier modes in L2(Ω), implies that

the Fourier coefficients (Ek,Bk) of E and B are solutions to similar formulations,
with the operators curlk and divk . Namely, let us define:

ak;pl(u,v) = (curlk u | curlk v) ; bk;pl(v, q) = −(v | gradk q) ;(2.25)

ak;W (u,v) = (curlk u | curlk v) + (divk u | divk v) ;(2.26)

bk;W (v, q) = (divk v | q).

Then, we have the non-mixed formulations:
Find Ek ∈ V(k)(ω) such that, for all F ∈ V(k)(ω):

(2.27)
d2

dt2
(Ek(t) | F ) + ak(Ek(t),F ) = (ψk(t) | F ).
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And the mixed formulation reads:
Find (Ek, P k) ∈ V(k)(ω) × Q(k)(ω) such that, for all (F , q) ∈ V(k)(ω) × Q(k)(ω):

d2

dt2
(Ek(t) | F ) + ak(Ek(t),F ) + bk(F , P k(t)) = (ψk(t) | F ),(2.28)

bk(Ek(t), q) = Q′

(k)
〈̺k(t), q〉Q(k)

.(2.29)

Remark 2.11. Alternatively, the function (r, θ, z) 7→ Ek(r, z) eikθ (defined in Ω)

appears as the solution to (2.5) or (2.9) with single-mode sources Jk(r, z) eikθ and

̺k(r, z) eikθ. The same holds for (r, θ, z) 7→ (Ek(r, z) eikθ, P k(r, z) eikθ) as a solution
to (2.11–2.12). This allows to transpose directly many known results from the three-
dimensional framework to that of the weighted spaces adapted to each mode.

From now on, we only study the augmented formulations, and we drop the
subscript W in aW , bW , ak;W and bk;W .

3. Analysis of the truncation error of the Fourier expansion

In order to evaluate this error, we introduce (as usual) the following scales of
anisotropic Sobolev spaces.

Definition 3.1. Let W (Ω) be any Hilbert space of functions defined in Ω, and
s ≥ 0. The space Hs,W (Ω) is defined:

• when s is an integer, as the space of functions in W (Ω) such that all their
partial derivatives in θ, up to order s, belong to W (Ω);

• otherwise, by appropriate interpolation between H⌊s⌋,W (Ω) and H⌊s⌋+1,W (Ω).

In both cases, Hs,W (Ω) is a Hilbert space for its canonical norm. For the sake of
simplicity, we shall denote Hm,s(Ω) := Hs,Hm

(Ω) and Hm,s(Ω) := Hs,Hm

(Ω) when
W (Ω) = Hm(Ω) or Hm(Ω).

It is standard matter to check (see e.g. [17, Thm 1.1]) the following results.

Lemma 3.2. Let (W(k)(ω))k∈Z be the spaces of Fourier coefficients of functions

in W (Ω); their norms can be chosen such as to have: ‖w‖2
W (Ω) ≈

∑
k∈Z

‖wk‖2
W(k)(ω).

Then, the following equivalence of norms holds:

(3.1) ∀w ∈ Hs,W (Ω), ‖w‖2
Hs,W (Ω) ≈

∑

k∈Z

(1 + |k|2s) ‖wk‖2
W(k)(ω),

from which one deduces the truncation estimate

(3.2) ∀w ∈ Hs,W (Ω), ∀N ≥ 1,
∥∥∥w − w[N ]

∥∥∥
2

W (Ω)
. N−2s ‖w‖2

Hs,W (Ω),

for the truncated Fourier expansion w[N ] defined in (2.20).

The next Proposition is an immediate consequence of the above Lemma.

Proposition 3.3. Assume that the electric field has the regularity E ∈ C0(0, T ; Hσ,X(Ω))∩
C1(0, T ;H0,σ(Ω)), for some σ ≥ 0. There holds:

∀t ∈ [0, T ], ‖Ė[N ]
(t) − Ė(t)‖2

0 + ‖E[N ](t) −E(t)‖2
X

.

N−2σ
{
‖Ė(t)‖2

H0,σ(Ω) + ‖E(t)‖2
Hσ,X(Ω)

}
,(3.3)

for any fixed integer N ≥ 2.
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It is worth noting that such a regularity in θ for the solution to Maxwell’s equa-
tions can follow from a similar regularity assumption for the data: roughly speaking,
the direction θ is orthogonal to the singularities and “does not see them”.

Proposition 3.4. Assume that, for some m ∈ N and σ > 0, the data satisfy

J ∈ Hm+1(0, T ;H0,σ(Ω)), ̺ ∈ Hm(0, T ;
◦
H1,σ(Ω)) in the augmented formulation,

̺ ∈ Cm(0, T ; H0,σ(Ω))∩Hm+2(0, T ; H−1,σ(Ω)) in the mixed augmented formulation.
Then, the electric field has the regularity Cm(0, T ; Hσ,X(Ω))∩Cm+1(0, T ;H0,σ(Ω)),
with continuous dependence.

Proof. We examine the case m = 0; the general case can be deduced by combining
the following ideas with those of Proposition 2.3. By Remark 2.11, we can write
the continuity estimate for the solution to (2.27):

‖Ėk
(t)‖2

0,1+‖Ek(t)‖2
X,(k) . ‖ψk‖2

L2(0,t;L2
1(ω)) . ‖Jk‖2

H1(0,t;L2
1(ω))+‖̺k‖2

L2(0,t;
◦

H1
(k)(ω)).

Then, we multiply this bound by (1 + |k|2σ), and add the bounds for the values
k = −N to N :

N∑

k=−N

(1 + |k|2σ)
{
‖Ėk

(t)‖2
0,1 + ‖Ek(t)‖2

X,(k)

}

.

N∑

k=−N

(1 + |k|2σ)
{
‖Jk‖2

H1(0,t;L2
1(ω)) + ‖̺k‖2

L2(0,t;
◦

H1
(k)(ω))

}

If J ∈ H1(0, t;H0,σ(Ω)) and ̺ ∈ L2(0, t;
◦
H1,σ(Ω)), then the right-hand side is

bounded by the squared norms of J and ̺ in these spaces when N → ∞, ac-
cording to Lemma 3.2. Thus, the same Lemma implies that Ė(t) ∈ H0,σ(Ω) and
E(t) ∈ Hσ,X(Ω), and that their squared norms are controlled by the aforemen-
tioned squared norms of J and ̺. Of course, the same reasoning holds for the
solution to (2.28,2.29). �

Before ending this section, it must be observed that in many practical situations
the Fourier coefficients ̺k and Jk cannot be computed exactly. So they have to be
approximated by quadrature formulas. Introducing the nodes θm := 2mπ/(2N+1),
for −N ≤ m ≤ N , we define the approximate Fourier coefficients and approximate
truncated expansion of the function w by the formulas:

wk
⋆(r, z) :=

√
2π

2N + 1

N∑

m=−N

w(r, θm, z) e−ikθm ;(3.4)

w
[N ]
⋆ (r, θ, z) :=

1√
2π

N∑

k=−N

wk
⋆ (r, z) eikθ.(3.5)

These approximate coefficients are the same as in [11, 9, 12]; however, we shall need
slightly more general approximation estimates than in those References.
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Proposition 3.5. Let s > t ≥ 0 such that s− t > 1
2 . The following estimates hold

for any w ∈ Hs,W (Ω):

‖w[N ]
⋆ − w[N ]‖2

W (Ω) . N−2s ‖w‖2
Hs,W (Ω) ;(3.6)

N∑

k=−N

(1 + |k|2t) ‖wk − wk
⋆‖2

W(k)(ω) . N−2(s−t) ‖w‖2
Hs,W (Ω).(3.7)

Proof. The first estimate is a particular case of the second; both rely on the
identity [17]: wk

⋆ =
∑

ℓ∈Z
wk+(2N+1) ℓ. One can easily adapt the proof of [12,

Proposition VI.4.1], remarking that only regularity in θ is involved; see also [17,
Thm 1.2]. �

The linearity of Maxwell’s equations and the previous Proposition imply the
following results.

Proposition 3.6. Let ̺k
⋆(t), Jk

⋆(t), Ek
⋆(t), P k

⋆ (t) and ̺
[N ]
⋆ (t), J [N ]

⋆ (t), E[N ]
⋆ (t), P

[N ]
⋆ (t)

be defined as in (3.4) and (3.5), at each instant t.

(1) Ek
⋆, respectively (Ek

⋆ , P k
⋆ ), is the solution to (2.27), resp. (2.28,2.29), with

data (̺k,Jk) replaced with (̺k
⋆ ,Jk

⋆).

(2) E[N ]
⋆ , respectively (E[N ]

⋆ , P
[N ]
⋆ ) is the solution to (2.15), resp. (2.16,2.17),

with data (̺,J) replaced with (̺
[N ]
⋆ ,J [N ]

⋆ ).
(3) Assuming E ∈ C0(0, T ; Hσ,X(Ω)) ∩ C1(0, T ;H0,σ(Ω)), for some σ > 1

2 , we
have:

∀t ∈ [0, T ], ‖Ė[N ]
(t) − Ė[N ]

⋆ (t)‖2
0 + ‖E[N ](t) −E[N ]

⋆ (t)‖2
X

.(3.8)

N−2σ
{
‖Ė(t)‖2

H0,σ(Ω) + ‖E(t)‖2
Hσ,X(Ω)

}
.

In the following Section, we shall examine the discretisation of the variational
formulations (2.27) and (2.28,2.29), with data (̺k

⋆ ,Jk
⋆).

4. Discretisations and abstract approximation results

4.1. General framework. The discretisation of the variational formulations for
each mode k, viz. (2.27) or (2.28–2.29) will follow the usual principles. We concen-
trate on the augmented formulations,2 and we suppose that we are given a family
of regular triangulations (Th)h>0 of the meridian domain ω. The space of electric
fields X(k)(ω) will be approached by nodal elements, complemented by singular
functions in the case of the SCM. Thus, for the UNFEM we use:

(4.1) X
h
(k) = X

reg;h
(k) :=

{
vh ∈ C0(ω)3 ∩ X(k)(ω) : vh|T ∈ Pκ(T )3, ∀T ∈ Th

}
,

seen as a subspace of X(k)(ω). Whereas, for the SCM, we use the space

(4.2) X
h
(k) = X

reg;h
(k) ⊕ X

sing;h
(k) ,

where the singular complement X
sing;h
(k) will be described in §§5.1 and 6.1.

