
HAL Id: hal-00365312
https://hal.science/hal-00365312v1

Submitted on 3 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The delta envelope: A technique for dose distribution
comparison

Baptiste Blanpain, David Mercier

To cite this version:
Baptiste Blanpain, David Mercier. The delta envelope: A technique for dose distribution comparison.
Medical Physics, 2009, 36 (3), 16p. �10.1118/1.3070546�. �hal-00365312�

https://hal.science/hal-00365312v1
https://hal.archives-ouvertes.fr


The delta envelope: a technique for dose

distribution comparison

Baptiste Blanpain, David Mercier

CEA, LIST, Multisensor Intelligence & Machine Learning Laboratory,

F-91191 Gif-sur-Yvette, France.

January 8, 2009

Abstract

The γ-index is a tool that compares a dose distribution with a reference distribution by
combining dose-difference and distance-to-agreement criteria. It has been widely used for
ten years despite its high computational cost. This cost is due to both a search process
for each reference point and the necessity to remove overestimations caused by the discrete
nature of dose grids. The method proposed in this paper is much faster since it avoids
both these problems. It consists in computing the δ-envelope formed by the γ-ellipsoids
around the points of the reference distribution. This δ-envelope provides dose-difference
tolerances that are then used to create new indexes, called the δ-indexes, that provide useful
information to interpret the deviations. Applied to both 1D and 2D test cases and compared
to the γ-index, the δ-indexes proved to be very accurate and intuitive. Their computational
efficiency was evaluated on a 3D case: the δ-envelope can be computed in eight seconds on
a 250 × 250 × 50 grid. Moreover it can be precomputed if the reference dose is known in
advance. Then the δ-indexes are obtained in less than two seconds.

Keywords: Radiation therapy, quality assurance, dose-difference, distance-to-agreement,
dose distribution comparison, gamma index, delta envelope, delta index.

1 INTRODUCTION

With the clinical implementation of intensity modulated radiation therapy (IMRT), reliable
methods for the evaluation of dose calculation algorithms are required [1, 2]. This evaluation
is carried out by comparing dose distributions computed by these algorithms to distributions
obtained either by measurements or by Monte Carlo computations.

Dose distributions can be directly compared by the dose-difference test with an acceptance
criterion often defined as a percentage of the dose. The drawback of the dose-difference method
resides in its high sensitivity to steep dose gradients, where small spatial shifts can lead to high
dose-differences [3].

The concept of distance-to-agreement (DTA) [3, 4] was introduced to take these spatial shifts
into account. The DTA for a given reference point is the minimal spatial distance to a point of
the evaluated distribution where the dose is the same. It was proposed to use the dose-difference
in low gradient regions and the DTA in steep gradient regions [3, 4], but the obtained measure
of the deviations is neither uniform nor expressive.

The γ-method [5] combines both dose-difference and DTA criteria by defining a distance in
the dose-space domain and an acceptance ellipsoid around each point of the reference dose. For
these points the γ-index is the minimal distance to a point of the evaluated dose. An error is
reported if it is greater than one, i.e. if the closest point is outside the ellipsoid. The γ-index is
now routinely used in treatment planning systems [1, 2].

Some authors have reported weaknesses of the γ-index, for example the time consuming
determination of the closest evaluated point, even with fast search algorithms [6, 7, 8]. Another
drawback of the γ-index as introduced in [5] is that it can be overestimated in regions of steep dose
gradients [8, 9, 10], as explained in Section 2.1. The first method for avoiding this drawback was to
interpolate the evaluated distribution prior to calculating the γ-index. However the interpolations
take excessive time. Another method based on a geometric technique was recently published [8].
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Figure 1: Schematic representation of the γ-index. Black (resp. white) points symbolize reference (resp.
evaluated) points. The points are drawn in the dose-space domain: the vertical axis stands for dose and
the horizontal axis stands for the 1D space. (a) The distance Γq(p, d) in the dose-space domain. (b) The
γ-index of a reference point is the distance in the dose-space domain between this point and the closest
point of the evaluated dose. It is less than one if the closest point is inside the ellipsoid around the
reference point. (c) Possible presence of false positives: the lower ellipsoid does not contain an evaluated
point, though an interpolation between the points of the evaluated dose would pass over it. Thus an
error is wrongly reported by the non-interpolated γ-index.

It totally removes the errors in high gradient regions. However the time of computation remains
very high since γ-distributions are computed within two minutes on 250 ∗ 250 ∗ 50 grids.

Other methods have been proposed that entirely perform the comparison in the dose domain
using both dose-difference and distance-to-agreement criteria [10, 11, 12]. It has been suggested,
for example, to adapt the dose-difference method to take the local dose gradient into considera-
tion [12]. Another such method is the χ-evaluation [10], derived from the γ-index, that uses the
γ-ellipsoids and the local dose gradient to build an acceptance tube around the reference dose.
The main problem of this method is that using only the local gradient makes it inaccurate in
the case of non-zero second derivatives [10], thus a more accurate method is needed.

