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Abstract The P.O.T. method (Peaks Over Threshold) consists in using the generalized Pareto distribution
(GPD) as an approximation for the distribution of excesses over a high threshold. In this work,
we use a refinement of this approximation in order to estimate second order parameters of the
model using the method of probability-weighted moments (PWM): in particular, this leads to the
introduction of a new estimator for the second order parameter ρ, which will be compared to other
recent estimators through some simulations. Asymptotic normality results are also proved. Our
new estimator of ρ looks especially competitive when |ρ| is small.

AMS Classification : Primary 62G32; Secondary 60G70

Keywords : Extreme values. Domain of attraction. Excesses. Generalized Pareto Distribution. Probability-
Weighted Moments. Second order parameter. Third order conditions.

1 Introduction

In statistical extreme value theory, on is often interested by the estimation of the far tail of a distribution.
The quality of this estimation especially depends on knowledge about the so-called tail index γ = γ(F ) of
the underlying model F , which is the shape parameter of the Generalized Pareto Distribution (GPD) with
distribution function (d.f.)

Gγ,σ(x) =





1−
(
1 + γx

σ

)− 1
γ

, for γ 6= 0

1 − exp
(
− x

σ

)
, for γ = 0.

The GPD appears as the limiting d.f. of excesses over a high threshold u defined for x ≥ 0 by

Fu(x) := P(X − u ≤ x |X > u), where X has d.f. F .

It was established in Pickands’ and Balkema and de Haan’s results (see [17] and [1]) that F is in the domain
of attraction of an extreme value distribution with shape parameter γ if and only if

lim
u→s+(F )

sup
0<x<s+(F )−u

∣∣∣Fu(x) −Gγ,σ(u)(x)
∣∣∣ = 0

for some positive scaling function σ(u) depending on u, where s+(F ) = sup{x : F (x) < 1}. Since the far
tail of the unknown underlying distribution F is closely tied to the d.f. of excesses over a high threshold,
accurate modelisation of the distribution of excesses is an important topic.

In what follows, we suppose that F is twice differentiable and that its inverse F−1 exists. Let V and A
be the two functions defined by

V (t) = F
−1

(e−t) and A(t) =
V ′′(ln t)

V ′(ln t)
− γ.
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We suppose the following first and second order conditions hold (RVρ below stands for the set of regularly
varying functions with coefficient of variation ρ) :

limt→+∞A(t) = 0 (1.1)

A is of constant sign at ∞ and there exists ρ ≤ 0 such that |A| ∈ RVρ, (1.2)

Under these assumptions, it is proved in [18] that if (un) is a sequence of thresholds such that un → s+(F )
as n→ ∞, then we have the following development

Fun (σny) − Gγ(y) = anDγ,ρ(y) + o(an), as n→ +∞, (1.3)

for all y, where Gγ(y) := 1 −Gγ, 1(y),

σn := σ(un) = V ′ (V −1(un)
)
, an := A

(
eV −1(un)

)
,

Dγ,ρ(y) :=

{
C0,ρ(y), if γ = 0,

Cγ,ρ

(
1
γ ln(1 + γy)

)
if γ 6= 0,

and

Cγ,ρ(y) := e−(1+γ)yIγ,ρ(y) and Iγ,ρ(y) :=

∫ y

0

eγu

∫ u

0

eρsdsdu.

The idea of the present work is that, according to the result (1.3), Gγ,σ(u)(x) + anDγ,ρ(x/σ(u)) is a better

approximation of Fu(x) than Gγ,σ(u)(x) alone : this is the starting point of our method for the estimation
of the second order parameters an and ρ.

The estimation of ρ is of great importance (for instance for the determination of the optimal sample fraction
needed in the estimation of the tail index or of high quantiles) and has been studied by several authors during
the last 15 years. Many of the existing estimators of ρ are based on functionals of the moment statistics

M
(j)
n (kn) = kn

−1∑kn

i=1 (lnXn−i+1:n − lnXn−kn:n)
j
, where Xi:n denotes the ith ascending order statistic

associated to a sample (X1, . . . , Xn) of d.f. F , and kn is the number of excesses retained for the estimation
(where kn→ ∞ but slower than n). We can cite those introduced in [14], [7], [16], [12], [10], [8] and [3].

The estimation of an can also be very useful. For instance, if we consider the estimation of the tail index γ
by the PWM estimator, it was proved in [5] that the main component of the bias of this estimator is of order
an. An estimation of the latter parameter could thus be used to reduce this bias. Moreover, it was proved in
[21] that, in the case ρ = 0, the GPD Gγ+an,σn is a better approximation of the distribution of the excesses
Fu than Gγ,σn ; this is called the penultimate approximation, and the estimation of an is important in this
framework.

In this work, we use the probability-weighted moments (PWM) techniques introduced by Hosking and Wallis
in [15] to estimate the second order parameters ρ and an, as well as the scale parameter σn. The proposed
estimators are based on an “external” estimation of γ : a similar procedure was undertaken in [8], as well
as in [13] but in the reverse way (i.e. the estimator of γ was based on an external estimator of ρ).
Under conditions (1.1) and (1.2), it is known (see [18]) that

∀x ∈ R, lim
t→+∞

V (t+x)−V (t)
V ′(t) −

∫ x

0
eγs ds

A(et)
= Iγ,ρ(x). (1.4)

In order to achieve asymptotic normality results, we will need the following third order condition which
specifies the rate of convergence in (1.4) :

∀x ∈ R, lim
t→+∞

1

B(et)




V (t+x)−V (t)

V ′(t) −
∫ x

0 e
γs ds

A(et)
− Iγ,ρ(x)



 = Rγ,ρ,β(ex), (1.5)

where

Rγ,ρ,β(ex) :=

∫ x

0

eγs

∫ s

0

eρz

∫ z

0

eβydydzds

and the function B tends to 0 and is of constant sign at ∞ and |B| ∈ RVβ , for some β ≤ 0. This condition
has been introduced in [8] and studied in more details in [9].
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Remark 1 We can choose, in our regular case, B(t) := tA′(t)
A(t) − ρ (F should then be three times differen-

tiable).