2The unaugmented formulations could be discretised by a Fourier–Edge Element Method and
analysed by generalising the approaches of [24] and [25].
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The multiplier space Q = L2
1(ω) of the mixed formulation will be approached by

the space Qh, which will also be generated by nodal finite elements. We will always
choose the couple (Xh

(k), Qh) such as to satisfy the two usual requirements, namely,

the ellipticity of ak on the discrete kernel of bk, and a uniform (with respect to h)
discrete inf-sup condition. For the UNFEM and SCM, one can use Qh = Pκ−1,h,
the space of Pκ−1 finite elements seen as a subspace of L2(Ω). This amounts to
using the well-known Pκ − Pκ−1 Taylor–Hood finite element [30, pp. 176 ff.].

As for the time discretisation, one can consider either an explicit centred scheme,
which gives a higher-order approximation in time and is computationally very ef-
ficient when mass lumping is used, or a totally implicit scheme which is incondi-
tionally stable. The time mesh being defined by the instants tn = n τ , the value
of the field u at time tn is denoted un; for its k-th Fourier coefficient uk, we
shall write uk;n. If this field is defined in continuous time, its successive time
derivatives are denoted u̇k;n = ∂tu

k(tn), ük;n = ∂2
tu

k(tn), etc. The discrete
time derivatives of the field uk are given by: ∂τu

k;n := τ−1 (uk;n − uk;n−1), or
∂2τu

k;n := (2τ)−1 (uk;n − uk;n−2).

4.2. Fully discrete formulations. For the augmented formulations, the totally
implicit (TI) and explicit centred (EC) schemes read respectively:

Find Ek;n+1
h ∈ Xh

(k) such that, for all F h ∈ Xh
(k),

(∂2
τE

k;n+1
h | F h) + ak(Ek;n+1

h ,F h)(4.3)

= −(∂τJ
k;n+1
⋆ | F h) + (̺k;n+1

⋆ | divF h) ; (TI)

(∂2
τE

k;n+1
h | F h) + ak(Ek;n

h ,F h)(4.4)

= −(∂2τJ
k;n+1
⋆ | F h) + (̺k;n

⋆ | divF h). (EC)

If J is known at the instants tn+1/2, the derivative ∂2τJ
k;n+1
⋆ can be replaced by

∂τJ
k;n+1/2
⋆ , without changing the order of the scheme. These equations must be

supplemented with initial conditions; so one sets:

E
k;0
h = ΠhE

k
0 , E

k;1
h solution to:(4.5)

τ−2 (Ek;1
h −Ek;0

h − τ ΠhE
k
1 | F h) + ak(Ek;1

h − 1
2 E

k;0
h ,F h)(4.6)

= −(∂τJ
k;1
⋆ − 1

2∂τJ
k;0
⋆ | F h) + (̺k;1

⋆ − 1
2̺k;0

⋆ | divF h) ; (TI)

τ−2 (Ek;1
h −Ek;0

h − τ ΠhE
k
1 | F h) + ak(1

2 E
k;0
h ,F h)(4.7)

= −(1
2∂2τJ

k;1
⋆ | F h) + (1

2̺k;0
⋆ | divF h). (EC)

The operator Πh is an interpolation/projection operator which depends on the
numerical method.
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As a natural extension of the previous schemes, we have the mixed formulations:

Find (Ek;n+1
h , P k;n+1

h ) ∈ Xh
(k) × Qh such that, for all (F h, qh) ∈ Xh

(k) × Qh,

(∂2
τE

k;n+1
h | F h) + ak(Ek;n+1

h ,F h) + bk(F h, P k;n+1
h )(4.8)

= −(∂τJ
k;n+1
⋆ | F h) + (̺k;n+1

⋆ | divF h) ; (TI)

(∂2
τE

k;n+1
h | F h) + ak(Ek;n

h ,F h) + bk(F h, P k;n+1
h )(4.9)

= −(∂2τJ
k;n+1
⋆ | F h) + (̺k;n

⋆ | divF h) ; (EC)

bk(Ek;n+1
h , qh) = (̺k;n+1

⋆ | qh). (both)(4.10)

4.3. Mode-wise estimates. To obtain such estimates, we suppose that there ex-
ists a subspace Xs(Ω) ⊂ X(Ω), to which the solution to Maxwell’s equation belongs
provided the data are regular enough, and such that its spaces of Fourier coefficients
Xs

(k)(ω) satisfy an approximation inequality of the form:

(4.11) ∀u ∈ Xs
(k)(ω), ∃uh ∈ X

h
(k), ‖u− uh‖X,(k) . ǫ(s, h, k) ‖u‖X,s,(k).

Moreover, the anisotropic Sobolev space Hσ,Xs

(Ω) will be denoted Xs,σ(Ω), for
the sake of simplicity. The construction of this space and the establishment of
the approximation inequality will be carried out in §§5 and 6. For the moment,
we assume that the data and the solution are regular enough, typically E ∈
H2(−δ, T ;Xs,q+σ(Ω)) ∩ H3(−δ, T ;H0,σ(Ω)) and J ∈ H2(−δ, T ;H0,σ(Ω)), where
σ > 1

2 and q ∈ [1, 2], and δ is a small multiple of the time step τ . In or-
der to obtain improved estimates for the EC scheme, we shall assume that E ∈
H4(−δ, T ;H0,σ(Ω)) and J ∈ H3(−δ, T ;H0,σ(Ω)). The relevance of these conditions
will be examined in §6.3 below.

Proposition 4.1. Let
(
E

k;n
h

)

n
be the solution to the discrete formulation (4.3),

resp. (4.4). The following error estimates hold:

‖∂τE
k;n
h − Ėk;n

⋆ ‖2
0,1 + ‖Ek;n

h −Ek;n
⋆ ‖2

X,(k) .(4.12)

ǫ(s, h, k)2 ‖Ek
⋆‖2

H2(Xs
(k)

(ω)) + τ2
[
‖Ek

⋆‖2
H3(L2

1(ω)) + ‖Jk
⋆‖2

H2(L2
1(ω))

]
;

‖Ek;n
h −Ek;n

⋆ ‖2
0,1 . ǫ(s, h, k)2 ‖Ek

⋆‖2
H2(Xs

(k)
(ω))(4.13)

+ τ2
[
‖Ek

⋆‖2
H3(L2

1(ω)) + ‖Jk
⋆‖2

H2(L2
1(ω))

]
, (TI scheme);

‖Ek;n
h −Ek;n

⋆ ‖2
0,1 . ǫ(s, h, k)2 ‖Ek

⋆‖2
H2(Xs

(k)
(ω))(4.14)

+ τ4
[
‖Ek

⋆‖2
H4(L2

1(ω)) + ‖Jk
⋆‖2

H3(L2
1(ω))

]
, (EC scheme).

The estimates for the explicit scheme are valid under a CFL condition Λ τ2 < 4,

where the Rayleigh quotient Λ := sup
vh∈X

h
(k)

‖vh‖2
X,(k)

‖vh‖2
0,1

should behave as Λ . h−2+|k|2.

Proof. This follows, mutatis mutandis, from the estimates of [23, §5], thanks to
the interpretation of (4.3) or (4.4) as the trace, in a meridian half-plane, of a
3D formulation in which the sources have only one Fourier mode. �



16 PATRICK CIARLET, JR. AND SIMON LABRUNIE

Now we examine the mixed augmented formulations, following the lines of [23,
§7]. The usual difficulty in the numerical analysis of mixed problems is the deriva-
tion of a uniform (with respect to h) discrete inf-sup condition (disc). Here, this
issue is compounded by that of the dependence of this condition on the Fourier
mode k. To our knowledge, no disc uniform in both h and k has been yet de-
rived for Maxwell or other mixed equations. So, we shall work with a (maybe not
optimal) condition, which is uniform in h, but depends weakly on k.

Lemma 4.2. For the P2–P1 Taylor–Hood element, there exists a constant β, inde-
pendent of h and k, such that:

(4.15) ∀qh ∈ Qh, sup
vh∈X

h
(k)

bk(vh, qh)

‖vh‖X,(k)
≥ β (1 + |k|)−1 ‖qh‖0,1 .

Proof. In [9, Lemma 3.5], the following disc is proven for the Stokes problem:

(4.16) ∀qh ∈ Qh(k), sup
vh∈H

⋄

h(k)

(divk vh | qh)

‖vh‖1,(k)
≥ β̃ (1 + |k|)−1 ‖qh‖0,1 .

For k 6= 0, one has Qh(k) = Qh, whereas Qh(0) = {qh ∈ Qh :

∫∫

ω

qh r dr dz = 0}.
Then H⋄

h(k) is

H
⋄
h(k) :=

{
wh ∈ C0(ω)3 ∩

◦
H1

(k)(ω) : wh|K ∈ P2(K)3, ∀K ∈ Th

}
,

thus, it is a subspace of our Xh
(k). According for instance to [1, Rmk 2.6], there

holds |w|1 = ‖w‖X, for all w ∈
◦
H1(Ω), and it follows that ‖w‖1,(k) = ‖w‖X,(k) for

w ∈
◦
H1

(k)(Ω). So, one can replace the norm ‖vh‖1,(k) with ‖vh‖X,(k) in (4.16), for

all vh ∈ H⋄
h(k). For k 6= 0, this implies (4.15) since the sup is greater on the bigger

space Xh
(k). For k = 0, one has to deal with discrete Lagrange multipliers whose

mean value over Ω is not 0 (recall that Qh = Qh(0) ⊕ R). This difficulty can be

overcome by using an ad hoc discrete field of Xh
(0) to provide a lower bound in (4.15)

for qh = 1. A similar result has been already obtained in [20] in an unweighted
framework, and its proof can be easily adapted to our case. �

With this result, we can derive two important properties. The first is the so-
called strong approximability of the kernel of bk; we recall that the continuous and
discrete kernels are defined as:

K(k)(ω) :=
{
v ∈ X(k)(ω) : bk(v, q) = 0, ∀q ∈ L2

1(ω)
}

,

K
h
(k) :=

{
vh ∈ X

h
(k) : bk(vh, qh) = 0, ∀qh ∈ Qh

}
.