The method proposed in this paper is based on the same idea as the χ-method, in that it
computes the minimal and maximal permitted doses at a given position, in order to entirely
perform the comparison in the dose domain. These dose-difference tolerances are obtained from
the union of all the γ-ellipsoids, and form a region that wraps the reference distribution and that
we call the δ-envelope. This method is presented in Section 2.2. Three indexes, called δa, δb and
δc, are then presented in Sections 2.3, 2.4 and 2.5, to show how the envelope concept can be useful
to evaluate the quality of dose distributions. Once the δ-envelope is computed, the comparison of
the two distributions by means of the δ-indexes is as fast as a classic dose-difference comparison.
This method also avoids the problems of the γ-index in steep dose gradient regions.

The δ-envelope and δ-indexes are then applied to 1D, 2D and 3D test cases, and are evaluated
in comparison with the γ-index (Section 3). They turn out to be very accurate and also to be
much faster than the classical techniques used to compute the γ-index.
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2 MATERIALS AND METHODS

2.1 The γ-index

This section presents the γ-index [5] and analyses its drawbacks. This method compares two
dose distributions, named the reference dose Dr and the evaluated dose De, by combining the
dose-difference and distance-to-agreement criteria. These criteria are denoted by ∆d for the
dose-difference and by ∆s for the distance-to-agreement (“s” stands for “space”).

We denote by Γq(p, d) the distance in the dose-space domain (Fig. 1(a)) between the reference
dose point at position q where the dose is Dr(q), and a point at position p where the dose is d.
This distance is normalized on ∆s and ∆d:

Γq(p, d) =

√

||q − p||2
∆2

s

+
(Dr(q) − d)2

∆2
d

, (1)

where ||p − q|| is the Euclidian distance between positions p and q.
The surface representing the acceptance criterion around the point (q, Dr(q)) of the reference

dose is an ellipsoid (Fig. 1(b)) defined by the equation

1 = Γq(p, d). (2)

The γ-index of the point at position q of the reference dose Dr is the minimal distance to a
point of the evaluated dose De (see Fig. 1(b)):

γ(q) = min
p

{Γq(p, De(p))} . (3)

The point at position q of the reference dose is accepted if γ(q) 6 1, i.e. if the closest evaluated
point is inside the ellipsoid, and rejected if γ(q) > 1, i.e. if the closest evaluated point is outside
the ellipsoid.

The γ-index, as introduced by Low et al. [5], is widely used in research departments and
clinics since it is the first method that proposes a single criterion based on both dose-difference
and distance-to-agreement criteria. However some problems exist with this method, as explained
in the following paragraphs.

The first problem is well known: in regions of high dose gradient, the γ-index may erroneously
be greater than one [8, 9, 10], as an error is reported on a point of the reference dose although it
is actually valid. This false error detection is called a false positive. Such a situation is described
in Fig. 1(c), where the lower ellipsoid does not contain a point of the evaluated dose whereas
the two distributions are very close together. This may happen when ∆d is small and the dose
gradient is steep. Methods have been proposed to filter out these falsely reported unaccepted
points [8, 9], but at the expense of computation time. Henceforth these methods will be called
interpolated γ-index, while the initial γ-index version proposed in [5] will be referred to as the
non-interpolated γ-index.

The second drawback of the γ-method is the necessity to search for the point of the evaluated
dose that is the closest to a given reference point. This task can be time consuming in the case
of 3D dose distributions. For this purpose fast methods have been developed [6, 7, 8], but a
search for each reference point is still needed. A more promising approach is to precompute
dose tolerances in order to quickly perform the dose evaluation afterwards. Such an approach
is used by the χ-evaluation [10]. It constructs a tube around the reference dose (see Fig. 2(a))
by extending the ellipsoid in the direction of the local dose gradient, also avoiding some false
positives. The problem is that this technique is incorrect for non-zero second derivatives, i.e.
when the dose gradient varies, because it is only based on the local dose gradient, as it can be
seen Fig. 2(b). The method introduced in this paper also precomputes dose tolerances from the
reference distribution, but it accurately takes gradient variations into account.

This analysis of the γ-index shows that there is a need for a distribution comparison method
that would be reliable (i.e. without false positives) and faster than the γ-index technique. Such
method is proposed in this paper. It is based on the δ-envelope concept, that is introduced in
the next section.

2.2 The δ-envelope

A problem of the γ-index shown in the previous section is the presence of false positives: some
errors can be falsely reported because there is no evaluated point in the ellipsoid of a reference
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Figure 2: Graphical representation of the χ-evaluation method [10]. (a) The acceptance tube thickness
at a position is given by extending the ellipsoid of the reference point at this position in the direction of
the local dose gradient. (b) The gradient can vary in the neighborhood of the reference point where the
tube is calculated. The evaluated point P is declared incorrect by the χ-evaluation method because it
is outside the tube, whereas it is actually valid since it is between two ellipsoids.

point, however there are some evaluated points inside the acceptable dose interval for this po-
sition, i.e. evaluated points that stand between the minimal and maximal doses allowed (see
Fig. 1(c)). The method proposed here computes these maximal and minimal doses from the
γ-ellipsoids of all the reference points, as illustrated in Fig. 3(a), to form what we call the δ-
envelope. The maximal (resp. the minimal) dose considered as correct at position p is the
maximal (resp. minimal) dose attained by the ellipsoid of a reference point in the neighborhood
of p. Thus the tolerances above and below the reference dose at a position p, that are called
ε+(p) and ε−(p) respectively (see Fig. 3(b)), can be computed by

ε+(p) = max
q,||p−q||≤∆s







Dr(q) − Dr(p) + ∆d

√

1 − ||p − q||2
∆2

s







(4)

ε−(p) = min
q,||p−q||≤∆s







Dr(q) − Dr(p) − ∆d

√

1 − ||p − q||2
∆2

s







(5)

where

∆d

√

1 − ||p − q||2
∆2

s

is the dose value on the γ-ellipsoid contour, at a distance ||p− q|| (in the space domain) of its
center. It can be directly derived from Eq. (1) where it is the absolute value of Dr(q) − d when
Γq(p, d) = 1.

