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The P.O.T. method (Peaks Over Threshold) consists in using the generalized Pareto distribution (GPD) as an approximation for the distribution of excesses over a high threshold. In this work, we use a refinement of this approximation in order to estimate second order parameters of the model using the method of probability-weighted moments (PWM): in particular, this leads to the introduction of a new estimator for the second order parameter ρ, which will be compared to other recent estimators through some simulations. Asymptotic normality results are also proved. Our new estimator of ρ looks especially competitive when |ρ| is small.

Introduction

In statistical extreme value theory, on is often interested by the estimation of the far tail of a distribution. The quality of this estimation especially depends on knowledge about the so-called tail index γ = γ(F ) of the underlying model F , which is the shape parameter of the Generalized Pareto Distribution (GPD) with distribution function (d.f.)

G γ,σ (x) =    1-1 + γx σ -1 γ , for γ = 0 1 -exp -x σ , for γ = 0.
The GPD appears as the limiting d.f. of excesses over a high threshold u defined for x ≥ 0 by

F u (x) := P(X -u ≤ x | X > u)
, where X has d.f. F .

It was established in Pickands' and Balkema and de Haan's results (see [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF] and [START_REF] Balkema | Residual life time at a great age[END_REF]) that F is in the domain of attraction of an extreme value distribution with shape parameter γ if and only if lim

u→s+(F ) sup 0<x<s+(F )-u F u (x) -G γ,σ(u) (x) = 0
for some positive scaling function σ(u) depending on u, where s + (F ) = sup{x : F (x) < 1}. Since the far tail of the unknown underlying distribution F is closely tied to the d.f. of excesses over a high threshold, accurate modelisation of the distribution of excesses is an important topic.

In what follows, we suppose that F is twice differentiable and that its inverse F -1 exists. Let V and A be the two functions defined by V (t) = F -1 (e -t ) and A(t) = V ′′ (ln t) V ′ (ln t) γ.
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We suppose the following first and second order conditions hold (RV ρ below stands for the set of regularly varying functions with coefficient of variation ρ) : lim t→+∞ A(t) = 0 (1.1) A is of constant sign at ∞ and there exists ρ ≤ 0 such that |A| ∈ RV ρ , (

Under these assumptions, it is proved in [START_REF] Raoult | Rate of convergence for the generalized Pareto approximation of the excesses[END_REF] that if (u n ) is a sequence of thresholds such that u n → s + (F ) as n→ ∞, then we have the following development

F un (σ n y) -G γ (y) = a n D γ,ρ (y) + o(a n ), as n → +∞, (1.3) 
for all y, where G γ (y) := 1 -G γ, 1 (y), The idea of the present work is that, according to the result (1.3), G γ,σ(u) (x) + a n D γ,ρ (x/σ(u)) is a better approximation of F u (x) than G γ,σ(u) (x) alone : this is the starting point of our method for the estimation of the second order parameters a n and ρ.

σ n := σ(u n ) = V ′ V -1 (u n ) , a n := A e V -1 ( 
The estimation of ρ is of great importance (for instance for the determination of the optimal sample fraction needed in the estimation of the tail index or of high quantiles) and has been studied by several authors during the last 15 years. Many of the existing estimators of ρ are based on functionals of the moment statistics

M (j) n (k n ) = k n -1 kn i=1 (ln X n-i+1:n -ln X n-kn:n ) j
, where X i:n denotes the ith ascending order statistic associated to a sample (X 1 , . . . , X n ) of d.f. F , and k n is the number of excesses retained for the estimation (where k n → ∞ but slower than n). We can cite those introduced in [14], [START_REF] Drees | Selecting the optimal sample fraction in univariate extreme value estimation[END_REF], [START_REF] Peng | Asymptotically unbiased estimator for the extreme value index[END_REF], [START_REF] Gomes | Semi-parametric estimation of the second order parameter in statistics of extremes[END_REF], [START_REF] Fraga Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], [START_REF] Fraga Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF] and [START_REF] Ciuperca | Semi-parametric estimation for heavy-tailed distributions[END_REF].