The second is the error estimate between the solution to the static mixed problem:
Given f ∈ X(k)(ω)′ and g ∈ L2

1(ω), find (u, p) ∈ X(k)(ω) × L2
1(ω) such that,

∀(v, q) ∈ X(k)(ω) × L2
1(ω):

ak(u,v) + bk(v, p) = 〈f ,v〉,(4.17)

bk(u, q) = (g | q),(4.18)
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and that of its finite element discretisation, which reads:
Find (uh, ph) ∈ Xh

(k) × Qh such that, ∀(vh, qh) ∈ Xh
(k) × Qh:

ak(uh,vh) + bk(vh, ph) = 〈f ,vh〉,(4.19)

bk(uh, qh) = (g | qh).(4.20)

Proposition 4.3. The following approximation inequality holds:
(4.21)

∀u ∈ K(k)(ω)∩Xs
(k)(ω), ∃uh ∈ K

h
(k), ‖uh−u‖X,(k) . (1+|k|) ǫ(s, h, k) ‖u‖X,s,(k) .

Therefore, if the solution (u, p) to (4.17,4.18) belongs to Xs
(k)(ω) × H1

1(ω), the

following estimate holds:

(4.22) ‖uh − u‖X,(k) + ‖ph − p‖0,1 . (1 + |k|) ǫ(s, h, k) ‖u‖X,s,(k) + h ‖p‖1,1 .

Proof. Use [30, Chapter II, Thm 1.1] and the previous lemma; the p part of the
error is bounded using the weighted Clément operator of [8, §4.3]. �

The analysis of [23, §7] can be carried over to our case. Compared with their
counterparts in that article, the error estimate (4.22) and the approximation in-
equality (4.21) contain a factor 1 + |k| in front of ǫ(s, h, k). Also, it is better to use
L2

1 error estimates for (4.19,4.20) derived from the Weber inequality than derived
from the Nitsche trick, which yields a bound in (1 + k2) ǫ(s, h, k)2. The term of
higher power in h is of no use, being hidden by other terms with a smaller exponent;
thus, the higher power in k appears unwelcome.

Proposition 4.4. Let
(
E

k;n
h , P k;n

h

)

n
be the solution to the discrete formulation

(4.8,4.10), resp. (4.9,4.10). The following error estimates hold:

‖∂τE
k;n
h − Ėk;n

⋆ ‖2
0,1 + ‖Ek;n

h −Ek;n
⋆ ‖2

X,(k) .(4.23)

(1 + k2) ǫ(s, h, k)2 ‖Ek
⋆‖2

H2(Xs
(k)

(ω)) + τ2
[
‖Ek

⋆‖2
H3(L2

1(ω)) + ‖Jk
⋆‖2

H2(L2
1(ω))

]
;

‖Ek;n
h −Ek;n

⋆ ‖2
0,1 . (1 + k2) ǫ(s, h, k)2 ‖Ek

⋆‖2
H2(Xs

(k)
(ω))(4.24)

+ τ2
[
‖Ek

⋆‖2
H3(L2

1(ω)) + ‖Jk
⋆‖2

H2(L2
1(ω))

]
, (TI scheme);

‖Ek;n
h −Ek;n

⋆ ‖2
0,1 . (1 + k2) ǫ(s, h, k)2 ‖Ek

⋆‖2
H2(Xs

(k)
(ω))(4.25)

+ τ4
[
‖Ek

⋆‖2
H4(L2

1(ω)) + ‖Jk
⋆‖2

H3(L2
1(ω))

]
, (EC scheme).

The estimates for the explicit scheme are, again, valid under a CFL condition which
depends on the Fourier mode k.

5. Theoretical foundations of the SCM and FSCM

In this section, we describe the fields in X(Ω) near the edges and vertices and
study the regularising properties of the elliptic operators associated to the forms
ak(·, ·) and a(·, ·).

We use the notations of Figure 1: near any corner j of ∂ω, we choose two
neighbourhoods ωj ⊂⊂ ω′

j which stay away from the other corners and from the

sides which do not contain j. Local polar coordinates (ρj , φj) are used in ω′
j; we

choose a cutoff function ηj , depending on ρj only, such that ηj ≡ 1 in ωj and ηj ≡ 0
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outside ω′
j . The symbol j will be replaced by e (resp. c), when the corner is off-axis

(resp. on the axis), i.e. it is the trace of a circular edge (resp. a conical vertex). For
any off-axis corner e, we denote ae = r(e) its distance to the z-axis, and φ0

e the
angle between the r-axis and the side φe = 0. Near an on-axis corner c, we always
take φc = 0 on the axis γa.

5.1. Description of singularities. Let u be an arbitrary field in X(Ω). We start
from the Birman–Solomyak decomposition [13]:

u = uBS − gradϕ, uBS ∈ Xreg(Ω), ϕ ∈ Φ(Ω),(5.1)

with: ‖uBS‖1 + ‖ϕ‖1 + ‖∆ϕ‖0 . ‖u‖X .(5.2)

Hence, for each mode k, uk = uk
BS − gradk ϕk, with uk

BS ∈ X
reg
(k)(ω), ϕk ∈ Φ(k)(ω)

(see (2.23,2.24)), and a similar continuity property. We combine this with the
regular-singular decomposition of the functions in Φ(k)(ω) from [12, §II.4]:

ϕ0 = ϕ0
∗ +

∑

r.e

λe
0 Se

0 +
∑

s.v.

λc
0 Sc

0 ; ϕk = ϕk
∗ +

∑

r.e

λe
k Se

k for |k| ≥ 1 ;(5.3)

with: ϕk
∗ ∈ H2

(k)(ω) ∩
⋄
H1

1(ω), ∀k,

Se
k(ρe, φe) = ηe(ρe) e−|k| ρe ραe

e sin(αeφe),(5.4)

Sc
0(ρc, φc) = ηc(ρc) ρνc

c Pνc
(cosφc).(5.5)

Thus we arrive at:

u0 = u0
∗ −

∑

r.e

λe
0 grad0 Se

0 −
∑

s.v.

λc
0 grad0 Sc

0 ;(5.6)

uk = uk
∗ −

∑

r.e

λe
k gradk Se

k for |k| ≥ 1 ;(5.7)

with: uk
∗ = uk

BS − gradk ϕk
∗ ∈ X

reg
(k)(ω) ∀k.

The above decompositions are hardly adapted to numerical computations, as the
singular fields used in them depend on the mode and contain cutoff functions. This
point will be addressed below. However, they have nice properties which we now
state.

Lemma 5.1. The singularity coefficients λj
k satisfy the bounds:

|λe
0| . ‖u0‖X,(0), ∀e, |λc

0| . ‖u0‖X,(0), ∀c ;(5.8)

|λe
k| . |k|αe−1 ‖uk‖X,(k), ∀e, ∀|k| ≥ 1.(5.9)

As a consequence, ‖λe
k gradk Se

k‖X,(k) . ‖uk‖X,(k) and ‖uk
∗‖X,(k) . ‖uk‖X,(k);

thus, the series
∑
uk
∗ eikθ and

∑
λe

k (gradk Se
k) eikθ for any reentrant edge e are

convergent in X(Ω).

Proof. Let f := div (u − uBS) = −∆ϕ. By (5.2), we have ‖f‖0 . ‖u‖X and

‖fk‖0,1 . ‖uk‖X,(k). The coefficients λj
k are clearly the same in (5.6) or (5.7) and

in (5.3); yet the latter satisfy: |λj
k| . ‖fk‖0,1 for |k| ≤ 1 and |λe

k| . |k|αe−1 ‖fk‖0,1

for |k| ≥ 2, as shown in [22], respectively Equations (36,49) and Lemma 3.1 of this
Reference. Hence (5.8) and (5.9).

On the other hand, it is easy to check (calculating like in Lemma 5.5 of [3]) that
‖gradk Se

k‖X,(k) = ‖∆k Se
k‖0,1 . |k|1−αe . Thus, ‖λe

k gradk Se
k‖X,(k) . ‖uk‖X,(k)

for all e and finally ‖uk
∗‖X,(k) . ‖uk‖X,(k). �
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Similar decompositions and estimates hold in the magnetic case (recall the ab-
sence of vertex singularities in this case), with Se

k(ρe, φe) = ηe(ρe) e−|k| ρe ραe
e cos(αeφe).

5.2. Regularity results. As we remarked in Theorem 2.10, the global regularity
of the electromagnetic field is quite low. In order to have good approximation
properties, one has to estimate the regularity of the regular part of the field, which
is approximated by finite elements. We shall see that it can be limited by all edges
and vertices — not only the reentrant or sharp ones. Moreover, even with very
smooth data, it can be hardly better than H1; this condition requires the use of
the modified Clément operator defined in §6.2.

Definition 5.2. The space Xs
(k)(ω), for s ≥ 1, is the subspace of all uk ∈ X(k)(ω)

whose regular part uk
∗ , as defined in (5.6) or (5.7), belongs to Hs

(k)(ω). Its norm is

chosen as:

k = 0 : ‖u0‖2
X,s,(0) := ‖u0

∗‖2
s,(0) +

∑

r.e.

|λe
0|2 +

∑

s.v.

|λc
0|2 ;(5.10)

|k| ≥ 1 : ‖uk‖2
X,s,(k) := ‖uk

∗‖2
s,(k) +

∑

r.e.

|k|2(1−αe) |λe
k|2 .(5.11)

As a particular case, X1
(k)(ω) = X(k)(ω), and the norms are equivalent.