We introduce e(p) as the dose-difference error at position p:

e(p) = De(p) − Dr(p). (6)

The distribution comparison performed by the γ-index in dose and space domains can now
be converted into a comparison in the dose domain only. One can notice that ε−(p) 6 0 and
ε+(p) > 0 for each position p. As it can be seen in Fig. 3(b), the evaluated point at position p
is in the envelope if ε−(p) 6 e(p) 6 ε+(p), i.e. if De(p) is greater than Dr(p) + ε−(p) and lower
than Dr(p) + ε+(p).

What makes the envelope concept so interesting is that it avoids the need for interpolation
that is the main problem of the γ-index. This property comes from the acceptation of all the
evaluated points that are inside the envelope, i.e. that are located between the minimal and
maximal accepted doses at position p. An evaluated point located inside the envelope has to
be accepted because there is necessarily a point of the reference dose (or a point resulting from
interpolation between points of the reference dose) of which the γ-ellipsoid contains the evaluated
point (see Fig. 3(a) and 3(c)).

The only problem of the δ-envelope can arise when the resolution is sparse, as can be seen in
Fig. 3(d) where an evaluated point is not between the maximal and the minimal ellipsoids, but
it would be between them if the reference points were more closed together. This situation can
happen in high gradient regions where there is no reference point at a distance about ∆s of the
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Figure 3: (a) The δ-envelope is defined by the minimal and maximal doses attained by the γ-ellipsoids.
(b) The δ-envelope at a position p is the dose interval between Dr(p) + ε−(p) and Dr(p) + ε+(p). (c)
The major part of the false positives are directly avoided: the points of the evaluated dose that have an
ellipsoid above them and another one below are reported as correct by the δ-envelope method, contrary
to the non-interpolated γ-index that reports an error in this example because the lower ellipsoid does
not contain a point of the evaluated distribution. (d) The δ-envelope thickness can be underestimated in
the case of a sparse distribution, if the dose gradient is steep at a distance ∆s from the point of interest
and if there is no reference point at this position. This is the case in this example where the point P is
not in the envelope. An interpolation would then be required to ensure the completeness of the envelope.
In this example the point Q would result from the interpolation, so that the point P would be inside the
enlarged envelope.

reference point where the envelope is computed (see Fig. 3(d)). In this configuration, the steep
gradient at distance ∆s from the reference point is not considered and the envelope thickness
is slightly underestimated. As shown in Fig. 3(d), interpolations could be used to ensure the
completeness of the envelope. However this problem can only affect the external border of the
envelope. As a consequence, the interpolations are not strictly necessary since they would be
of little consequence on the envelope thickness. That is why the evaluations of the δ-envelope
presented in Section 3 were performed without interpolation.

In this paper three indexes are presented that take advantage of the δ-envelope concept to
provide valuable information about the evaluated distribution De. These indexes are called δa,
δb and δc. Henceforth the expression “δ-indexes” will be used to refer to the three indexes at a
time, and the symbol δ will be used in the equations valid for each δ-index.

2.3 The δa-index: a direct application of the envelope concept

The δ-envelope provides the minimal and maximal dose values allowed at each position in the
phantom. This information can be used to measure the quality of the evaluated dose distribution
De. The direct application of the envelope concept consists in dividing the errors by ε+ or ε−

depending on whether the error is positive or negative:

δa(p) =

{

e(p)
ε+(p) if e(p) > 0

− e(p)
ε−(p) if e(p) < 0

(7)

If De is inside the envelope at position p, then δa(p) ∈ [−1; 1] (see Fig. 4). If |δa| = 1, then
the evaluated dose is at the limit of the envelope, i.e. at the limit of both dose and space criteria.
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Figure 4: Schematic representation of the δ-indexes. If De(p) is inside the envelope defined around
Dr(p), then δa(p) = δb(p) = δc(p), and −1 6 δ(p) 6 1. If De(p) is outside the envelope, then |δ(p)| > 1
and an error is reported.

As a consequence, |δa| = 1 corresponds to γ = 1, thus either δa or γ can be used to see which
points are rejected and which points are accepted. However, the points rejected by the γ-index
are not exactly the same as those rejected by the δa-index (and by δb and δc). The first reason is
that the δ-envelope can be slightly underestimated when it is computed without interpolation, as
explained in Section 2.2. But the main reason is that while γ gives the shortest distance between
a reference point and the evaluated distribution, the method proposed in this paper calculates
the deviation of each point of the evaluated distribution. As a consequence, these two methods
can report the same deviation but at nearby locations. Another possible consequence is that
some large deviations on the evaluated distribution can be missed by the γ-index, since it does
not necessarily use all the points of the evaluated distribution.