In Section 2, we introduce the new model based on (1.3) and the associated probability-weighted moments
and establish the asymptotic normality of their estimators. In Section 3, we present our estimators for ρ,
an and σn and establish their asymptotic normality, first when γ is supposed to be known and then for the
unknown γ case. Section 4 contains some simulations illustrating the behaviour of our new estimator of ρ,
by comparison to two other recent estimators.

2 Estimators for the Probability-Weighted Moments

2.1 Definition of the Probability-Weighted Moments

In [15], Hosking and Wallis introduced the PWM method in order to define estimators of γ and σn based
on a sample with d.f. supposed to be an exact GPD. These estimators were obtained through a substitution
method based on the following quantities, the probability-weighted moments

νj = E(XG
j

γ,σn
(X))

where j ∈ {0, 1} and X has d.f. Gγ,σn . The results were generalized in [5] to the case where the sample was
only supposed to be in the domain of attraction of a GPD.

In this work, more parameters are considered, and we note θn = (γ, σn, an, ρ). According to the asymptotic
result (1.3), we define our extended model by the distribution function

Bθn(x) = Gγ,σn(x) − anDγ,ρ

(
x

σn

)
, for all x,

and consider the corresponding first three PWM as follows, where X has d.f. Bθn

ṽj = E(XB
j

θn
(X)), for j ∈ {0, 1, 2}.

It is easy to see that

ṽj =

∫ +∞

0

(1 −Bθn(x))j+1

j + 1
dx.

Note that for all the PWM and their estimators, the subscript n is ommited in order to simplify the notations.
The following lemmas provide expressions of these PWM as functions of the parameters.

Lemma 1 For j ∈ {0, 1, 2}, ρ ≤ 0 and −1 < γ < 1,

νj =
σn

(j + 1)(j + 1 − γ)
.

Lemma 2

ṽ0 = ν0 + an

∫ +∞

0

Dγ,ρ

(
x

σn

)
dx := v0,

and, for j ∈ {1, 2},

ṽj = νj + an

∫ +∞

0

G
j

γ,σn
(x) Dγ,ρ

(
x

σn

)
dx + o(an) := vj + o(an),

Lemma 3 For j ∈ {0, 1, 2}, ρ ≤ 0 and −1 < γ < 1, we have ṽj = vj + o(an) where

vj :=
σn

(j + 1)(j + 1 − γ)
+
anσn

uj
and uj := (j + 1)(j + 1 − γ)(j + 1 − γ − ρ).

In the sequel, we will use the quantities v0, v1, v2 (rather than ṽ0, ṽ1, ṽ2) in order to estimate ρ, an, σn, by a
classical substitution method, relying on Lemma 3 above which gives the relations between the two triplets
of parameters. The proof of lemmas 2 and 3 are given in Appendices 5.1 and 5.2 respectively. That of
Lemma 1 can be found in [5] for j = 0, 1 : the case j = 2 is similar.
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2.2 Asymptotic behaviour of the estimators of the Probability-Weighted Mo-

ments

Let (X1, . . . , Xn) be n i.i.d. random variables with distribution function F , and X1:n, . . . , Xn:n denote the
corresponding order statistics. For a given thresold un, we introduce Y1,Nn , . . . , YNn,Nn the Nn excesses over
un, in ascending order, i.e.

Yj,Nn = Xn−Nn+j : n − un where Nn =
∑n

i=1 IXi>un .

According to (1.3), the distribution Bθn is then likely to be a good approximation for the distribution Fun

of Y1,Nn , . . . , YNn,Nn . This method is of the Peak-Over-Threshold (POT) type.

Remark 2 Note that Nn is binomial distributed with mean n(1 − F (un)) which will be chosen as going to
infinity : consequently, Nn→ ∞ and Nn/(n(1 − F (un)) → 1 in probability as n→ ∞.

Definition 1 For j ∈ {0, 1, 2}, define the estimator of vj by

v̂j :=

∫ +∞

0

(1 − An,un(x))
j+1

j + 1
dx,

where,

An,un(x) =
1

Nn

Nn∑

i=1

I{Yi≤x}.

It follows that, conditionnally on Nn = kn,

v̂j :=
1

j + 1

Nn∑

i=1

((
1 − i− 1

kn

)j+1

−
(

1 − i

kn

)j+1
)
Yi,kn .

Let bn = B(eV −1(un)).