The estimation of a n can also be very useful. For instance, if we consider the estimation of the tail index γ by the PWM estimator, it was proved in [START_REF] Diebolt | Asymptotic behaviour of the probability-weighted moments and penultimate approximation[END_REF] that the main component of the bias of this estimator is of order a n . An estimation of the latter parameter could thus be used to reduce this bias. Moreover, it was proved in [START_REF] Worms | Penultimate approximation for the distribution of the excesses[END_REF] that, in the case ρ = 0, the GPD G γ+an,σn is a better approximation of the distribution of the excesses F u than G γ,σn ; this is called the penultimate approximation, and the estimation of a n is important in this framework.

In this work, we use the probability-weighted moments (PWM) techniques introduced by Hosking and Wallis in [START_REF] Hosking | Parameter and quantile estimation for the generalized Pareto distribution[END_REF] to estimate the second order parameters ρ and a n , as well as the scale parameter σ n . The proposed estimators are based on an "external" estimation of γ : a similar procedure was undertaken in [START_REF] Fraga Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF], as well as in [START_REF] Gomes | Asymptotically unbiased" estimators of the tail index based on external estimation of the second order parameter[END_REF] but in the reverse way (i.e. the estimator of γ was based on an external estimator of ρ).

Under conditions (1.1) and (1.2), it is known (see [START_REF] Raoult | Rate of convergence for the generalized Pareto approximation of the excesses[END_REF]) that

∀x ∈ R, lim t→+∞ V (t+x)-V (t) V ′ (t) - x 0 e γs ds A(e t ) = I γ,ρ (x). (1.4)
In order to achieve asymptotic normality results, we will need the following third order condition which specifies the rate of convergence in (1.4) :

∀x ∈ R, lim t→+∞ 1 B(e t )   V (t+x)-V (t) V ′ (t) - x 0 e γs ds A(e t ) -I γ,ρ (x)   = R γ,ρ,β (e x ), (1.5) 
where R γ,ρ,β (e x ) := and the function B tends to 0 and is of constant sign at ∞ and |B| ∈ RV β , for some β ≤ 0. This condition has been introduced in [START_REF] Fraga Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF] and studied in more details in [START_REF] Fraga Alves | Third order extended regular variation[END_REF].

Remark 1 We can choose, in our regular case, B(t) := tA ′ (t) A(t)ρ (F should then be three times differentiable).

In Section 2, we introduce the new model based on (1.3) and the associated probability-weighted moments and establish the asymptotic normality of their estimators. In Section 3, we present our estimators for ρ, a n and σ n and establish their asymptotic normality, first when γ is supposed to be known and then for the unknown γ case. Section 4 contains some simulations illustrating the behaviour of our new estimator of ρ, by comparison to two other recent estimators.

2 Estimators for the Probability-Weighted Moments

Definition of the Probability-Weighted Moments

In [START_REF] Hosking | Parameter and quantile estimation for the generalized Pareto distribution[END_REF], Hosking and Wallis introduced the PWM method in order to define estimators of γ and σ n based on a sample with d.f. supposed to be an exact GPD. These estimators were obtained through a substitution method based on the following quantities, the probability-weighted moments

ν j = E(XG j γ,σn (X))
where j ∈ {0, 1} and X has d.f. G γ,σn . The results were generalized in [START_REF] Diebolt | Asymptotic behaviour of the probability-weighted moments and penultimate approximation[END_REF] to the case where the sample was only supposed to be in the domain of attraction of a GPD. In this work, more parameters are considered, and we note θ n = (γ, σ n , a n , ρ). According to the asymptotic result (1.3), we define our extended model by the distribution function

B θn (x) = G γ,σn (x) -a n D γ,ρ x σ n , for all x,
and consider the corresponding first three PWM as follows, where X has d.f. B θn ṽj = E(XB j θn (X)), for j ∈ {0, 1, 2}.

It is easy to see that ṽj = +∞ 0

(1 -B θn (x)) j+1 j + 1 dx.