The space Xs(Ω) is the subspace of all u ∈ X(Ω) such that its Fourier coefficients
uk belong to Xs

(k)(ω) for all k. It is endowed with the canonical norm ‖u‖2
X,s :=

∑
k∈Z

‖uk‖2
X,s,(k).

The finiteness of the norm ‖u‖X,s if uk ∈ Xs
(k)(ω) for all k follows from Lemma 5.1.

The latter, together with the well-known [2, §4] equivalence of the norms ‖ · ‖X

and ‖ · ‖1 on Xreg(Ω), hence of ‖ · ‖X,(k) and ‖ · ‖1,(k) on X
reg
(k)(ω), yields the equiv-

alence of norms ‖ · ‖X and ‖ · ‖X,1 on X(Ω).

Definition 5.3. Let νk;ℓ
c be the ℓ-th singularity exponent of the Laplacian (with

Dirichlet boundary condition) at the conical vertex c for the Fourier mode k, i.e. the
ℓ-th smallest positive root of P k

ν (cos π/βc) = 0. (Thus, νc = ν0;1
c .)

The limiting regularisation exponent of the Laplacian at the mode k is sk
∆ :=

min Sk, where the set Sk is defined as a function of |k| as:

S0 =
{
αe : e salient edge ; 2 αe : e reentrant edge ;

ν0;1
c + 1

2 : c non-sharp vertex ; ν0;2
c + 1

2 : c sharp vertex
}

;

S1 =
{
αe : e salient edge ; 2 αe : e reentrant edge ; ν1;1

c + 1
2 : c any vertex

}
;

Sk =
{
αe : e salient edge ; 2 αe : e reentrant edge

}
, k ≥ 2.

The limiting regularisation exponent of the Maxwell operator at the mode 0 is

s0
⋆ := min

(
αe : e salient edge ; 2 αe : e reentrant edge ;

ν0;1
c + 1

2 : c non-sharp vertex ; ν0;1
c + 3

2 : c sharp vertex
)

;

while for the modes |k| ≥ 1, one has sk
⋆ = sk

∆. Notice [12, p. 48] that the only
exponents ν whose value is possibly less than 2 are ν0;1

c , ν0;2
c , and ν1;1

c , the latter
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two being always greater than 1. This is the reason why, for |k| ≥ 2, regularity is
limited by the edges only.

The global limiting regularisation exponent of the Maxwell operator is s⋆ :=
min(s0

⋆, s
1
⋆) = mink∈Z sk

⋆ .

Remark 5.4. We see that s⋆ < 2 as soon as one edge aperture is greater than π/2. As
for the conical vertices, there holds sk

⋆ < 2 for |k| = 0, 1 when the aperture is greater
than ϑ|k|, with ϑ0 ≃ 68◦8′ and ϑ1 ≃ 114◦48′. As a consequence, P1 finite elements
will be sufficient for non-mixed formulations (including correction methods) in most
situations. When using mixed formulations, however, one has to use P2 elements
for the field (and P1 for the multiplier) in order to have the theoretical framework
for proving convergence. This is what we assume in the rest of this article.

Proposition 5.5. Let f ∈ X(Ω)′ and g ∈ L2(Ω), and let (u, p) ∈ X(Ω) × L2(Ω)
be the solution to:

a(u,v) + b(v, p) = 〈f ,v〉, ∀v ∈ X(Ω),(5.12)

b(u, q) = (g | q), ∀q ∈ L2(Ω).(5.13)

If f ∈ Hs−2(Ω) and g ∈ Hs−1(Ω) for some s ∈ [1, sk
⋆), then uk ∈ Xs

(k)(ω) and

pk ∈ Hs
(k)(ω). Consequently, u ∈ Xs(Ω) and p ∈ Hs(Ω) for s < s⋆.

Proof. Thanks to [2], we can adapt the result of [26, Thm 5.2] to the case of the
axisymmetric domain: the (non-unique) Birman–Solomyak decomposition (5.1) can
be chosen such that

f ∈ Hs−2(Ω) and g ∈ Hs−1(Ω) =⇒
∆ϕ ∈ Hs−1(Ω) and uBS ∈ Hσ+1(Ω), and p ∈ Hτ+1(Ω),

for: σ ≤ s − 1 and σ < min
{
αe, µ

D
c + 1

2 , µN
c + 1

2

}
,

τ ≤ s − 1 and τ < min
{
αe, µ

D
c + 1

2

}
,

where µD
c (resp. µN

c ) is the smallest singularity exponent of the Laplacian with
Dirichlet (resp. Neumann) boundary condition at the vertex c. Moreover, this
decomposition is continuous with respect to the norms ‖f‖s−2 and ‖g‖s−1. We
remark that µD

c coincides with ν0;1
c ; moreover, it is known [29] that µN

c ≥ µN > 0.84.
Thus, at least for s < 2.34, there holds uBS ∈ Hs(Ω) and p ∈ Hs(Ω) iff s < 1 + αe

(reentrant edges) and s < ν0;1
c + 3

2 (sharp vertices).

Reasoning mode by mode (see Remark 2.11), we thus have uk
BS ∈ Hs

(k)(ω),

pk ∈ Hs
(k)(ω) and ∆k ϕk ∈ Hs−1

(k) (ω). By Thms II.4.10 and II.4.11 of [12], the latter

property implies that ϕk
∗ (defined in (5.3)) belongs to Hs+1

(k) (ω), i.e. gradk ϕk
∗ ∈

Hs
(k)(ω) for s < sk

∆. Finally, we notice that for any reentrant edge, 2αe < 1 + αe;

and one can check that ν0;1
c + 1 ≤ ν0;2

c for all values of the aperture π/βc, the
equality being possible only if βc = 1. (For the values ν ≤ 2, see Figure II.4.1
in [12]). Hence the conclusion. �

Proposition 5.6. Let u ∈ X(Ω) and s < s⋆; then u belongs to Xs(Ω) iff (curlu, divu) ∈
Hs−1(Ω) × Hs−1(Ω).

Proof. Assume (curlu, divu) ∈ Hs−1(Ω)×Hs−1(Ω). It is easy to check that (u, 0)
is the solution to (5.12–5.13), with g = divu and f = curl curlu − grad divu ∈
Hs−2(Ω). Hence u ∈ Xs(Ω) by the previous proposition.
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Conversely, u ∈ X(Ω) implies (curlk u
k
∗ , divk u

k
∗) ∈ Hs−1

(k) (ω) × Hs−1
(k) (ω) for

all k. As far as the singular parts are concerned, there holds curlk gradk Sj
k = 0

and divk gradk Sj
k = ∆k Sj

k. When j is the reentrant edge e, this function vanishes
near the axis and is smooth everywhere except near e. In addition, in ωe, one finds
by direct computations:

∆k Se
k = ∆

⊥
Se

k + l.s.t. = e−|k| ρe ραe−1
e sin(αeφe) {|k| ρe − (1 + 2αe) |k|} + l.s.t.

Here, ∆
⊥

denotes the Laplacian in the (r, z) plane, and l.s.t. means less singular
terms. Therefore, ∆k Se

k ∈ Hαe(ω), and globally ∆k Se
k ∈ Hs−1

(k) (ω) since αe >

2αe − 1 ≥ s − 1. Now, for a sharp vertex c, one checks that ∆0 Sc
0 vanishes

in ωc, and is smooth elsewhere. All together, we have thus (curlk u
k, divk u

k) ∈
Hs−1

(k) (ω) × Hs−1
(k) (ω) for all k, i.e. (curlu, divu) ∈ Hs−1(Ω) × Hs−1(Ω). �

The above results can be rephrased for the magnetic boundary condition, pro-
vided one adapts the results of [26] to this case, and uses the description of conical
singularities from [29].

6. Practical approximation results

6.1. Mode-independent singular fields. For the practical purpose of the SCM,

the singular parts can be described with other singular fields x
k,j
S . Generally speak-

ing, these fields should be easy to compute and satisfy the following conditions.

(1) They are independent of k for |k| ≥ 2.
(2) They are smooth (i.e., at least Cκ+1 if Pκ elements are used) away from the

relevant edge or vertex j.
(3) Near the edge or vertex j, they are equal to −gradk Sj

k +wk
j , where wk

j ∈
H

sj

(k)(ωj) for some sj > 1 large enough.

(4) They satisfy the suitable condition of the mode k on γa.
(5) They satisfy the electric boundary condition on γb.

The last two conditions imply that the regular and singular parts of the field satisfy
separately the relevant boundary conditions on ∂ω, so the latter can be treated as
essential for the regular part. Conditions 2 and 3 ensure, first, that the singularity
coefficients will be the same as in (5.6) and (5.7), and then, that the regular part
will not be “polluted” by terms not smooth enough to guarantee a good convergence
rate of the finite elements. Finally, the first condition appears mandatory in order
to keep the overall cost of the method at a reasonable level. There is, however, a
price to pay: one has to assume some extra regularity in θ for the field.

We now construct such singular fields. Let Se = −(r/ae)grad0 [ραe
e sin(αeφe)]

and Sc = −grad0 [ρνc
c Pνc

(cosφc)]; their expression in the basis (er, eθ, ez) reads:

Se = − r

ae
αe ραe−1

e




sin((αe − 1)φe − φ0

e)
0

cos((αe − 1)φe − φ0
e)



 ;(6.1)

Sc = −ρνc−1




νc Pνc

(cosφc) sinφc + P 1
νc

(cosφc) cosφc

0
−νc Pνc

(cos φc) cosφc + P 1
νc

(cosφc) sin φc



 .(6.2)
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These fields obviously satisfy Conditions 1 and 2. For the vertex singular field Sc,
Condition 4 for k = 0 follows from the properties of Legendre functions, and Con-
dition 3 is trivially satisfied since this field is exactly equal to −grad0 Sc

0 in ωc

(where ηc ≡ 1). As far as Se is concerned, its three components vanish on the axis
thanks to the factor (r/ae), hence Condition 4 is satisfied for all modes. Then, we
shall see below that Se +gradk Se

k is equal in ωe to ραe
e g(φe)+higher-order terms,

cf. (6.9). This belongs to H1+αe(ωe) = H1+αe

(k) (ωe), since the function g(φe) and

the higher-order terms are smooth.