Theorem 1 Under assumptions (1.1), (1.2) and (1.5), with −1 < γ < 1/2, and if

lim
n→∞

√
n (1 − F (un)) anbn = λ1, λ1 ∈ R, (2.1)

lim
n→∞

√
n (1 − F (un)) a2

n = λ2, λ2 ∈ R, (2.2)

lim
n→∞

√
n (1 − F (un)) an = ∞, (2.3)

we have, for almost all sequences kn → +∞, conditionally on Nn = kn,

√
kn





v̂0
σn

− v0
σn

v̂1
σn

− v1
σn

v̂2
σn

− v2
σn





d−→ N (λ1C, Γ) ,

where

Γ =




((1 − 2γ)(1 − γ)2)−1 ((2 − γ)(1 − γ)(2 − 2γ))−1 ((3 − γ)(1 − γ)(3 − 2γ))−1

((2 − γ)(1 − γ)(2 − 2γ))−1 ((3 − 2γ)(2 − γ)2)−1 ((2 − γ)(3 − γ)(4 − 2γ))−1

((3 − γ)(1 − γ)(3 − 2γ))−1 ((2 − γ)(3 − γ)(4 − 2γ))−1 ((5 − 2γ)(3 − γ)2)−1



 (2.4)

and

C =




c0γ,ρ,β

c1γ,ρ,β

c2γ,ρ,β



 where cjγ,ρ,β = ((j + 1)(j + 1 − γ)(j + 1 − γ − ρ)(j + 1 − γ − ρ− β))−1.
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Proof of Theorem 1

Note that

An,un

d
= Fun +

1√
kn

αkn ◦ Fun ,

where αkn is the uniform empirical process based on kn i.i.d. random variables uniformly distributed on
[0, 1].
We have, for j ∈ {0, 1, 2},

v̂j

σn
− vj

σn
=

v̂j

σn
− νj

σn
− an

uj

= T 1
j,kn

− 1√
kn

T 2
j,kn

+
1√
kn

T 3
j,kn

− an

uj
,

where,

T 1
j,kn

=
1

j + 1

∫ +∞

0

[
(Fun(σny))

j+1 − (Gγ(y))j+1
]
dy

T 2
j,kn

=

∫ +∞

0

[αkn ◦ Fun(σny)] (Fun(σny))
j
dy

T 3
j,kn

=






∫ +∞

0

∫ 1

0

(1 − t) 1√
kn

[αkn ◦ Fun ]2(σny).j
[
Fun(σny) − t√

kn
αkn ◦ Fun(σny)

]j−1

dt dy if j ∈ {1, 2}
0 if j = 0.

This is indeed straightforward for j = 0, whereas for j ∈ {1, 2} we use a Taylor expansion, as in the proof of
Theorem 1 in [4] (page 850), with power functions instead of their general weight functions, which have to
be null at zero 1.

The following lemma concerns the terms T 1
j,kn

and will be proved in Appendix 5.3.

Lemma 4 Under the assumptions of Theorem 1,

T 1
j,kn

− an

uj
= cjγ,ρ,βanbn + o(anbn).

T 2
0,kn

has been studied in [5]. The other terms T 2
j,kn

and T 3
j,kn

, for j ∈ {1, 2}, have been treated in [4]
(see pages 851-853), in a more general framework. The results are stated in the following lemma and the
proofs remains valid under our slightly different assumptions (where the role of the condition

√
knan → λ is

replaced here by
√
kna

2
n → λ).

Lemma 5 Under the assumptions2 of Theorem 1, as n→ ∞,

T 3
j,kn

P−→ 0 and T 2
j,kn

d−→
∫ 1

0

t−γ−1tjB(t) dt,

where B is a Brownian Bridge on [0, 1]. Moreover, the vector of coordinates
∫ 1

0
t−γ−1tjB(t) dt with j ∈

{0, 1, 2} has a multivariate normal distribution with mean 0 and covariance matrix Γ defined by (2.4).

We deduce from these lemmas that

√
kn

(
v̂j

σn
− vj

σn

)
d
= cjγ,ρ,β

√
kn anbn + Zj

n + oP(1),

where, using [19] (p. 18), the vector of coordinates Zj
n (for j ∈ {0, 1, 2}) converges in distribution to N(0,Γ).

The statement of Theorem 1 follows by the assumption
√
kn anbn → λ1.

Remark 3 The third order condition is not used to prove Lemma 5. This implies that the consistance of
the vector of coordinates v̂j/σn could be obtained under weaker assumptions.

1this fact exludes the case j=0, where the weight function is identically equal to 1, from their study.
2The restriction γ < 1

2
comes from the study of T 2

0,kn
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3 Asymptotic normality of the PWM estimators of the parame-

ters

3.1 Asymptotic normality for known γ

From now on we will use the following notations :

Vn = (v0, v1, v2)
t , V̂n = (v̂0, v̂1, v̂2)

t

The expressions of the probability weighted-moments as functions of the parameters ρ, an, σn are stated in
Lemma 3. Elementary calculus leads to the following equations (recall that uj = (j+1)(j+1−γ)(j+1−γ−ρ)
for j ∈ {0, 1, 2}) :

ρ = φ1,γ(Vn) , an = φ2,γ(Vn) , σn = φ3,γ(Vn)

where

φ1,γ : (x, y, z) 7→ (1−γ)2x−4(2−γ)2y+3(3−γ)2z
(1−γ)x−4(2−γ)y+3(3−γ)z

φ2,γ : (x, y, z) 7→ 2((1−γ)x−2(2−γ)y)((1−γ)x−3(3−γ)z)(2(2−γ)y−3(3−γ)z)
((1−γ)x−4(2−γ)y+3(3−γ)z)(6(3−γ)z[(1−γ)x−2(2−γ)y]−2(2−γ)y[(1−γ)x−3(3−γ)z])

φ3,γ : (x, y, z) 7→ 6(3−γ)z[(1−γ)x−2(2−γ)y]−2(2−γ)y[(1−γ)x−3(3−γ)z]
(1−γ)x−4(2−γ)y+3(3−γ)z

First assuming that the first order parameter γ is known (the case γ unknown will be handled in the next
section), we can then define our estimators of the parameters ρ, an, and σn as :




ρ̂γ

ân,γ

σ̂n,γ



 =




φ1,γ(V̂n)

φ2,γ(V̂n)

φ3,γ(V̂n)



 hence




ρ̂γ

ân,γ

σ̂n,γ/σn



 =




φ1,γ(V̂n/σn)

φ2,γ(V̂n/σn)

φ3,γ(V̂n/σn)





Proving the asymptotic normality of these estimators by the delta-method (see [20] for instance) would be
straightforward if the functions φj,γ were well-defined at the limit

v := lim
n→∞

Vn

σn
=
(
(1 − γ)−1, (2(2 − γ))−1, (3(3 − γ))−1

)t
.