The δa-index is well fitted when the evaluated dose is inside the δ-envelope. However, when
the evaluated dose fails both dose and space criteria, i.e. when |δa| > 1, its magnitude can
importantly differ from that of γ. The reason is that the values of ε+(p) and ε−(p) are computed
by using the points at distances less than ∆s from p, thus the dose gradient variations at distances
greater than ∆s are not taken into account by the δa-index. This is clearly explained in Fig. 5(a),
where one can see that δa shows discrepancies for large deviations (δa > 1) in regions where the
dose gradient changes. However this problem only impacts the large deviations. Then δa can be
a very useful tool, as shown by the evaluation cases in Section 3.

2.4 The δb-index: to use ∆s as the maximal spatial uncertainty

The δb-index is the first totally interpretable index based on the δ-envelope. The case where
the evaluated dose is outside the envelope is separated from the case where it is inside. If
the evaluated dose is inside the envelope the error is divided by the envelope thickness as in
the δa-index. To make the new index coherent outside the envelope, the distance-to-agreement
∆s is now considered as the total spatial uncertainty resulting from all the components of the
treatment chain, i.e. the material, the algorithms and the grid spacing. As a consequence, ∆s is
the maximal spatial deviation that can be tolerated on the evaluated dose, and it cannot be used
anymore if the evaluated dose oversteps it. Then in the case where the evaluated dose is outside
the envelope, the remaining dose deviation (the deviation minus the thickness of the envelope)
is now divided by ∆d. This gives the following definition for the δb-index:

δb(p) =























1 + e(p)−ε+(p)
∆d

if ε+(p) < e(p)
e(p)

ε+(p) if 0 6 e(p) 6 ε+(p)

− e(p)
ε−(p) if ε−(p) 6 e(p) < 0

−1 + e(p)−ε−(p)
∆d

if e(p) < ε−(p)

(8)

As for the δa-index, if De is inside the envelope at position p, then δb(p) ∈ [−1; 1] (see Fig. 4)
and both dose and space criteria are used in its calculation. If |δb| = 1, then the evaluated dose
is at the limit of the envelope, i.e. at the limit of both dose and space criteria.

If |δb| > 1, the evaluated dose fails both criteria, and the space criterion is not used anymore
(see formula (8)). In that case, δb − 1 gives the dose-difference error remaining outside the
envelope. This information can be very useful if the user wants to evaluate the dose error
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remaining once the spatial uncertainty is exceeded. This information is not provided by the
γ-index: when γ > 1, with γ = 1+β, the value of β comes from both the dose and space criteria,
while it may be inappropriate to continue to use the space criterion once it is overstepped.

However, while this index may be very useful to evaluate the importance of deviations in the
context of a known spatial uncertainty ∆s, it may be unsuitable when the same information as
γ is needed since the magnitude of δb (like δa) differs from that of γ when De is outside the
envelope. That is why another index is proposed in the next section.

2.5 The δc-index: an equivalent to the γ-index

The δ-envelope boundaries ε+ and ε− introduced in Section 2.2 are the limits of both the dose-
difference and DTA criteria. That is why the γ and δ-indexes are equivalent when the evaluated
dose is on the envelope border. In this case γ = δ = 1 (approximately, as explained in Section 2.3).
This property will now be extended to make δc equivalent to γ on any integer value. A given
integer value δc = i will correspond to the criteria i∆d and i∆s. With such a definition, δc and
γ can only slightly differ for intermediate values.

To construct this γ-like index, the envelope concept has to be extended. The envelope intro-
duced in Section 2.2 only corresponds to the criteria ∆d and ∆s. The envelopes associated with
the criteria i∆d and i∆s for integers i > 0 are now introduced:

ε+
i (p) = max

q,||p−q||≤i∆s

{

Dr(q) − Dr(p) + i∆d

√

1 − ||p − q||2

(i∆s)
2

}

(9)

ε−i (p) = min
q,||p−q||≤i∆s

{

Dr(q) − Dr(p) − i∆d

√

1 − ||p − q||2

(i∆s)
2

}

(10)

Some remarks can be made about this definition. First of all, for any position p, ε+
0 (p) =

ε−0 (p) = 0. The thickness of the 0-th envelope is null so that it only contains the points of the
reference distribution. Secondly, for any position p, the first envelope (ε+

1 and ε−1 ) is the envelope
introduced in section 2.2.

The direct way to compute these envelopes is to independently compute them. However the
time required to compute an envelope linearly depends on the number of points q to evaluate. As
a consequence the computation time can become important if ε+

i and ε−i have to be computed
for large i. A faster method to compute these envelopes is proposed in the annex.