On the other hand, Se and Sc do not satisfy Condition 5, except on the side(s)
of γb that touch the corner e or c. Therefore, we take the following

Definition 6.1. Let x
0,e
S := −(r/ae)σ

e, where σe is grad0 [ραe
e sin(αeφe)] minus

a lifting of its tangential trace on γb, which is smooth. Similarly, x
0,c
S is defined as

Sc minus a lifting of its tangential trace on γb, which is smooth.

For the coherence of our notations, we set x
k,e
S = x

0,e
S for all k; but let us insist

that these fields are independent of k.

Lemma 6.2. For any field u ∈ X(Ω), its Fourier coefficient uk can be decomposed
as:

k = 0 : u0 = u0
R +

∑

r.e.

λe
0 x

0,e
S +

∑

s.v.

λc
0 x

0,c
S ,(6.3)

|k| ≥ 1 : uk = uk
R +

∑

r.e.

λe
k x

k,e
S ,(6.4)

where: uk
R ∈ X

reg
(k)(ω) ; x

k,e
S ∈ X(k)(ω), ∀k ; x

0,c
S ∈ X(0)(ω) ;

x
k,e
S + gradk Se

k ∈ H1+αe

(k) (ωe), x
k,e
S is smooth elsewhere;

x
0,c
S = −grad0 Sc

0 in ωc, x
0,c
S is smooth elsewhere.

In order to use the decompositions (6.3) and (6.4) for numerical computations,
we have to check their stability in the various norms used for the fields. This is the
purpose of the next two Lemmas.

Lemma 6.3. The following bounds hold for all modes k and for 1 ≤ s < 1 + αe:

‖xk,e
S ‖X,(k) ≈ ‖Se‖X,(k) . 1 + |k| ;(6.5)

‖xk,e
S + gradk Se

k‖0,−1 ≈ ‖Se + gradk Se
k‖0,−1 . 1 ;(6.6)

‖xk,e
S + gradk Se

k‖s,1 ≈ ‖Se + gradk Se
k‖s,1 . 1 + |k|s−αe .(6.7)

Proof. The estimate for Se in (6.5) follows from simple calculations, see (7.3)

and (7.4) below. As for x
k,e
S , we remark that, as the tangential trace of grad0 [ραe

e sin(αeφe)]

on γb is smooth, there exists a continuous lifting in Hκ+1
1 (ω)3. Then, multiplying

by −(r/ae) we obtain a continuous lifting in Hκ+1
1 (ω)3 ∩ V 1

1(ω)3, whose norm is
independent of k. Thus:

(6.8) ‖xk,e
S − Se‖s,1 + ‖xk,e

S − Se‖0,−1 . 1, for 1 ≤ s < 2.

Note that neither x
k,e
S nor Se belong to Hs

1(ω)3, but their difference does. Then,
using the equivalence of the norms ‖ · ‖X,(k) and ‖ · ‖1,(k) for regular fields, we get

the estimate for x
k,e
S in (6.5).



FOURIER SINGULAR COMPLEMENT METHOD FOR MAXWELL 23

We now establish the estimates for Se in (6.6) and (6.7); once we have them, the

bounds for x
k,e
S will follow thanks to (6.8). The calculations are quite tedious, so we

will only sketch them. The integrals defining the squared norms ‖Se +gradk Se
k‖2

s,1

and ‖Se+gradk Se
k‖2

0,−1 are made of three contributions, corresponding to different
parts of the domain ω.

(1) The region where the cutoff function ηe ≡ 0. There, gradk Se
k = 0, so the

result is independent of k.
(2) The region where ηe varies. In this part of the domain, ρe ≥ ρ > 0 and

r ≥ r > 0, so the norm of gradk Se
k (which is smooth there) in any Sobolev

space is exponentially decreasing in |k|, and one can bound the contribution
by a constant.

(3) The region where ηe ≡ 1, viz. ωe. There, we have the following expres-
sion for gradk Se

k — for the sake of legibility, we generally drop the edge
subscript e:

e−|k| ρ ρα−1




α sin((α − 1)φ − φ0) − |k| ρ sin(αφ) cos(φ + φ0)

ik r−1 ρ sin(αφ)
α cos((α − 1)φ − φ0) − |k| ρ sin(αφ) sin(φ + φ0)



 .

To compare the previous expression with (6.1), we keep in mind that r = a +
ρ cos(φ + φ0), and that the function E defined as E(x) = (ex − 1)/x is smooth.
Thus, we arrive at the following form for we

k := Se + gradk Se
k:

we
k = |k| e−|k| ρ ρα g1(φ) + |k|E(−|k| ρ) ρα g2(φ)(6.9)

+ ik r−1 e−|k| ρ ρα g3(φ) + ρα g4(φ),

:= w1 +w2 +w3 +w4,

where all the functions gi(φ) are smooth and independent of k.

We begin by estimating the norm ‖we
k‖L2

−1(ωe). As we are away from the axis,

it is bounded above and below by ‖we
k‖L2(ωe). Actually, we calculate a Lp norm

which will be needed below. The p-th power of the norm of w1 is bounded as

‖w1‖p
Lp(ωe) =

∫∫

ωe

|k|p e−p |k| ρ ρpα |g1(φ)|p ρ dρ dφ

≤ Cp,α

∫ +∞

0

|k|p e−p |k| ρ ρpα+1 dρ

= Cp,α |k|p
∫ +∞

0

e−p ξ

(
ξ

|k|

)pα+1
dξ

|k| . |k|p−pα−2.

The calculation goes the same for w2 and w3 (as r−1 is bounded from above and
from below in ωe); as for w4, its norm is independent of k. Hence the bounds:

∀p ≤ 2/(1 − α), ‖we
k‖Lp(ωe) . 1 ; ‖we

k‖L2
−1(ωe) ≈ ‖we

k‖L2(ωe) . 1.

The bound (6.6) follows, given that the contributions of the other parts of the
domain are also bounded.

Then we proceed with the norm ‖we
k‖Hs

1(ωe). It is bounded above and be-
low by ‖we

k‖Hs(ωe); in turn, a Sobolev injection allows us to bound the latter
by ‖we

k‖W 2,p(ωe) ≈ ‖we
k‖Lp(ωe) + |we

k|W 2,p(ωe), with p = 2/(3 − s). If s < 1 + α,
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then p < 2/(2 − α) < 2/(1 − α), and the Lp(ωe) norm is bounded by a constant.
To bound the W 2,p(ωe) semi-norm, we have to estimate the Lp(ωe) norms of

∂2w

∂ρ2
,

1

ρ

∂2w

∂ρ ∂φ
− 1

ρ2

∂w

∂φ
,

1

ρ2

∂2w

∂φ2
+

1

ρ

∂w

∂ρ
,

where w is any cylindrical component of any wi. It is easy to see that, for the
components of w1, these functions are linear combinations of terms of the form

|k|3 e−|k| ρ ρα h1(φ), |k|2 e−|k| ρ ρα−1 h2(φ), |k| e−|k| ρ ρα−2 h3(φ),

where the hi(φ) are smooth and independent of k. Computing as above, we find
that all these terms have their norm bounded by |k|3−α−2/p = |k|s−α. A simi-
lar calculation can be done for w2 and w3 (as r−1 is smooth in ωe, there holds
‖w3‖W 2,p(ωe) . ‖k e−|k| ρ ρα g3(φ)‖W 2,p(ωe)); while the norm of w4 is once more
constant. Finally:

‖we
k‖Hs

1(ωe) . ‖we
k‖W 2,p(ωe) . 1 + |k|s−α.

This bound, together with the estimates on the contributions of the other parts of
the domain, leads to (6.7). �

Of course, a similar result holds for the sharp vertices at the mode 0.

Lemma 6.4. Assume that 1 ≤ s < ν0;1
c + 3

2 . The singular parts associated to the
sharp vertices satisfy:
(6.10)

‖x0,c
S ‖X,(0) ≈ ‖Sc‖X,(0) . 1 ; ‖x0,c

S + grad0 Sc
0‖s,1 ≈ ‖Sc + grad0 Sc

0‖s,1 . 1.

As a consequence of the previous two Lemmas and the definition of the norm
‖ · ‖X,s,(k) we have:

Lemma 6.5. Assume that 1 ≤ s < s⋆. The regular and singular parts in (6.3)
and (6.4) satisfy, for all u ∈ X(Ω) or Xs(Ω):

‖u0
R‖X,(0) . ‖u0‖X,(0), ‖λj

0 x
0,j
S ‖X,(0) . ‖u0‖X,(0) ;(6.11)

‖u0
R‖s,1 . ‖u0‖X,s,(0) ;(6.12)

for the mode k = 0, while for |k| ≥ 1 there holds:

‖uk
R‖X,(k) . (1 + |k|α⋆

) ‖uk‖X,(k),(6.13)

‖λe
k x

k,e
S ‖X,(k) . (1 + |k|αe) ‖uk‖X,(k) ;(6.14)

‖uk
R‖s,1 . (1 + |k|s−1) ‖uk‖X,s,(k) , ‖uk

R‖0,−1 . ‖uk‖X,s,(k) .(6.15)

Above, we have set α⋆ := max{αe < 1}. As a consequence, the series
∑
uk

R eikθ and∑
λe

k x
k,e
S eikθ for any reentrant edge e, are convergent in X(Ω) for all u ∈ H1,X(Ω).