However this is not the case here, and the proof needs more care than it seems at first glance.

Proposition 1 Suppose that −1 < γ < 1/2 is known, and assumptions (1.1), (1.2), (1.5), (2.1)-(2.3) hold.
Then for almost all sequences kn → +∞, we have, conditionally on Nn = kn :

√
knan(ρ̂γ − ρ)

d−→ N (λ1∇t
1HγC,∇t

1HγΓHγ∇1) (3.1)
√
knan

(
ân,γ

an
− 1

)
d−→ N (λ1∇t

2HγC,∇t
2HγΓHγ∇2) (3.2)

√
kn

(
σ̂n,γ

σn
− 1

)
d−→ N (λ1∇t

3HγC,∇t
3HγΓHγ∇3) (3.3)

where ∇1,∇2,∇3 and Hγ are defined in the proof of this proposition, and λ1 in (2.1).

Proof of Proposition 1

Let Hγ denote the matrix

Hγ =




1 − γ 0 0

0 2(2 − γ) 0
0 0 3(3 − γ)





and let us define the following functions

ψ1,γ : (x, y, z) 7→ (1 − γ)x− 2(2 − γ)y + (3 − γ)z

x− 2y + z

ψ2 : (x, y, z) 7→ 2(x− y)(x− z)(y − z)

(x− 2y + z)(2z(x− y) − y(x− z))

ψ3 : (x, y, z) 7→ 2z(x− y) − y(x− z)

x− 2y + z

6



If U denotes the subset of R
3 on which ψ2 is defined, we have φ1,γ(u) = ψ1,γ(Hγu), φ2,γ(u) = ψ2(Hγu) and

φ3,γ(u) = ψ3(Hγu), for every u = (x, y, z)t ∈ U .

The proof of the proposition relies on the introduction of the following modified probability-weighted mo-
ments

V̂ ′
n =

V̂n/σn − v

an
and V ′ =

Vn/σn − v

an
=

(
1

u0
,

1

u1
,

1

u2

)t

(where the uj are defined in the statement of Lemma 3). If we note e = (1, 1, 1)t, then for every u ∈ U we
have

ψ1,γ(u+ e) = ψ1,γ(u) , ψ2(u+ e) = ψ̃2(u)(1 + d2(u)/d1(u))
−1 , ψ3(u+ e) = ψ3(u) + 1 , (3.4)

where d1(x, y, z) = x− 2y + z, d2(x, y, z) = 2z(x− y) − y(x− z) and

ψ̃2 : (x, y, z) 7→ 2(x− y)(x− z)(y − z)

(x − 2y + z)2
.

Defining
V ′′ := HγV

′ = ((1 − γ − ρ)−1, (2 − γ − ρ)−1, (3 − γ − ρ)−1)t (3.5)

and noticing that Hγv = e, d2(V
′′) = 0 and d1(V

′′) 6= 0, it is now easy to prove the following identities using
(3.4) :

√
knan(ρ̂γ − ρ) =

√
knan(φ1,γ(V̂n/σn) − φ1,γ(Vn/σn)) =

√
knan(ψ1,γ(Hγ V̂

′
n) − ψ1,γ(V ′′))(3.6)

√
knan (ân,γ/an − 1) =

√
kn(φ2,γ(V̂n/σn) − φ2,γ(Vn/σn)) =

√
knan(ψ̃2(Hγ V̂

′
n) − ψ̃2(V

′′)) + Rn(3.7)
√
kn (σ̂n,γ/σn − 1) =

√
kn(φ3,γ(V̂n/σn) − φ3,γ(Vn/σn)) =

√
knan(ψ3(Hγ V̂

′
n) − ψ3(V

′′)) (3.8)

where
Rn =

√
knanψ̃2(Hγ V̂

′
n)
(
(1 + and2(Hγ V̂

′
n)/d1(Hγ V̂

′
n))−1 − 1

)
. (3.9)

The point is that the functions ψ1,γ , ψ2 and ψ3 and their derivatives are well-defined at V ′′ defined by (3.5)
(it was not the case for the functions φj,γ at the limit v = lim Vn/σn). The delta-method can thus be called
upon to obtain relations (3.1) and (3.3) by combining equations (3.6) and (3.8), Theorem 1 and the following
equality √

knan(Hγ V̂
′
n − V ′′) = Hγ(

√
kn(V̂n/σn − Vn/σn))

where

∇1 = ∇ψ1,γ(V ′′) =




p(1 − γ − ρ)/2
−p(2 − γ − ρ)
p(3 − γ − ρ)/2



 and ∇3 = ∇ψ3(V
′′) =




(1 − γ − ρ)2/2
−(2 − γ − ρ)2

(3 − γ − ρ)2/2



 .

p = (1 − γ − ρ)(2 − γ − ρ)(3 − γ − ρ).
We can deal with the case of ân,γ similarly : with ∇2 defined by