The main advantage of this multi-envelope structure is its equivalence with γ: if the error
obtained with the γ-method is such that i 6 γ < i + 1, then the evaluated dose De is located in
the (i + 1)-th envelope (i.e. ε+

i 6 e < ε+
i+1 or ε−i > e > ε−i+1). This property is used to construct

the δc-index:

δc(p) =







i +
e(p)−ε

+

i
(p)

ε
+

i+1
(p)−ε

+

i
(p)

if ∃i ∈ N, ε+
i (p) 6 e(p) < ε+

i+1(p)

−i − e(p)−ε
−

i
(p)

ε
−

i+1
(p)−ε

−

i
(p)

if ∃i ∈ N, ε−i (p) > e(p) > ε−i+1(p)
(11)

To compute the δc-index, we first have to find i > 0 such that the evaluated point is inside
the (i + 1)-th envelope and outside the i-th envelope. Since the number i always remains very
small (i 6 2 most of the time), this computation is quasi-instantaneous. In the possible case of
large deviations such that several envelopes are necessary, a fast binary search can be used to
find i.

The above definition implicitly considers that enough envelopes are precomputed before cal-
culating the δc-index, so that every evaluated point is inside an envelope. However, Eq. 11 can
easily be adapted to deal with the case where an evaluated point is outside all the envelopes. For
example, if n envelopes were precomputed and if an evaluated point is outside the n-th envelope,
δc can be adapted by dividing the remaining dose error by ∆d as with δb. Nevertheless a few
envelopes (two to five) are generally enough because evaluated points that would be outside a
too large envelope (for example five times ∆d and ∆s) would be totally unacceptable.

2.6 Analysis

The first advantage of the envelope concept is that it avoids the false positives generated by the
non-interpolated γ-index (see Fig. 3(c)). The envelope wraps all the points between the minimal
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Figure 5: Graphical representation of the iso-indexes curves, with δa, δb and δc taking values in
{−2,−1, 0, 1, 2}. These indexes have the same δ = 0 and δ = ±1 curves, but differ on the δ = ±2
curves. (a) The δa = ±2 curves show discrepancies in regions where the dose gradient varies. (b) The
δb = ±2 curves correspond to the addition of the dose-difference criterion ∆d to the δ = ±1 curves. (c)
The δc = ±2 curves correspond to a 2∆d dose-difference and to a 2∆s distance-to-agreement.

and the maximal tolerated doses so that the points falsely reported as incorrect by the non-
interpolated γ-index are caught by the δ-indexes. The only false positives that can remain come
from the possible underestimation of the envelope thickness when no interpolation is used (see
Section 2.2). However, it is not necessary to use interpolation in the δ-envelopes computation,
since this underestimation only slightly modifies the proposed indexes.

Another advantage of the δ-envelopes is that they can be precomputed, so that the calculation
of the δ-indexes is approximately as long as a dose-difference test, whereas γ necessitates a
search process for each reference point. This makes possible the use of the δ-indexes in situations
where the computation time is a key issue, for example in iterative treatment plan optimization.
The computational efficiency of the methods proposed in this paper is confirmed by the three-
dimensional evaluation presented in Section 3.4.

Another advantage of the δ-indexes is that they give not only the magnitude of the disagree-
ment but also its sign, so that the user directly knows if the dose is under or overestimated at
a given position. However if a user is only interested in the error magnitude, he can use the
absolute value |δ| that reports the same errors as the interpolated γ-index with the advantage
that it avoids its other problems, as previously detailed.

It is also worth comparing the δ-indexes to the χ-evaluation method [10]. Contrary to the
χ-evaluation that is only based on the local dose gradient (see Fig.2(b)), all the reference points
at a distance less than i∆s from p participate in the computation of the i-th envelope. Thus,
contrary to the χ-evaluation method, the method proposed in this paper is appropriate in regions
where the dose gradient changes.

Now we focus on the interpretation of the δ-indexes. Since δa = δb = δc if the evaluated point
is inside the first envelope, these indexes accept and reject the same points. Where they differ
is in the way they deal with large deviations, i.e. the deviations such that the evaluated point is
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outside the envelope.
The δa-index is the most simple application of the δ-envelope concept. Therefore it is very

easy to code and to interpret. Another consequence of its simplicity is that it can be computed
as fast as a classic dose-difference test (less than one second on large dose grids, see Section 3.4).
However, since it uses the δ-envelope thickness even outside of it, δa is not precisely interpretable
for large deviations in regions where the dose gradient changes (see Fig. 5(a)). Then the users
interested in precise interpretation of large deviations have to choose either the δb or δc-index.

The δb-index uses the DTA threshold as the maximal tolerated spatial deviation beyond which
only the dose-difference errors are considered. It can be used when ∆s is the only spatial deviation
that can be accepted, and when we are interested in the remaining dose-difference deviation. In
such a context, the problem of the γ-index is that it also uses the DTA criterion when γ > 1,
thus it implicitly attenuates the deviations. Therefore the δb-index has to be preferred to the
other indexes when ∆s is known to be the maximal tolerated spatial deviation.

The δc-index was designed for situations where greater spatial shifts are admissible. Thus
it provides an equivalent to the γ-index, with the advantage that it avoids its problems of
interpolation and of computation time. However δc requires the computation of several envelopes.
Even though these envelopes can be rapidly computed by the method proposed in the annex,
the computational cost is slightly increased (compared with δa and δb that require only one
envelope). Nevertheless, when the reference dose is known in advance, so that the envelopes
can be precomputed, δc can be obtained within two seconds on large dose grids, as detailed in
Section 3.4

To summarize, the choice of which index to use mainly depends on the kind of information
desired about the large deviations. However, if the calculation time is a key issue and if the
reference dose is not known in advance, then δa and δb have to be considered rather than δc.
But when the reference dose is known in advance so that the envelopes can be precomputed,
δc is approximately as fast as δa and δb. The computational efficiencies were evaluated on a
three-dimensional test case that is presented in Section 3.4.