For the numerical implementation, one can also orthonormalise the basis (xk,j
S )j

and compute basis vectors (xk,j
S⊥)j which are orthogonal to one another and to the

regular space X
reg
(k)(ω) with respect to the bilinear form ak(·, ·) for |k| ≤ 2. This is the

approach taken, at the discrete level, in §7. The adaptation to the magnetic bound-
ary condition is once more immediate, with Se = −(r/ae)grad0 [ραe

e cos(αeφe)].
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6.2. The Clément operator. We briefly explain its construction, which follows
§§4.3 and 4.4 of [8]. For each node ai in the principal lattice of the triangulation, one
selects a triangle Ti which contains ai. Then, one introduces πi, the L2

1-orthogonal
projection operator onto Pκ(Ti): for any w ∈ L1

1(Ti), πiw ∈ Pκ(Ti) and

∀p ∈ Pκ(Ti),

∫∫

Ti

(w − πiw) p r dω = 0.

Let us begin with the case of regular fields. In order to enforce the various boundary
conditions for the different modes, one classifies the nodes into four categories:

(1) the interior nodes, which do not stand on ∂ω;
(2) the nodes standing on the axis γa, excluding the extremities;
(3) those on the sides of the physical boundary γb, excluding the corners;
(4) the corners, at the intersection of γa and γb, or of two sides of γb;

one denotes Kℓ = {i : the node ai is of category ℓ}, for ℓ = 1, . . . , 4. Notice that:
(i) the outgoing normal and tangent vectors νi and τ i are unambiguously defined
at each node of category 2 or 3, since the sides are straight; (ii) the regular fields
vanish at the nodes of category 4.

Definition 6.6. Let ϕi be the basis function associated with ai. The regularisation

operator Πσ
h;k : L2

1(ω) → X
reg;h
(k) for the mode k and the boundary condition σ

(σ = ν is the electric b.c., σ = τ is the magnetic b.c.) is the sum Πσ
h;k :=

Π1
h +Π2

h;k +Π3;σ
h , where:

Π1
hu(x) :=

∑

i∈K1

{πiur(ai) er + πiuθ(ai) eθ + πiuz(ai) ez} ϕi(x) ;(6.16)

Π2
h;0u(x) :=

∑

i∈K2

πiuz(ai) ez ϕi(x) ;(6.17)

Π2
h;±1u(x) :=

∑

i∈K2

πiu±(ai) e± ϕi(x) ; Π2
h;ku(x) := 0 for |k| ≥ 2 ;(6.18)

Π
3;ν
h u(x) :=

∑

i∈K3

πiuν(ai)νi ϕi(x) ;(6.19)

Π
3;τ
h u(x) :=

∑

i∈K3

{πiuτ (ai) τ i + πiuθ(ai) eθ} ϕi(x).(6.20)

This operator automatically satisfies the electric or magnetic boundary condition
on the physical boundary γb, as well as the boundary condition for regular fields
of the mode k on the axis γa. As in [8] — and interpolating for the non-integral
values of s, which is possible thanks to Proposition 4.7 and Remark 4.3 of [2] —
one gets the following result.

Proposition 6.7. Let u ∈ Hs
(k)(ω)∩X(k)(ω), for |k| ≥ 2. The following estimates

hold for s ∈ [1, κ + 1]:

h−1
∥∥u−Πσ

h;ku
∥∥

0,1
+
∣∣∣∣∣∣u−Πσ

h;ku
∣∣∣∣∣∣

1,1
. hs−1 {‖u‖s,1 + ‖u‖0,−1} ,(6.21)

∥∥Πσ
h;ku

∥∥
0,−1

. ‖u‖0,−1.(6.22)

By the definition (2.21), the above estimates imply, under the same assumptions:

(6.23)
∥∥u−Πσ

h;ku
∥∥2

1,(k)
. h2s−2 (1 + |k|2)

{
‖u‖2

s,1 + ‖u‖2
0,−1

}
.
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Thus, when the singular space is null, we get the approximation result (4.11)
with:

(6.24) Xs
(k)(ω) := Hs

(k)(ω) ∩X(k)(ω), ǫ(s, h, k) = hs−1 (1 + |k|).
Now we proceed with the general case. Near a geometrical singularity j = e

or c, the numerical space Xh
(k) is spanned by the finite elements plus the singular

field Sj ; away from it, the singular field is generally (according to the details of the
numerical method) represented by an interpolate, or a lifting of its trace. This is of
no importance, since Sj is C∞ there, so the approximation will be as good as the
finite elements allow. For instance, the Lagrange interpolation operator Ih satisfies
the following bound for w ∈ Hs

1(ω)3 ∩ V 1
1(ω)3 and s ∈ [2, κ + 1]:

h−1 ‖w − Ihw‖0,1 +
∣∣∣∣∣∣w − Ihw

∣∣∣∣∣∣
1,1

. hs−1 ‖w‖s,1 ,

see Proposition 6.1 in [35] and Proposition 4.1 in [8]. Globally, Xh
(k) can be thus

described as:

X
h
(k) = X

reg;h
(k) ⊕

⊕

g.s.

spanx
k,j;h
S , where:

x
k,j;h
S ∈ X(k)(ω), x

k,j;h
S = Sj on ωj, ‖xk,j;h

S − x
k,j
S ‖X,(k) . hκ (1 + |k|).

Consequently, we can define a modified operator Πσ
h;k on X(k)(ω) as follows:

Πσ
h;k : u = uR +

∑

g.s.

λj x
k,j
S 7−→ Πσ

h;kuR +
∑

g.s.

λj x
k,j;h
S .(6.25)

Combining Lemma 6.5 with the estimate (6.23) for regular fields, one immediately
obtains:

Proposition 6.8. The operator Πσ
h;k satisfies the following bound, for any k and

u ∈ Xs
(k)(ω):

(6.26)
∥∥u− Πσ

h;ku
∥∥2

X,(k)
. h2s−2 (1 + |k|2s) ‖u‖2

X,s,(k) .

Hence the general form of the approximation result (4.11):

(6.27) Xs
(k)(ω) as in Definition 5.2, ǫ(s, h, k) = hs−1 (1 + |k|s).

6.3. Error estimates for the FUNFEM and FSCM. We recall that the ap-
proximate numerical solution is reconstructed by the formula:

{E[N ];n
h , P

[N ];n
h }(r, θ, z) :=

1√
2π

N∑

k=−N

{Ek;n
h , P k;n

h }(r, z) eikθ,

where
(
E

k;n
h

)

n
, resp.

(
E

k;n
h , P k;n

h

)

n
is the solution to the fully discrete mode-wise

augmented (resp. mixed augmented) formulation.

Theorem 6.9. Assume that E ∈ H2(−δ, T ;Xs,q+σ(Ω)) ∩ H3(H0,σ(Ω)) and J ∈
H2(−δ, T ;H0,σ(Ω)), where σ > 1

2 , s ∈ (1, s⋆) and q is defined according to the
numerical method, in the following way:

UNFEM SCM
Non-mixed 1 s
Mixed 2 1 + s
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To obtain the result of the EC scheme (6.30) below, assume moreover that E ∈
H4(−δ, T ;H0,σ(Ω)) and J ∈ H3(−δ, T ;H0,σ(Ω)). Then we have the error estimates
on the reconstructed solutions:

‖∂τE
[N ];n
h − Ėn‖2

0 + ‖E[N ];n
h −En‖2

X
≤ M1 (h2s−2 + τ2 + N−2σ),(6.28)

TI scheme: ‖E[N ];n
h −En‖2

0 ≤ M2 (h2s−2 + τ2 + N−2σ),(6.29)

EC scheme: ‖E[N ];n
h −En‖2

0 ≤ M3 (h2s−2 + τ4 + N−2σ).(6.30)

The constants Mi depend on the norms of E and J in the aforementioned spaces.
When the explicit scheme is used, the estimates are valid under a CFL condition
strongly dependent on the number of Fourier modes used (cf. Proposition 4.1).

Remark 6.10. Provided that the data J(t) and ̺(t) are smooth enough, we recall
(see §5.2) that E(t) belongs automatically to Xs(Ω), for 1 ≤ s < s⋆.

Proof. Adding the estimates (4.12) or (4.23) from k = −N to N , with the values
of ǫ(s, h, k) given by (6.24) or (6.27), we obtain:

‖∂τE
[N ];n
h − Ė[N ];n

⋆ ‖2
0 + ‖E[N ];n

h −E[N ];n
⋆ ‖2

X
. MN(E,J) :=

h2s−2
N∑

k=−N

(1 + |k|2q) ‖Ek
⋆‖2

H2(Xs
(k)

(ω)) + τ2
[
‖E[N ]

⋆ ‖2
H3(L2(Ω)) + ‖J [N ]

⋆ ‖2
H2(L2(Ω))

]
.

Using Proposition 3.5, we bound:

MN (E,J) . h2s−2
[
‖E[N ]‖2

H2(Xs,q(Ω)) + N−2σ ‖E‖2
H2(Xs,q+σ(Ω))

]

+ τ2
[
‖J [N ]‖2

H2(L2(Ω)) + N−2σ ‖J‖2
H2(H0,σ(Ω))

]

+ τ2
[
‖E[N ]‖2

H3(L2(Ω)) + N−2σ ‖E‖2
H3(H0,σ(Ω))

]
.

Then we use the triangle inequality: ‖E[N ];n
h − En‖2

X
. ‖E[N ];n

h − E[N ];n
⋆ ‖2

X
+

‖E[N ];n
⋆ −E[N ];n‖2

X
+‖E[N ];n−En‖2

X
, and similarly for the L2 norm of the derivative.

The last two errors are bounded by Propositions 3.3 and 3.6; hence (6.28). The
bounds (6.29) and (6.30) are obtained in the same manner. �

Remark 6.11. Combining the arguments of Propositions 3.4 and 5.5, we see that
the hypotheses:

ψ ∈ H2(−δ, T ;H0,q+σ(Ω)), Ë ∈ H2(−δ, T ;H0,q+σ(Ω)), ̺ ∈ H2(−δ, T ;
◦
H1,q+σ(Ω)),

together imply E ∈ H2(−δ, T ;Xs,q+σ(Ω)). The second condition clearly implies
E ∈ H4(−δ, T ;H0,σ(Ω)). In the augmented formulation, the three conditions

are satisfied if e.g. J ∈ H4(−δ, T ;H0,q+σ(Ω)) and ̺ ∈ H3(0, T ;
◦
H1,q+σ(Ω)) ∩

H5(0, T ; H−1,s(Ω)). In the mixed augmented formulation, it is enough to have

J ∈ H4(−δ, T ;H0,q+σ(Ω)) and ̺ ∈ H2(0, T ;
◦
H1,q+σ(Ω)) ∩ H4(0, T ; H−1,q+σ(Ω)).