∇2 = ∇ψ̃2(V
′′) =




1
2 (1 − γ − ρ)(−5 + 7γ + 7ρ− 2(γ + ρ)2)
2(2 − γ − ρ)(4 − 4γ − 4ρ+ (γ + ρ)2)
1
2 (3 − γ − ρ)(−9 + 9γ + 9ρ− 2(γ + ρ)2)





relation (3.2) will follow from (3.7) by the delta-method, provided Rn (defined in (3.9)) converges to 0 in

probability. This is the case, since Hγ V̂
′
n → V ′′ in probability as n→ ∞, and consequently

Rn = −
√
kna

2
nψ̃2(HγV̂

′
n)
d2(Hγ V̂

′
n)

d1(Hγ V̂ ′
n)

(
1 + and2(Hγ V̂

′
n)/d1(Hγ V̂

′
n)
)−1

vanishes to 0 as n→ ∞ (in probability) because ψ̃2(V
′′) = 1, d1(V

′′) = 2/p, d2(V
′′) = 0, and using assump-

tion (2.2) (which ensures that
√
kna

2
n has a real limit as n→ ∞).
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3.2 Asymptotic normality for unknown γ

We can now define our final estimators of the parameters ρ, an, and σn, by plugging-in an external estimator
of γ. We set 


ρ̂
ân

σ̂n



 =




φ1,γ̂(V̂n)

φ2,γ̂(V̂n)

φ3,γ̂(V̂n)





where γ̂ = γ̂n defines a sequence of estimators of γ based on the Ñn upper excesses associated to a threshold
ũn such that ũn → s+(F ). Let ãn = A(eV −1(ũn)) and λ̃, c, d denote some real constants.

Theorem 2 Let the assumptions of Proposition 1 hold with ρ < 0 and suppose that for some real constant
λ̃, √

n(1 − F (ũn)) ãn → λ̃ as n→ ∞. (3.10)

If conditionally on Ñn = k̃n

k̃1/2
n (γ̂ − γ)

d−→ N (λ̃c, d) as n→ ∞, (3.11)

then for almost all sequences kn→ ∞ and k̃n→ ∞ such that k̃n = o(kn), we have, conditionally on Nn = kn

and Ñn = k̃n,

k̃1/2
n an(ρ̂− ρ)

d−→ N (λ̃cc1, dc
2
1) (3.12)

k̃1/2
n an

(
ân

an
− 1

)
d−→ N (λ̃cc2, dc

2
2) (3.13)

k̃1/2
n

(
σ̂n

σn
− 1

)
d−→ N (λ̃cc3, dc

2
3) (3.14)

for some constants c1, c2, c3 depending on γ and ρ (which expressions are given in the proof of the theorem).

Remark 4 The condition k̃n = o(kn) means that we take less excesses for the estimation of the first-order
parameter γ than for the estimation of the second-order parameter ρ.

Remark 5 Proposition 1 is valid in the whole scope ρ ≤ 0, whereas Theorem 2 excludes the case ρ = 0.
However, according to (3.12) and the expression of c1, the asymptotic mean square error (AMSE) of ρ̂ tends
to 0 when ρ → 0, while this is not the case for many other estimators of ρ studied in the litterature, for
which the AMSE goes to infinity when ρ → 0. This has to be linked with the fact that our estimator of
ρ looks especially competitive in situations where |ρ| is small, as it will be seen in the simulations below
(Section 4).

Remark 6 In our simulations, we used the PWM estimator defined by Hosking & Wallis in [15] (and studied
in [5]).

Proof of Theorem 2

We keep using the notations previously introduced in the proof of Proposition 1 and add the following one :

V̂ ′′
n,γ = Hγ

V̂n/σn − vγ

an
= Hγ V̂

′
n,γ where vγ =

(
(1 − γ)−1, (2(2 − γ))−1, (3(3 − γ))−1

)
.

We first study the deviation

ρ̂− ρ̂γ = ψ1,γ̂(V̂ ′′
n,γ̂) − ψ1,γ(V̂ ′′

n,γ)

= ψ1,γ̂(V̂ ′′
n,γ̂) − ψ1,γ(V̂ ′′

n,γ̂) + ψ1,γ(V̂ ′′
n,γ̂) − ψ1,γ(V̂ ′′

n,γ)

= γ − γ̂ + ψ1,γ(V̂ ′′
n,γ̂) − ψ1,γ(V̂ ′′

n,γ) (3.15)

where we used the fact that ψ1,γ(x, y, z) = −γ + (x − 4y + 3z)/(x− 2y + z). We thus have to concentrate
on the second term. If we note J the 3× 3 diagonal matrix with diagonal coefficients 1, 2 and 3, after some
calculations we obtain the following essential development

V̂ ′′
n,γ̂ − V̂ ′′

n,γ = (Hγ̂ −Hγ)V̂ ′
n,γ + Hγ̂(V̂ ′

n,γ̂ − V̂ ′
n,γ)

= (γ − γ̂)J V̂ ′
n,γ + Hγ̂(vγ − vγ̂)/an

= (γ − γ̂)J V̂ ′
n,γ +

γ − γ̂

an
J vγ . (3.16)
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Note that, according to assumptions (3.11), (3.10) and the second order condition (1.2) (which ensures that
ãn

an
→ 0, when ρ < 0), we have

γ − γ̂

an
=

ãn

an

k̃
1/2
n (γ − γ̂)

k̃
1/2
n ãn

→ 0 as n→ ∞, in probability. (3.17)

Since V̂ ′
n,γ → V ′ as n→ ∞, V̂ ′′

n,γ = Hγ V̂
′
n,γ converges in probability to V ′′ (defined in (3.5)), and consequently

relations (3.16) and (3.17) imply that

lim
n→∞

V̂ ′′
n,γ̂ = lim

n→∞
V̂ ′′

n,γ = V ′′ in probability. (3.18)

Therefore, in view of (3.15) and (3.18), there exists some sequence Wn converging to V ′′ such that

ρ̂− ρ = (γ − γ̂) + a−1
n (γ − γ̂) < ∇ψ1,γ(Wn) , J vγ + anJ V̂

′
n,γ > + (ρ̂γ − ρ).