Note that for all the PWM and their estimators, the subscript n is ommited in order to simplify the notations.

The following lemmas provide expressions of these PWM as functions of the parameters.

Lemma 1 For j ∈ {0, 1, 2}, ρ ≤ 0 and -1 < γ < 1,

ν j = σ n (j + 1)(j + 1 -γ) .
Lemma 2

ṽ0 = ν 0 + a n +∞ 0 D γ,ρ x σ n dx := v 0 ,
and, for j ∈ {1, 2},

ṽj = ν j + a n +∞ 0 G j γ,σn (x) D γ,ρ x σ n dx + o(a n ) := v j + o(a n ),
Lemma 3 For j ∈ {0, 1, 2}, ρ ≤ 0 and -1 < γ < 1, we have ṽj = v j + o(a n ) where

v j := σ n (j + 1)(j + 1 -γ) + a n σ n u j and u j := (j + 1)(j + 1 -γ)(j + 1 -γ -ρ).
In the sequel, we will use the quantities v 0 , v 1 , v 2 (rather than ṽ0 , ṽ1 , ṽ2 ) in order to estimate ρ, a n , σ n , by a classical substitution method, relying on Lemma 3 above which gives the relations between the two triplets of parameters. The proof of lemmas 2 and 3 are given in Appendices 5.1 and 5.2 respectively. That of Lemma 1 can be found in [START_REF] Diebolt | Asymptotic behaviour of the probability-weighted moments and penultimate approximation[END_REF] for j = 0, 1 : the case j = 2 is similar. According to (1.3), the distribution B θn is then likely to be a good approximation for the distribution F un of Y 1,Nn , . . . , Y Nn,Nn . This method is of the Peak-Over-Threshold (POT) type.

Remark 2 Note that N n is binomial distributed with mean n(1 -F (u n )) which will be chosen as going to infinity : consequently, N n → ∞ and N n /(n(1 -F (u n )) → 1 in probability as n→ ∞.

Definition 1 For j ∈ {0, 1, 2}, define the estimator of v j by

vj := +∞ 0 (1 -A n,un (x)) j+1 j + 1 dx,
where,

A n,un (x) = 1 N n Nn i=1 I {Yi≤x} .
It follows that, conditionnally on

N n = k n , vj := 1 j + 1 Nn i=1 1 - i -1 k n j+1 -1 - i k n j+1 Y i,kn . Let b n = B(e V -1 (un) ).
Theorem 1 Under assumptions (1.1), (1.2) and (1.5), with -1 < γ < 1/2, and if

lim n→∞ n (1 -F (u n )) a n b n = λ 1 , λ 1 ∈ R, (2.1) 
lim n→∞ n (1 -F (u n )) a 2 n = λ 2 , λ 2 ∈ R, (2.2) 
lim n→∞ n (1 -F (u n )) a n = ∞, (2.3) 
we have, for almost all sequences k n → +∞, conditionally on

N n = k n , k n         v 0 σ n - v 0 σ n v 1 σ n - v 1 σ n v 2 σ n - v 2 σ n         d -→ N (λ 1 C, Γ) ,
where

Γ =    ((1 -2γ)(1 -γ) 2 ) -1 ((2 -γ)(1 -γ)(2 -2γ)) -1 ((3 -γ)(1 -γ)(3 -2γ)) -1 ((2 -γ)(1 -γ)(2 -2γ)) -1 ((3 -2γ)(2 -γ) 2 ) -1 ((2 -γ)(3 -γ)(4 -2γ)) -1 ((3 -γ)(1 -γ)(3 -2γ)) -1 ((2 -γ)(3 -γ)(4 -2γ)) -1 ((5 -2γ)(3 -γ) 2 ) -1    (2.4)
and