3 RESULTS

3.1 Evaluation distributions

The evaluation of the δ-indexes and their comparison to the γ-index were firstly performed
on 1D dose distributions to illustrate the envelope concept possibilities, and secondly on 2D
distributions to show the advantages of a δ-map. A full 3D computation was also performed
to evaluate the computational efficiency of the proposed methods. The dose distributions were
computed by the Penelope Monte Carlo code [13]. The voxel size is 1mm.

In the first example (Section 3.2 and Fig. 6), the reference dose Dr is a part of the dose
profile of a 1 × 1cm2, monoenergetic 5MeV photon beam entering in a water cubic phantom.
The distribution used as evaluated dose De results from both a 0.5mm shift and a multiplication
by 0.95 of the reference distribution, so that these distributions are slightly different in both dose
and space domains. The dose-difference and DTA criteria used are 3% of the maximal dose and
1mm respectively. The γ-index was evaluated with and without interpolation, in order to point
out the discrepancies obtained by the direct application of the γ-method, and to show that the
δ-method accurately removes these discrepancies.

The beam used in the 2D case (Section 3.3, Fig. 7 and Fig. 8) is the same as in the 1D
example. The reference distribution Dr is the profile at 2cm depth, normalized to the maximum
dose. The distribution used as evaluated dose De results from both a 2mm shift to the bottom
and a 1mm shift to the right. The dose-difference and DTA criteria used are 3% of the maximal
dose and 2mm respectively.

A 3D test case is also presented (Section 3.4) to evaluate the computational cost of the δ-
envelopes and δ-indexes. Their efficiency is compared to that of the geometrical γ-computation
technique proposed in [8].

3.2 1D Evaluation

Fig. 6(a) shows the reference (Dr) and evaluated (De) distributions, along with the acceptance
δ-envelope - computed via Eq. (4) and (5) - around Dr. We immediately note that the envelope
thickness can be very high where the dose gradient is steep. For instance, at position x = 16, the
accepted dose-difference ε+ is equal to 25% of the maximal dose. We can also notice that the
envelope thickness is not symmetric. For instance we see on the Fig. 6(a) that ε+(16) > |ε−(16)|.
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Figure 6: (a) Reference and evaluated distributions, along with the δ-envelope contours. (b) δ and
γ-distributions. The dashed line stands for the acceptance limits.

This shows that neither fixed [3, 14] nor symmetric [3, 10, 14] dose-difference tolerances can
accurately model the distance-to-agreement criterion in high gradient regions.

Fig. 6(b) shows the γ and δ-indexes for the distributions presented Fig. 6(a). In this example
the dose De is never outside the envelope in steep gradient regions, so that the differences between
the three δ-indexes are very small. That is why δa is the only index represented, for the sake of
clarity. On the other hand, both interpolated and non-interpolated γ-distributions are shown,
to highlight the problems of the non-interpolated version and to confirm the accuracy of the
δ-envelope method.

We immediately notice that the δ-index can be either negative or positive, indicating the
relative positions of De and Dr. However the γ-index could also give the sign of the deviation if
another information (such as the γ-angle [6]) was used. In the following, only the magnitudes of
the γ and δ-indexes are compared.

The explanations are divided into three parts, respectively corresponding to the region at the
left (1 6 x 6 13), to the central region with steep gradients (14 6 x 6 20) and to the right region
(21 6 x 6 35).

In the first 13 positions, γ and δa have approximately the same magnitude, and they both
report errors corresponding to the dose underestimation. Since the dose gradient is very low
in this region, the γ-index is accurate even without interpolation, so that the two γ-curves are
superimposed.

In the right region where the dose gradient is also very low, i.e. after the 21st position, the
three indexes declare the evaluated dose as accepted.

However the two γ-curves disagree in the central zone, i.e. between the 14th and the 20th
positions. Fig. 6(a) shows that the errors reported by the non-interpolated γ-index are false
positives, as described in Fig. 1(c): some reference points do not have an evaluated point in their
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Figure 7: Two-dimensional reference and evaluated distributions, and results of the dose-difference and
distance-to-agreement evaluations.

ellipsoid because the evaluated points are located between these ellipsoids, as it can happen in
high gradient regions. The envelope method removes these false positives as well as the interpo-
lated γ-index. However it has the advantage of being much faster, as explained in Section 3.4.

3.3 2D Evaluation

Fig. 7 and Fig. 8 show the results of some comparison methods for a 2D evaluated distribution
(Fig. 7(b)) obtained by shifts to both the right and the bottom from the reference distribution
(Fig. 7(a)). The dose-difference and the distance-to-agreement tests, along with the γ (interpo-
lated and non-interpolated) and δ-indexes, are the methods compared in this example. Since the
evaluated dose is the result of two shifts on the reference dose, it is expected that the DTA test,
and more particularly the γ and δ-methods, show smaller errors than the dose-difference test.