The central term of the right-hand side of the relation above makes it impossible to have
√
knan as the speed

for the asymptotic normality of ρ̂− ρ (because
√
knan(γ − γ̂) → 0 in probability but

√
kn(γ − γ̂) does not)

: we have instead

k̃1/2
n an(ρ̂−ρ) = k̃1/2

n an(γ− γ̂) + k̃1/2
n (γ− γ̂) < ∇ψ1,γ(Wn) , J vγ +anJ V̂

′
n,γ > + (k̃n/kn)1/2

√
knan(ρ̂γ −ρ).

which, according to assumptions (3.10), (3.11) and Proposition 1, converges in distribution to the gaussian
distribution with mean λ̃cc1 and variance dc21 where

c1 = ∇t
1J vγ =

p

2
((1−γ−ρ)(1−γ)−1−2(2−γ−ρ)(2−γ)−1+(3−γ−ρ)(3−γ)−1) =

−pρ
(1 − γ)(2 − γ)(3 − γ)

The proof of the asymptotic normality for the other two parameters relies on the same tools as above. As
before, there exists some sequence (Wn) converging to V ′′ in probability such that

σ̂n

σn
− σ̂n,γ

σn
= an(ψ3(V̂

′′
n,γ̂) − ψ3(V̂

′′
n,γ)) = (γ − γ̂) < ∇ψ3(Wn) , J vγ + anJ V̂

′
n,γ > .

The limiting distribution of k̃
1/2
n (σ̂n/σn − 1) is therefore N (λ̃cc3, dc

2
3) where c3 = ∇t

3Jvγ .

The case of ân needs a few more details. Setting h(u) = ψ̃2(u)(1 + d2(u)/d1(u))
−1(d2(u)/d1(u)) and e =

(1, 1, 1)t, using (3.4) we find that

ân − ân,γ = φ2,γ̂(V̂n/σn − vγ̂ + vγ̂) − φ2,γ(V̂n/σn − vγ + vγ)

= ψ2(anV̂
′′
n,γ̂ + e) − ψ2(anV̂

′′
n,γ + e)

= ψ̃2(anV̂
′′
n,γ̂) − ψ̃2(anV̂

′′
n,γ) + h(anV̂

′′
n,γ̂) − h(anV̂

′′
n,γ)

= an(ψ̃2(V̂
′′
n,γ̂) − ψ̃2(V̂

′′
n,γ)) + a2

noP(1)

where we used (3.18) and the following facts : d2(V
′′) = 0, ψ̃2(V

′′) = 1, ψ̃2(αu) = αψ̃2(u) and (d2/d1)(αu) =
α(d2/d1)(u) for any α 6= 0 and u ∈ U . We thus have, for some sequence (Wn) converging to V ′′ in probability,

k̃1/2
n an(ân/an−1) = k̃1/2

n (γ−γ̂) < ∇ψ̃2(Wn) , J vγ+anJ V̂
′
n,γ > + oP(k̃1/2

n a2
n)+(k̃n/kn)1/2

√
knan(ân,γ/an−1)

which converges in distribution to N (λ̃cc2, dc
2
2) where c2 = ∇t

2Jvγ .

4 Simulation results

In this section, we shall present some of the graphics obtained, concerning bias and mean square errors of
our estimator of ρ, compared with two others, for three different classes of underlying distributions.

For the three estimators considered, the P.O.T. method we use consists in choosing a threshold un =
F −1(pn) for the estimation of ρ, as well as a second threshold ũn = F −1(p̃n) for the preliminary estimation of
γ (only when necessary, since one of the estimators studied below does not rely on such an initial estimation
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of γ) : the corresponding number of excesses kn and k̃n are then random, and pn and p̃n are the sample
fractions retained for the estimation of ρ and γ respectively. In our simulations, we take, for γ̂ = γ̂(k̃n), the
Hosking and Wallis’ estimator defined in [15] and studied in [5] and [4].

We compare our estimator, denoted in this section by ρ̂PWM , with two others: the one presented in Fraga
Alves, de Haan, Gomes [10], which will be noted ρ̂FGH and the one presented in Fraga Alves, de Haan, Lin
[8], which will be noted ρ̂FHL. They are defined as

ρ̂FGH = −
∣∣∣∣∣
3(T

(τ)
n (kn) − 1)

T
(τ)
n (kn) − 3

∣∣∣∣∣

(see [10] for the definition of T
(τ)
n (kn)), with the tuning parameter τ equal to 0 whenever one expects ρ to

be in the range [−1, 0) and equal to 1 otherwise (as suggested for instance in [2]), and

ρ̂FHL = 3 − 8γ̂−(k̃n) +
6 − 12γ̂−(k̃n)

Tn(kn) − 3

(see [8] for the definition of Tn(kn) and γ̂−(k̃n), the latter being an estimator of γ− = min(0, γ)). Recall that
kn is the number of excesses used for the estimation of ρ and the calculation of T̃n(kn), and k̃n the one used
for the estimation of γ−. The estimator ρ̂FGH does not depend on an initial estimation of the parameter γ,
though.