C =   c 0 γ,ρ,β c 1 γ,ρ,β c 2 γ,ρ,β   where c j γ,ρ,β = ((j + 1)(j + 1 -γ)(j + 1 -γ -ρ)(j + 1 -γ -ρ -β)) -1 . Proof of Theorem 1 Note that A n,un d = F un + 1 √ k n α kn • F un ,
where α kn is the uniform empirical process based on k n i.i.d. random variables uniformly distributed on [0, 1]. We have, for j ∈ {0, 1, 2},

v j σ n - v j σ n = v j σ n - ν j σ n - a n u j = T 1 j,kn - 1 √ k n T 2 j,kn + 1 √ k n T 3 j,kn - a n u j ,
where,

T 1 j,kn = 1 j + 1 +∞ 0 (F un (σ n y)) j+1 -(G γ (y)) j+1 dy T 2 j,kn = +∞ 0 [α kn • F un (σ n y)] (F un (σ n y)) j dy T 3 j,kn =    +∞ 0 1 0 (1 -t) 1 √ kn [α kn • F un ] 2 (σ n y).j F un (σ n y) -t √ kn α kn • F un (σ n y) j-1 dt dy if j ∈ {1, 2} 0 if j = 0.
This is indeed straightforward for j = 0, whereas for j ∈ {1, 2} we use a Taylor expansion, as in the proof of Theorem 1 in [START_REF] Diebolt | Approximation of the distribution of excesses through a generalized probability-weighted moments method[END_REF] (page 850), with power functions instead of their general weight functions, which have to be null at zero1 .

The following lemma concerns the terms T 1 j,kn and will be proved in Appendix 5.3.

Lemma 4 Under the assumptions of Theorem 1,

T 1 j,kn - a n u j = c j γ,ρ,β a n b n + o(a n b n ).
T2 0,kn has been studied in [START_REF] Diebolt | Asymptotic behaviour of the probability-weighted moments and penultimate approximation[END_REF]. The other terms T 2 j,kn and T 3 j,kn , for j ∈ {1, 2}, have been treated in [START_REF] Diebolt | Approximation of the distribution of excesses through a generalized probability-weighted moments method[END_REF] (see pages 851-853), in a more general framework. The results are stated in the following lemma and the proofs remains valid under our slightly different assumptions (where the role of the condition

√ k n a n → λ is replaced here by √ k n a 2 n → λ).
Lemma 5 Under the assumptions 2 of Theorem 1, as n→ ∞,

T 3 j,kn P -→ 0 and T 2 j,kn d -→ 1 0 t -γ-1 t j B(t) dt,
where B is a Brownian Bridge on [0, 1]. Moreover, the vector of coordinates 1 0 t -γ-1 t j B(t) dt with j ∈ {0, 1, 2} has a multivariate normal distribution with mean 0 and covariance matrix Γ defined by (2.4).

We deduce from these lemmas that

k n v j σ n - v j σ n d = c j γ,ρ,β k n a n b n + Z j n + o P (1),
where, using [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF] (p. 18), the vector of coordinates Z j n (for j ∈ {0, 1, 2}) converges in distribution to N (0, Γ). The statement of Theorem 1 follows by the assumption

√ k n a n b n → λ 1 .

Remark 3

The third order condition is not used to prove Lemma 5. This implies that the consistance of the vector of coordinates vj /σ n could be obtained under weaker assumptions.

3 Asymptotic normality of the PWM estimators of the parameters

Asymptotic normality for known γ

From now on we will use the following notations :

V n = (v 0 , v 1 , v 2 ) t , V n = ( v 0 , v 1 , v 2 ) t
The expressions of the probability weighted-moments as functions of the parameters ρ, a n , σ n are stated in Lemma 3. Elementary calculus leads to the following equations (recall that u j = (j +1)(j +1-γ)(j +1-γ -ρ)

for j ∈ {0, 1, 2}) : ρ = φ 1,γ (V n ) , a n = φ 2,γ (V n ) , σ n = φ 3,γ (V n )
where