Remark 6.12. If the Fourier coefficients ̺k, Jk are exactly known, it is sufficient to
assume E ∈ H2(−δ, T ;Xs,q(Ω)) ∩ C0(0, T ;X1,σ(Ω))∩ C1(0, T ;H0,σ(Ω)) (for σ > 0)
and J ∈ H2(−δ, T ;L2(Ω)). To have (6.30), assume moreoverE ∈ H4(−δ, T ;L2(Ω))
and J ∈ H3(−δ, T ;L2(Ω)).
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7. Practical implementation

A practical implementation of the SCM in the case where the data are axisym-
metric was exposed in [4]. In the case of general data, the method can be applied
to the equations of the mode 0. Let us recall the principle of the SCM [5]: the

basis of the singular space X
sing;h
(0) is computed, once and for all, as a first part of

the algorithm, before solving the Maxwell evolution problem in the suitable space

X
h
(0) = X

reg;h
(0) ⊕ X

sing;h
(0) . These various versions of the SCM also take advantage of

the following specific points:

• At the mode 0, the Maxwell equations decouple into problems involving the
meridian (r, z) and azimuthal (θ) components, which are orthogonal, both
in L2

1(ω) and X(0)(ω). Moreover, the azimuthal components are regular
and are not affected by the divergence constraint.

• The singular space is spanned by suitably chosen fields: e.g. the gradients of
singular functions of the Laplacian, or fields orthogonal to the regular space;
this yields simple expressions of the various terms coupling the regular and
singular parts in the variational formulations.

We now present an extension of this approach to the modes k 6= 0. The principle

consists in choosing an orthogonal complement (thus Xh
(k) = X

reg;h
(k)

⊥
⊕ X

sing;h
(k) ) for

the modes |k| ≤ 2, while the modes ±2 serve as the “fundamental modes” for the
higher modes |k| > 2, thanks to the stabilisation of spaces for these modes (see
Proposition 2.9). This is the method used in [22] for the Poisson problem.

Thus, at the continuous level, the practical decomposition of the solution to
Maxwell’s equations is chosen as at the end of §6.1:

Ek;n = Ek;n
reg +

∑

j

κk;n
j x

ℓ(k),j
S⊥ , where: Ek;n

reg ∈ X
reg
(k)(ω),(7.1)

ℓ(k) = k for |k| ≤ 1, ℓ(k) = 2 sign(k) for |k| ≥ 2,

j ∈ {e, c} for k = 0, j ∈ {e} for |k| ≥ 1 ;

moreover, the basis (xk,j
S⊥)j is orthonormal, and orthogonal to the regular space X

reg
(k)(ω) =

X
reg
(ℓ(k))(ω) with respect to the form aℓ(k)(·, ·).

7.1. Computation of a basis of the singular space X
sing;h
(k) , for |k| ≤ 2. At

the discrete level, we define the counterparts of the various terms in (7.1):

(7.2) E
k;n
h = E

k;n
reg;h +

∑

j

κk;n
j;h x

ℓ(k),j;h
S⊥ , where: E

k;n
reg;h ∈ X

reg;h
(k) ,

and the numerical singular fields x
k,j;h
S⊥ (|k| ≤ 2) are computed as follows. In the

first step, one defines the fields

x
k,j;h
S := Sj + x̂k,j;h, such that x

k,j;h
S ∈ X(k)(ω) and x

k,j;h
S ⊥ak

X
reg;h
(k) ,
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i.e. the non-principal part x̂k,j;h of the field belongs to the finite element space and
satisfies the appropriate variational formulation and boundary conditions, namely:

ak(x̂k,j;h,wh) = −ak(Sj ,wh)

= −(curlk Sj | curlkwh) − (divk Sj | divkwh), ∀wh ∈ X
reg;h
(k) ;

x̂k,j;h × n = −Sj × n on γb , for |k| ≤ 2 ;

x̂0,j;h · er = 0 and x̂0,j;h · eθ = 0 on γa ,

x̂±1,j;h · e∓ = 0 and x̂±1,j;h · ez = 0 on γa , x̂±2,j;h = 0 on γa.

Above, we have curl0 Sc = 0 and div0 Sc = −∆0[ρ
νc Pνc

(cosφc)] = 0, while for the
edge singularity:

divk Se = −2αe

ae
ραe−1

e sin((αe − 1)φe − φ0
e) ;(7.3)

curlk Se =
αe ραe−1

e

ae




−ik cos((αe − 1)φe − φ0

e)
cos((αe − 1)φe − φ0

e)
ik sin((αe − 1)φe − φ0

e)



 .(7.4)

These fields belong to L2
1(ω); the corresponding integrals should be computed by an

appropriate quadrature formula in the neighbourhood of the corner e; elsewhere,
the usual mass matrix can be used, cf. [4, §4.4].

At the end of this step, the singular complement X
sing;h
(k) is defined as the space

generated by the (xk,j;h
S )j , for |k| ≤ 2 and j in the relevant set of singularities. The

stabilisation of spaces then allows to set X
sing;h
(k) = X

sing;h
(2) for |k| ≥ 2; notice that

X
sing;h
(−2) = X

sing;h
(2) as we shall see below. Thus, the total space Xh

(k) is spanned by

the usual nodal finite elements plus (Se)e, for all k, and also plus (Sc)c, for k = 0:
we are in the framework of §6, which validates the error estimates.

The second step consists in orthormalising the basis of X
sing;h
(k) , i.e. one determines

the fields

x
k,j;h
S⊥ =

∑

i

ck,j;h
i x

k,i;h
S s.t. ak(xk,i;h

S⊥ ,xk,j;h
S⊥ ) = δi,j ,

for |k| ≤ 2 and i, j in the relevant set of singularities. This involves the computation
of the scalar products

ak(xk,j;h
S ,xk,i;h

S ) = ak(x̂k,j;h, x̂k,i;h) + ak(Sj , x̂
k,i;h) + ak(x̂k,j;h,Si) + ak(Sj ,Si);

the first term is computed by the stiffness matrix, while the other three need the
same treatment near the corners as above. Then the orthonormalisation itself is
performed by the usual Schmidt or Arnoldi procedure.

7.2. Solution of the evolution problem. The solution of the mixed augmented
evolution problem at the mode 0 follows the principle of [4, §4.3], except that we
are now using orthogonal complements. As said above, the azimuthal component
of E0 is regular; it is solution of a wave-like equation which can be easily solved
by nodal finite elements [4, §2.3]. We now expose the solution of the meridian
problem. Notice that the orthogonalisation procedure only modifies the meridian

components, so the x
0,j;h
S⊥ are meridian.
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We use the following notations: u = ur er + uz ez is the meridian component
of u; the scalar curl (or rotational) and divergence operators of meridian fields are:

rotu := ∂ruz − ∂zur, div ′u := ∂r(r ur) + ∂zuz,

and the bilinear forms a0 and b0 reduce to

a0(u,v) = (rotu | rotv) + (div ′u | div ′v), b0(u, p) = (div ′u | p).

Now, we are able to inject the splitting (7.2) (restricted to the meridian components)
into the suitable variational formulation. As an example, we show the totally
implicit, mixed augmented formulation (4.8,4.10), with the time index n+1 shifted
to n. The explicit centred version (4.9,4.10) is an evident adaptation; while the non-

mixed formulations are simpler. Taking successively as test functions Fh ∈ X
reg;h
(0)

and x
0,i;h
S⊥ in (4.8), and then qh ∈ Qh in (4.10), we arrive at the coupled mixed

problem:

Find (E0;n
reg;h, P 0;n

h ) ∈ X
reg;h
(0) × Qh and −→κ 0;n

h =
(
κ0;n

j;h

)

j
∈ RNe+Nc (3) such that, for

all (Fh, i, qh) ∈ X
reg;h
(0) × {e, c} × Qh:

∂2
τ

(
E

0;n
reg;h | Fh

)
+
∑

∂2
τκ0;n

j;h

(
x

0,j;h
S⊥ | Fh

)
+ a0

(
E

0;n
reg;h,Fh

)
(7.5)

+ b0

(
Fh, P 0;n

h

)
= −

(
∂τJ

0;n
⋆ | Fh

)
+
(
̺0;n

⋆ | div ′Fh

)
,

∂2
τ

(
E

0;n
reg;h | x0,i;h

S⊥

)
+
∑

∂2
τκ0;n

j;h

(
x

0,j;h
S⊥ | x0,i;h

S⊥

)
+ κ0;n

i;h(7.6)

+ b0

(
x

0,i;h
S⊥ , P 0;n

h

)
= −

(
∂τJ

0;n
⋆ | x0,i;h

S⊥

)
+
(
̺0;n

⋆ | div ′x0,i;h
S⊥

)
,

b0

(
E

0;n
reg;h, qh

)
+
∑

κ0;n
j;h b0

(
x

0,j;h
S⊥ , qh

)
=
(
̺0;n

⋆ | qh

)
.(7.7)

The summation runs on all singularities j ∈ {e, c}. The numerical solution of this
problem follows the principle of [4, §4.3].