As expected, large deviations are shown by the dose-difference test (Fig. 7(c)), up to 32% of
the maximum dose. With a 3% tolerated deviation, a great number of points, mainly located in
steep gradient regions at the contour of the square field, are rejected by this test. Since the shifts
are from left to right and from top to bottom, the dose-difference is negative in the upper-left
part and positive in the lower-right part. It can also be noticed that no important error occur
at the center and outside the field, because of a low gradient in these regions.

While the dose-difference test finds deviations about 32% (i.e. about 11×∆d), the DTA test
does not find more than about 1.1 × ∆s = 2.2mm. The reason is that the evaluated dose was
obtained by shifts from the reference distribution, in such a way that very high dose-difference
errors appear in steep gradient regions. One can notice that the 2.2mm value comes from both
the 2mm and 1mm shifts (

√
22 + 12 ≈ 2.2). Another difference is that contrary to the dose-

difference test, the DTA evaluation with 2mm threshold does not show errors on the left and
right borders. The reason is that while the shift is 2mm to the bottom, it is only 1mm to the
right.

Both the interpolated and non-interpolated γ-indexes are presented (Fig. 8(a) and 8(b)). As
expected, more deviations are shown by the non-interpolated version than by the interpolated
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Figure 8: Two-dimensional γ and δ-evaluations of the dose distributions shown in Fig. 7.

one. These are false positives (see Section 2.1). Then the following observations are made on
the interpolated γ-index. The maximal reported γ-value is about 1.1. This value directly comes
from the 2.2mm maximal distance-to-agreement reported in Fig. 7(d) (because 2.2/∆s = 1.1).

The δ-distributions are shown in Fig. 8(c), 8(d) and 8(e). These three indexes accept and
reject the same points, because δa = δb = δc when the evaluated distribution is inside the first
envelope. Differences between these indexes only arise when the evaluated distribution is outside
the envelope, i.e. for large deviations. It can also be noticed that the points rejected by the
γ-index are not exactly the same as those rejected by the δ-indexes, as explained in Section 2.3.
The first reason is that the δ-envelope thickness can be slightly underestimated because it is
computed without interpolation, and the other reason is that the γ and δ-methods can report
the same deviation at close but different locations (see Section 2.3).

The differences between δa and γ are underlined in the lower right region: while the γ-index
shows a 1.1 maximal value, some δa values are greater than 1.6. The reason is that the dose
gradient of the reference distribution changes in this region, so that the large deviations are
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not precisely processed by the δa-index (see Fig. 5(a)). However this example shows that δa is
sufficient to rapidly evaluate which evaluated points are rejected or accepted.

While the γ-index shows a 1.1 maximal value, the maximal δb-value is 4. The reason is that
while the γ-index gives the lowest dose-space distance between the two curves, the δb-index uses
the space criterion ∆s as the maximal tolerated spatial deviation, so that if the error exceeds
this tolerated spatial deviation (i.e. if the evaluated dose is outside the envelope), the remaining
dose deviation is divided by the dose tolerance ∆d (see Eq. (8)). In the current case, a δb-
value of 4 indicates that even with a tolerated 2mm spatial uncertainty, a 3 × ∆d dose error
remains. In this case, if the user knows that the total spatial uncertainty on the whole radiation
therapy equipment is 2mm, then he can immediately conclude that the obtained errors are totally
unacceptable.

The δc-index was designed to provide an equivalent to the γ-index, in that δc is equal to γ
when the evaluated dose is on the border of one of the envelopes. But their values can slightly
differ when the evaluated dose is not on the contour of an envelope, i.e. when γ and δc does not
have integer values. This is clearly illustrated in this example, where the maximal value of δc is
1.4, whereas the maximal value of γ is 1.1. However the differences between these two indexes
are large only at a few locations, while they remain very small elsewhere.

This example brings to light the possibilities offered by the use of the δ-envelope concept.
The δc-index seems to be the most fitted for people used to the γ-index, since it provides the
same information in spite of small differences in magnitude. The δb-index provides different but
interesting information, in that it evaluates the dose-difference error remaining once the DTA
threshold is exceeded. Then it can be used when ∆s is the maximal tolerated spatial uncertainty.
To conclude, even if the δa-index is not perfectly precise in the case of large deviations in regions
where the dose gradient changes (see Fig. 5(a)), this example shows that it can nevertheless be
used to evaluate dose distributions, taking advantage of both its simplicity and its computational
efficiency.

3.4 3D Evaluation: computation time

A full 3D computation was performed to evaluate the time for computing the envelopes and
the δ-indexes. These evaluations were performed with Matlab on a 3.2GHz Intel Xeon, with a
250 × 250 × 50 grid in order to compare the results with those obtained in [8].

The computation of the first envelope took 8.2 seconds. Then the time required to com-
pute δa was 0.4s, while the δb computation took 1.2s. Thus the computation of δa and δb is
quasi-instantaneous if the reference dose is known in advance so that the first δ-envelope can
be precomputed. In the case of a reference dose not known in advance, the total computa-
tion remains very fast (less than 10 seconds) in comparison with the two minutes taken by γ
computations in [8].