The models presented in our simulations are the following :

• The Burr(λ, τ) distribution (for which γ = 1/λτ and ρ = −1/λ) defined by

F (x) = (1 + xτ )−λ, x > 0.

• The Arcsin model (for which γ = ρ = −2) defined by

F (x) =
2

π
arcsin

√
x, x ∈ (0, 1).

• The model, for which γ > 0 and ρ = 0 (see [11]), defined by

U(t) = F
−1

(1/t) = tγ(1 + ln t), t > 0. (4.1)

We consider 1000 samples of size n (where n = 5000 for the Arcsin model and 1000 otherwise) and present
the bias and the mean square error of the three estimators of ρ considered above, as function of the fraction
pn of the excesses used for the estimation of ρ. The sample fraction p̃n used for the calculation of ρ̂PWM was
chosen as 0.1 for the Burr model (as in [5]), 0.05 for the third model, and in the sense of the minimization of
the simulated MSE for the Arcsin model. For the preliminary estimation of γ− in the calculation of ρ̂FHL,
the sample fraction p̃n was set to the same values as for our estimator ρ̂PWM , except for the Arcsin model
where the criterion of minimization of the asymptotic MSE was chosen (as suggested in [8], see figure 4 and
details therein). Note however that the simulations undertaken showed that ρ̂FHL was much less sensitive
to the choice of k̃n than ρ̂PWM .

Our simulations (see Figures 1 and 2) confirm that in order to estimate the correct value of ρ, one should
generally use even more than half of the order statistics of the sample. This is coherent with our theoretical
result which says that the number of order statistics to use for the estimation of ρ must be of larger order
than the order needed for the estimation of the tail index γ.

The flat pattern of the RMSE of ρ̂PWM for a reasonably wide region of sample fractions makes the exact
determination of the optimal choice of the sample fraction pn to use less relevant, from a practical point of
view.

The figures presented here show that our estimator can be competitive especially when |ρ| is small. The
same conclusions have been drawn for sample sizes n = 500 and n = 5000 for the distributions presented
here. Note that none of the 4 particular distributions presented here satisfy the restriction −1 < γ < 1/2
imposed in our theorems.
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Figure 1: Bias and RMSE of three estimators of ρ for some models (Burr(2, 1/2) and Burr(8, 1/8), for which
respectively γ = 1, ρ = −1/2, and γ = 1, ρ = −1/8) as a function of the sample fraction pn. The dashed
line is for ρ̂FHL, the thin solid line for ρ̂FGH , and the thick solid line for ρ̂PWM .
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Figure 2: Bias and RMSE of three estimators of ρ for some models (Arcsin model, for which γ = ρ = −2,
and model (4.1) with γ = 1, for which ρ = 0) as a function of the sample fraction pn. The dashed line is for
ρ̂FHL, the thin solid line for ρ̂FGH , and the thick solid line for ρ̂PWM .
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5 Appendix

5.1 Proof of lemma 2

Since Bθn(x) = Gγ,σn(x) − anDγ,ρ(
x

σn
), we have

ṽ0 =
∫ +∞
0 Bθn(x) dx

=
∫ +∞
0

(
Gγ,σn(x) + anDγ,ρ(x/σn)

)
dx

= ν0 + an

∫ +∞
0

Dγ,ρ(x/σn) dx.

and, for j ∈ {1, 2},

ṽj =
∫ +∞
0

B
j+1

θn
(x)

j+1 dx

= 1
j+1

∫ +∞
0

(
Gγ,σn(x) + anDγ,ρ(x/σn)

)j+1
dx

= 1
j+1

∫ +∞
0 G

j+1

γ,σn
(x) dx+ an

∫ s+(Bθn )

0 G
j

γ,σn
(x) Dγ,ρ(x/σn) dx+ o(an)

= νj + an

∫ +∞
0 G

j

γ,σn
(x) Dγ,ρ(x/σn) dx+ o(an).

5.2 Proof of lemma 3

In the case γ 6= 0, ρ < 0 and γ + ρ 6= 0,

Dγ,ρ(x) =
(1 + γx)−1/γ

γρ(γ + ρ)

(
γ(1 + γx)ρ/γ + ρ(1 + γx)−1 − γ − ρ

)
.

At the end of this subsection, we will give expressions of Dγ,ρ in the other cases.

We give the sketch of the proof in case γ > 0, ρ < 0 and γ + ρ 6= 0. All the other cases are similar. We will
see below how the restriction γ < 1 appears (similarly, in case γ < 0, appears the restriction γ > −1). In
the sequel, we will note σ instead of σ(un).

(i) Calculation of v0 : We have,

∫ +∞
0

Dγ,ρ(x/σ) dx = 1
ρ(γ+ρ)

∫ +∞
0

(1 + γx/σ)(ρ−1)/γ dx+ 1
γ(γ+ρ)

∫ +∞
0

(1 + γx/σ)−1/γ−1 dx

− 1
γρ

∫ +∞
0 (1 + γx/σ)−1/γ dx

= 1
ρ(γ+ρ) I1 + 1

γ(γ+ρ) I2 − 1
γρ I3,

where, for γ < 1,

I1 =
σ

1 − γ − ρ
, I2 = σ, I3 =

σ

1 − γ
.

Therefore
∫ +∞
0 Dγ,ρ(x/σ) dx = σ

(1−γ)(1−γ−ρ) and the result for v0 follows.