φ 1,γ : (x, y, z) → (1-γ) 2 x-4(2-γ) 2 y+3(3-γ) 2 z (1-γ)x-4(2-γ)y+3(3-γ)z φ 2,γ : (x, y, z) → 2((1-γ)x-2(2-γ)y)((1-γ)x-3(3-γ)z)(2(2-γ)y-3(3-γ)z) ((1-γ)x-4(2-γ)y+3(3-γ)z)(6(3-γ)z[(1-γ)x-2(2-γ)y]-2(2-γ)y[(1-γ)x-3(3-γ)z]) φ 3,γ : (x, y, z) → 6(3-γ)z[(1-γ)x-2(2-γ)y]-2(2-γ)y[(1-γ)x-3(3-γ)z] (1-γ)x-4(2-γ)y+3(3-γ)z
First assuming that the first order parameter γ is known (the case γ unknown will be handled in the next section), we can then define our estimators of the parameters ρ, a n , and σ n as :

  ργ ân,γ σn,γ   =   φ 1,γ ( Vn ) φ 2,γ ( Vn ) φ 3,γ ( Vn )   hence   ργ ân,γ σn,γ /σ n   =   φ 1,γ ( Vn /σ n ) φ 2,γ ( Vn /σ n ) φ 3,γ ( Vn /σ n )  
Proving the asymptotic normality of these estimators by the delta-method (see [START_REF] Van Der | Asymptotic Statistics[END_REF] for instance) would be straightforward if the functions φ j,γ were well-defined at the limit

v := lim n→∞ V n σ n = (1 -γ) -1 , (2(2 -γ)) -1 , (3(3 -γ)) -1 t .
However this is not the case here, and the proof needs more care than it seems at first glance. 

k n a n (ρ γ -ρ) d -→ N (λ 1 ∇ t 1 H γ C, ∇ t 1 H γ ΓH γ ∇ 1 ) (3.1) k n a n ân,γ a n -1 d -→ N (λ 1 ∇ t 2 H γ C, ∇ t 2 H γ ΓH γ ∇ 2 ) (3.2) k n σn,γ σ n -1 d -→ N (λ 1 ∇ t 3 H γ C, ∇ t 3 H γ ΓH γ ∇ 3 ) (3.3)
where ∇ 1 , ∇ 2 , ∇ 3 and H γ are defined in the proof of this proposition, and λ 1 in (2.1).

Proof of Proposition 1

Let H γ denote the matrix

H γ =   1 -γ 0 0 0 2(2 -γ) 0 0 0 3(3 -γ)  
and let us define the following functions

ψ 1,γ : (x, y, z) → (1 -γ)x -2(2 -γ)y + (3 -γ)z x -2y + z ψ 2 : (x, y, z) → 2(x -y)(x -z)(y -z) (x -2y + z)(2z(x -y) -y(x -z)) ψ 3 : (x, y, z) → 2z(x -y) -y(x -z) x -2y + z If U denotes the subset of R 3 on which ψ 2 is defined, we have φ 1,γ (u) = ψ 1,γ (H γ u), φ 2,γ (u) = ψ 2 (H γ u) and φ 3,γ (u) = ψ 3 (H γ u), for every u = (x, y, z) t ∈ U .
The proof of the proposition relies on the introduction of the following modified probability-weighted moments

V ′ n = V n /σ n -v a n and V ′ = V n /σ n -v a n = 1 u 0 , 1 u 1 , 1 u 2 t
(where the u j are defined in the statement of Lemma 3). If we note e = (1, 1, 1) t , then for every u ∈ U we have

ψ 1,γ (u + e) = ψ 1,γ (u) , ψ 2 (u + e) = ψ2 (u)(1 + d 2 (u)/d 1 (u)) -1 , ψ 3 (u + e) = ψ 3 (u) + 1 , (3.4) 
where

d 1 (x, y, z) = x -2y + z, d 2 (x, y, z) = 2z(x -y) -y(x -z) and ψ2 : (x, y, z) → 2(x -y)(x -z)(y -z) (x -2y + z) 2 . Defining V ′′ := H γ V ′ = ((1 -γ -ρ) -1 , (2 -γ -ρ) -1 , (3 -γ -ρ) -1 ) t (3.5)
and noticing that H γ v = e, d 2 (V ′′ ) = 0 and d 1 (V ′′ ) = 0, it is now easy to prove the following identities using (3.4) :