The computation of the δc-index requires several envelopes, as explained in Section 2.5.
Even though the number of necessary envelopes generally remains small, their computation via
Eq. 9 and 10 can be expensive because of the large number of points explored. Thus the fast
method described in the annex for constructing the δ-envelopes was used. With this method each
envelope is computed as fast as the first envelope. As a consequence, in our test case the time
for computing n envelopes was 8.2n seconds. For example, with five envelopes, the computation
took about 41 seconds, which remains very reasonable. However five envelopes will be most of
the time unnecessary, since either a 5∆d or a 5∆s error would be unacceptable in the context of
radiotherapy.

When the reference dose is known in advance, so that the envelopes can be precomputed, the
δc-index is computed in 1.9 seconds on the 250 × 250 × 50 grid.

To summarize, all the indexes proposed in this paper can be computed in less than two
seconds on a 3D grid if the reference dose is known in advance. This makes possible to rapidly
obtain an index based on both the dose-difference and the distance-to-agreement criteria.

4 CONCLUSIONS

A new tool for the evaluation of dose distributions is presented in this paper. It is based on
the same formalism as the γ-index [5], but while γ makes a search for each reference point,
the proposed δ-indexes evaluate the distribution by comparison to precomputed dose-difference
tolerances. These tolerances are given by the δ-envelope, that comes from the union of the
γ-ellipsoids centered on the reference points.
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Figure 9: Approximation made by the fast computation of the list of envelopes. The envelope thickness
is computed on the position represented by the bold line, from the reference point at the center of the
figure. Small ellipsoids corresponding to ∆d and ∆s are used instead of that corresponding to 2∆d and
2∆s. This can cause small deviations: the envelope thickness is slightly underestimated by the fast
method with small ellipsoids, that provides the point Q whereas the precise computation with the large
ellipsoid provides the point P .

Since the δ-envelope wraps the points around the reference distribution, the false positives
obtained by the non-interpolated γ-evaluation [5] are directly avoided. Even though methods
exist that compute accurate γ-distributions [8, 9], the δ-envelope method directly solves this
problem with the benefits of both simplicity and computation time.

If the reference distribution is known in advance, the δ-method can also be speeded up by
precomputing the necessary envelopes. In this case, the proposed δ-indexes can be computed in
less than two seconds on a 3D grid.

For all these reasons, the δ-method appears to be a very promising tool for the evaluation
of dose distributions. Choosing this method will permit to avoid the weaknesses of the γ-index,
with no need to change established work habits, since the δ-indexes can be used and displayed
exactly in the same way as the γ-index.

Appendix: A fast recursive method for computing the list of
envelopes

The δc-index proposed in Section 2.5 requires the computation of n envelopes (ε+
i , ε−i )16i6n

defined in Eq. 9 and 10. These envelopes could be computed independently but the time of
calculation becomes important if ε+

i and ε−i have to be computed for a large i (see explanations
in Section 2.5). In this section a faster method is proposed to compute these envelopes.

The first and second envelopes are represented in Fig. 5(c). While the first one corresponds
to a δc = 1 deviation, the second corresponds to a δc = 2 deviation. The technique presented
here computes the second envelope from the first one, and more generally computes the (i+1)-th
envelope from the i-th envelope.

First of all, ε+
0 = ε−0 = Dr, as stated in Section 2.5, thus the 0-th envelope is directly available.

Then the construction of the first envelope (ε−1 and ε+
1 ) from the reference dose distribution Dr

(i.e. from the 0-th envelope) is described in Section 2.2. One can see in Fig. 5(c) that this process
can be used to compute the second envelope from the first one, and to compute the (i + 1)-th
envelope from the i-th envelope, for each i > 0, in the following way:

ε+
i+1(p) = max

q,||p−q||≤∆s







ε+
i (q) − ε+

i (p) + ∆d

√

1 − ||p − q||2

∆s
2







(12)

ε−i+1(p) = min
q,||p−q||≤∆s







ε−i (q) − ε−i (p) − ∆d

√

1 − ||p − q||2

∆s
2







(13)
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With this method, all the points at a distance less than ∆s from p are explored during the
computation of the (i+1)-th envelope at position p. This is exactly the same area as in the δ-
envelope computation proposed in Section 2.2. Thus the computation of the n envelopes (from ε+

1

to ε+
n and from ε−1 to ε−n ) is as long as n computations of the δ-envelope proposed in Section 2.2.
However, in the case of a sparse grid spacing, this method does not provide the exact en-

velopes. Small discrepancies may appear because the large ellipsoids used in Eq. 9 and 10 cannot
perfectly be substituted by the small ellipsoids used in the method presented in this section (see
Fig. 9). Then some errors can appear on ε+

i and ε−i for i > 2. However these errors only slightly
affect the external borders of the envelopes, thus the indexes calculated from these envelopes are
not importantly modified. It can also be noticed that these errors are additive, so that the error
on the (i + 1)-th envelope will always be larger than the error on the i-th envelope. However,
a very high precision is not necessary when the deviation becomes important. For example, no
one would perceive the difference between δc = 3.9 and δc = 4.1. In this case the user only has
to be aware of a deviation about four times larger than the threshold.
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