(ii) Calculation of v1 : We have,

∫ +∞
0 Gγ,σ(x) Dγ,ρ(x/σ) dx = 1

ρ(γ+ρ)

∫ +∞
0 (1 + γx/σ)(ρ−2)/γ dx+ 1

γ(γ+ρ)

∫ +∞
0 (1 + γx/σ)−2/γ−1 dx

− 1
γρ

∫ +∞
0 (1 + γx/σ)−2/γ dx

= 1
ρ(γ+ρ) I1 + 1

γ(γ+ρ) I2 − 1
γρ I3,

where,

I1 =
σ

2 − γ − ρ
, I2 = σ/2, I3 =

σ

2 − γ
.

Therefore
∫ +∞
0 Gγ,σ(x) Dγ,ρ(x/σ) dx = σ

2(2−γ)(2−γ−ρ) and the expression of v1 follows.

(iii) Calculation of v2 : We have,

∫ +∞
0 G

2

γ,σ(x) Dγ,ρ(x/σ) dx = 1
ρ(γ+ρ)

∫ +∞
0 (1 + γx/σ)(ρ−3)/γ dx+ 1

γ(γ+ρ)

∫ +∞
0 (1 + γx/σ)−3/γ−1 dx

− 1
γρ

∫ +∞
0 (1 + γx/σ)−3/γ dx

= 1
ρ(γ+ρ) I1 + 1

γ(γ+ρ) I2 − 1
γρ I3,
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where
I1 =

σ

3 − γ − ρ
, I2 = σ/3, I3 =

σ

3 − γ
.

Therefore
∫ +∞
0

G
2

γ,σ(x) Dγ,ρ(x/σ) dx = σ
3(3−γ)(3−γ−ρ) which yields the result for v2.

Here are the expressions of Dγ,ρ in the different other cases :

Dγ,ρ(x) = (1+γx)−1/γ

γρ

(
(1 + γx)−1(1 + ln(1 + γx)) − 1

)
if γ 6= 0, ρ < 0, γ + ρ = 0

= (1+γx)−1/γ

γ2

(
ln(1 + γx) − 1 + (1 + γx)−1

)
if γ 6= 0, ρ = 0

= e−x

ρ

(
1
ρ (eρx − 1) − x

)
if γ = 0, ρ < 0

= x2

2 e
−x if γ = 0, ρ = 0

5.3 Proof of lemma 4

T 1
j,kn

= 1
j+1

∫ +∞
0

[
(Fun(σny))

j+1 − (Gγ(y))j+1
]
dy

= 1
j+1

∫ +∞
0

(
(Fun(σny))

j+1
)
− 1

j+1

∫ +∞
0

(
(Gγ(y))j+1

)
dy

=: I1 − I2.

Defining gn and g by

gn(x) = V −1(un + σnx) − V −1(un) and g(x) =
1

γ
ln(1 + γx),

we have,
Fun(σny) = e−gn(y) and Gγ(y) = e−g(y)

Setting W (x) = xj+1

j+1 , integration by parts yields

I1 =

∫ +∞

0

W (e−gn(y)) dy =

∫ +∞

0

yW ′(e−gn(y))g′n(y)e−gn(y) dy =

∫ +∞

0

g−1
n (s)e−(j+1)s ds.

(where we used the fact that yW (Fun(σny)) → 0 as y → +∞) and

I2 =

∫ +∞

0

W (e−g(y)) dy =

∫ +∞

0

yW ′(e−g(y))g′(y)e−g(y) dy =

∫ +∞

0

g−1(s)e−(j+1)s ds.

It follows that, for j ∈ {0, 1, 2},

T 1
j,kn

=

∫ +∞

0

(
g−1

n (s) − g−1(s)
)
e−(j+1)s ds =

∫ +∞

0

pun(s)e−(j+1)s ds,

where pun(s) = V (s+V −1(un))−un

V ′(V −1(un)) −
∫ s

0 e
γu du. Moreover, it is easy to see that

∫ +∞

0

e−(j+1)sIγ,ρ(s) ds =
1

uj
,

and therefore
T 1

j,kn
− an

uj

anbn
=

∫ +∞

0

e−(j+1)s

[
pun (s)

an
− Iγ,ρ(s)

bn

]
ds.

We deduce from the third order condition (1.5) that

Γn(s) :=

pun (s)
an

− Iγ,ρ(s)

bn

n→∞−→ Rγ,ρ,β(es).
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In order to conclude the proof, it remains to use the dominated convergence theorem to show that 1
anbn

(T 1
j,kn

−
an

uj
) converges to

∫ +∞
0 e−(j+1)s Rγ,ρ,β(es) ds. Under the third order condition (1.5), we can use the following

bound which is proved in [9] (see equation (2.9) in Theorem 2.1 of [9]):

∀ǫ > 0, ∃n0, ∀n ≥ n0, ∀s ≥ V −1(un0
) − V −1(un), |Γn(s) −Rγ,ρ,β(es)| ≤ ǫeǫse(γ+ρ+β)s.

Therefore, ∣∣∣∣
∫ +∞

0

e−(j+1)s (Γn(s) −Rγ,ρ,β(es)) ds

∣∣∣∣ ≤ ǫ

∫ +∞

0

e(j+1−γ−ρ−β−ǫ)s ds,

with the right hand side of the inequality being bounded, since ǫ can be set sufficiently small to insure that
j + 1 − γ − ρ− β − ǫ > 0. Finally, elementary calculus leads to

∫ +∞

0

e−(j+1)s Rγ,ρ,β(es) ds =
1

(j + 1)(j + 1 − γ)(j + 1 − γ − ρ)(j + 1 − γ − ρ− β)
= cjγ,ρ,β

which concludes the proof of Lemma 4.
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