The method for the modes k = ±1 is similar, as the singular fields are adapted to
these modes. The differences are: the meridian and azimuthal components cannot
be decoupled, as they are not orthogonal for the form a±1(·, ·), and the boundary
condition on the axis γa mixes them. Instead, one has to use the basis (e+, e−, ez),
as remarked above. Moreover, there are no singularities at the sharp vertices. Thus,
we arrive at the following formulation:

Find (Ek;n
reg;h, P k;n

h ) ∈ X
reg;h
(k) × Qh and −→κ k;n

h =
(
κk;n

e;h

)

e
∈ RNe such that, for all

(F h, i, qh) ∈ X
reg;h
(k) × {e} × Qh:

∂2
τ

(
E

k;n
reg;h | F h

)
+
∑

∂2
τκk;n

e;h

(
x

k,e;h
S⊥ | F h

)
+ ak

(
E

k;n
reg;h,F h

)
(7.8)

+ bk

(
F h, P k;n

h

)
= −

(
∂τJ

k;n
⋆ | F h

)
+
(
̺k;n

⋆ | divk F h

)
,

∂2
τ

(
E

k;n
reg;h | xk,i;h

S⊥

)
+
∑

∂2
τκk;n

e;h

(
x

k,e;h
S⊥ | xk,i;h

S⊥

)
+ κk;n

i;h(7.9)

+ bk

(
x

k,i;h
S⊥ , P k;n

h

)
= −

(
∂τJ

k;n
⋆ | xk,i;h

S⊥

)
+
(
̺k;n

⋆ | divk x
k,i;h
S⊥

)
,

bk

(
E

k;n
reg;h, qh

)
+
∑

κk;n
e;h bk

(
x

k,e;h
S⊥ , qh

)
=
(
̺k;n

⋆ | qh

)
.(7.10)

3Ne and Nc are the numbers of reentrant edges and sharp vertices.
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This time, the summation runs on the reentrant edges e.

We now examine the cases of the modes |k| ≥ 2. First, we show that the
meridian and azimuthal components are orthogonal w.r.t. the form ak(·, ·). Let
u, v be vector fields in the space

H(k)(curlk , divk ; ω) :=
{
w ∈ L2

−1(ω) : curlkw ∈ L2
1(ω) and divkw ∈ L2

1(ω)
}

.

A simple integration by parts shows

ak(u,v) = a0(u,v) + k2
(u

r

∣∣∣
v

r

)
(7.11)

+
(
curl′ uθ | curl′ vθ

)
+ k2

(uθ

r

∣∣∣
vθ

r

)
+ ik B(u,v)

:= ak(u,v) + ak(uθ, vθ) + ik B(u,v),

where the operator curl′ is defined as curl′ w := −∂zw er + ∂r(r w) ez . Thanks to
the absence of singularities at the sharp vertices, the fields in X(k)(ω) are of H1

(k)

regularity near the axis, and thus automatically belong to ∈ L2
−1(ω). (The same

holds for the magnetic boundary condition.) The boundary term B(u,v) is equal
to

B(u,v) =

∫

γb

{(u · n) vθ − uθ (v · n)} dγ,

so it vanishes when u ∧ n = v ∧ n = 0 (and likewise when u · n = v · n = 0). As
far as the form bk is concerned, there holds:

bk(u, p) = b0(u, p) + ik
(uθ

r

∣∣∣ p
)

.

Unlike the mode 0, the divergence constraint mixes the meridian and azimuthal
components. Fully decoupling these components is therefore possible in the non-
mixed formulations (4.3) or (4.4) only.

The formula (7.11) has several consequences. First, ak = a−k, so the orthogonal-

isation procedure of §7.1 gives x
−2,e;h
S⊥ = x

2,e;h
S⊥ . Moreover, given that the azimuthal

component of Se is zero, and the azimuthal component of any field in X(k)(ω) is
regular (recall the proof of Proposition 2.9), the orthogonalisation procedure only

modifies the meridian components of Se, and the x
2,e;h
S⊥ are meridian. Finally, there

holds:

(7.12) ak(u,v) = a2(u,v) + (k2 − 4)
(u

r

∣∣∣
v

r

)
:= a2(u,v) + (k2 − 4) [u | v]−1.

If we take successively as test functions F h ∈ X
reg;h
(k) and x

0,i;h
S⊥ in (4.8), and take

account of the orthogonality of the basis
(
x

2,e;h
S⊥

)

e
for the form a2, we arrive at the

coupled mixed problem:

Find (Ek;n
reg;h, P k;n

h ) ∈ X
reg;h
(k) × Qh and −→κ k;n

h =
(
κk;n

e;h

)

e
∈ RNe such that, for all
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(F h, i, qh) ∈ X
reg;h
(k) × {e} × Qh:

∂2
τ

(
E

k;n
reg;h | F h

)
+
∑

∂2
τκk;n

e;h

(
x

2,e;h
S⊥ | F h

)
+ ak

(
E

k;n
reg;h,F h

)
(7.13)

+ (k2 − 4)
∑

κk;n
e;h

[
x

2,e;h
S⊥ | F h

]

−1
+ bk

(
F h, P k;n

h

)

= −
(
∂τJ

k;n
⋆ | F h

)
+
(
̺k;n

⋆ | divk F h

)
,

∂2
τ

(
E

k;n
reg;h | x2,i;h

S⊥

)
+
∑

∂2
τκk;n

e;h

(
x

2,e;h
S⊥ | x2,i;h

S⊥

)
+ κk;n

i;h(7.14)

+ (k2 − 4)
∑

κk;n
e;h

[
x

2,e;h
S⊥ | x2,i;h

S⊥

]

−1
+ b0

(
x

2,i;h
S⊥ , P k;n

h

)

= −
(
∂τJ

k;n
⋆ | x2,i;h

S⊥

)
+
(
̺k;n

⋆ | divk x
2,i;h
S⊥

)
,

bk

(
E

k;n
reg;h, qh

)
+
∑

κk;n
e;h b0

(
x

2,e;h
S⊥ , qh

)
=
(
̺k;n

⋆ | qh

)
.(7.15)

The summation runs on the reentrant edges e.

From a numerical point of view, notice that the various terms in (7.5–7.7), (7.8–

7.10), and (7.13–7.15) involving the x
k,j;h
S⊥ correspond to integrals with singular

integrands near the geometrical singularities; similarly, the integrals defining the
forms ak(·, ·) and [· | ·]−1 need special care near the axis γa. See [4, §4.4] for an
efficient implementation.

7.3. Miscellaneous. Let us now explain briefly the decoupling of meridian and
azimuthal components in the non-mixed formulation.

The meridian component E
k;n
reg;h is solution to a problem similar to (7.13–7.14),

without the bk and b0 terms, and with div ′ instead of divk .
As for the azimuthal component, we recall that it is regular. Indeed, at the

continuous level, Ek := Ek
θ belongs to H1

(k)(ω) ∩
⋄
H1

1(ω) = V 1
1(ω) ∩

⋄
H1

1(ω), and is

solution to (cf. (2.27)):

(7.16)
〈
Ëk, F

〉
+ak(Ek, F ) = −

(
J̇k | F

)
+ik

(
̺k

r

∣∣∣ F

)
, ∀F ∈ V 1

1(ω)∩
⋄
H1

1(ω).

This is a wave-like equation whose strong form reads:

∂2
t Ek − ∆1E

k + (k2/r2)Ek = −∂tJ
k + (ik/r) ̺k ;

its numerical solution by nodal finite elements is no difficulty. The azimuthal com-
ponents of fields in Xh

(k) belong to

V h
◦ =

{
wh ∈ C0(ω)3 : vh|T ∈ Pκ(T ), ∀T ∈ Th, and vh|∂ω = 0

}
.

Taking an azimuthal test function in (4.3), we arrive at the following formulation:

∂2
τ

(
Ek;n

h | Fh

)
+ ak(Ek;n

h , Fh) = −
(
∂τJk;n

⋆ | Fh

)
+ ik

(
̺k;n

⋆

r

∣∣∣ Fh

)
∀Fh ∈ V h

◦ .

Finally, we show that the overall cost of the method can be slightly reduced, as

in [21, 22], by setting κk;n
e;h := 0 for |k| large enough, i.e., setting Ek;n

h := E
k;n
reg;h,
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where Ek;n
reg;h is the solution to the mixed augmented problem:

Find (Ek;n
reg;h, P k;n

h ) ∈ X
reg;h
(k) × Qh such that, for all (F h, qh) ∈ X

reg;h
(k) × Qh:

∂2
τ

(
E

k;n
reg;h | F h

)
+ ak

(
E

k;n
reg;h,F h

)
+ bk

(
F h, P k;n

h

)
(7.17)

= −
(
∂τJ

k;n
⋆ | F h

)
+
(
̺k;n

⋆ | divk F h

)
,

bk

(
E

k;n
reg;h, qh

)
=
(
̺k;n

⋆ | qh

)
,(7.18)

or of the similar EC or non-mixed versions.

To see that this can be done without deteriorating the convergence rate, we

remark that |κk;n
e;h | . |λk;n

e;h |, where λk;n
e;h is the singularity coefficient of Ek;n

h defined

as in (5.7). Then, using (5.9) and (7.12), we bound:

‖Ek;n
h −Ek;n

reg;h‖2
X,(k) .

∑∣∣∣κk;n
e;h

∣∣∣
2

‖x2,e;h
S⊥ ‖2

X,(k)

.
∑

|k|2αe−2 ‖Ek;n
h ‖2

X,(k)

[
1 + (k2 − 4) ‖x2,e;h

S⊥ ‖2
0,−1

]

. |k|2α⋆ ‖Ek;n‖2
X,(k),

where α⋆ = maxe{αe < 1} (the maximum runs over reentrant edges). The squared
error of the SCM is controlled by h2s−2 |k|2q, where q = s in the non-mixed case
and q = 1+ s in the mixed case, if one recalls the required regularity of the electric
field in Theorem 6.9. Thus, one can neglect the singular part provided that

|k|α⋆

. hs−1 |k|q, i.e. |k| ≥ C⋆ h− s−1
q−α⋆ , for some constant C⋆.

As α⋆ < 1, we see that the exponent of h is always less than 1 in absolute value.
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38. J.-C. Nédélec. A new family of mixed finite elements in R
3, Numer. Math. 50, pp. 57-81

(1986).
39. C. Weber. A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci. 2,

12–25 (1980).

Laboratoire POEMS, UMR 7231 CNRS/ENSTA/INRIA, ENSTA ParisTech, 32, boule-
vard Victor, 75739 Paris Cedex 15, France

E-mail address: ciarlet@ensta.fr
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