k n a n (ρ γ -ρ) = k n a n (φ 1,γ ( V n /σ n ) -φ 1,γ (V n /σ n )) = k n a n (ψ 1,γ (H γ V ′ n ) -ψ 1,γ (V ′′ ))(3.6) k n a n (â n,γ /a n -1) = k n (φ 2,γ ( V n /σ n ) -φ 2,γ (V n /σ n )) = k n a n ( ψ2 (H γ V ′ n ) -ψ2 (V ′′ )) + R n (3.7) k n (σ n,γ /σ n -1) = k n (φ 3,γ ( V n /σ n ) -φ 3,γ (V n /σ n )) = k n a n (ψ 3 (H γ V ′ n ) -ψ 3 (V ′′ )) (3.8) 
where

R n = k n a n ψ2 (H γ V ′ n ) (1 + a n d 2 (H γ V ′ n )/d 1 (H γ V ′ n )) -1 -1 . (3.9) 
The point is that the functions ψ 1,γ , ψ 2 and ψ 3 and their derivatives are well-defined at V ′′ defined by (3.5) (it was not the case for the functions φ j,γ at the limit v = lim V n /σ n ). The delta-method can thus be called upon to obtain relations (3.1) and (3.3) by combining equations (3.6) and (3.8), Theorem 1 and the following equality

k n a n (H γ V ′ n -V ′′ ) = H γ ( k n ( V n /σ n -V n /σ n )) where ∇ 1 = ∇ψ 1,γ (V ′′ ) =   p(1 -γ -ρ)/2 -p(2 -γ -ρ) p(3 -γ -ρ)/2   and ∇ 3 = ∇ψ 3 (V ′′ ) =   (1 -γ -ρ) 2 /2 -(2 -γ -ρ) 2 (3 -γ -ρ) 2 /2   . p = (1 -γ -ρ)(2 -γ -ρ)(3 -γ -ρ).
We can deal with the case of a n,γ similarly : with ∇ 2 defined by

∇ 2 = ∇ ψ2 (V ′′ ) =   1 2 (1 -γ -ρ)(-5 + 7γ + 7ρ -2(γ + ρ) 2 ) 2(2 -γ -ρ)(4 -4γ -4ρ + (γ + ρ) 2 ) 1 2 (3 -γ -ρ)(-9 + 9γ + 9ρ -2(γ + ρ) 2 )   relation (3.
2) will follow from (3.7) by the delta-method, provided R n (defined in (3.9)) converges to 0 in probability. This is the case, since H γ V ′ n → V ′′ in probability as n→ ∞, and consequently

R n = -k n a 2 n ψ2 (H γ V ′ n ) d 2 (H γ V ′ n ) d 1 (H γ V ′ n ) 1 + a n d 2 (H γ V ′ n )/d 1 (H γ V ′ n ) -1
vanishes to 0 as n→ ∞ (in probability) because ψ2 (V ′′ ) = 1, d 1 (V ′′ ) = 2/p, d 2 (V ′′ ) = 0, and using assumption (2.2) (which ensures that √ k n a 2 n has a real limit as n→ ∞).

Asymptotic normality for unknown γ

We can now define our final estimators of the parameters ρ, a n , and σ n , by plugging-in an external estimator of γ. We set   ρ ân σn

  =   φ 1,γ ( Vn ) φ 2,γ ( Vn ) φ 3,γ ( Vn )  
where γ = γn defines a sequence of estimators of γ based on the Ñn upper excesses associated to a threshold ũn such that ũn → s + (F ). Let ãn = A(e V -1 (ũn )) and λ, c, d denote some real constants.

Theorem 2 Let the assumptions of Proposition 1 hold with ρ < 0 and suppose that for some real constant λ, n(1 -F (ũ n )) ãn → λ as n→ ∞.

(3.10)

If conditionally on Ñn = kn k1/2 n (γ -γ) d -→ N ( λc, d) as n→ ∞, (3.11) 
then for almost all sequences k n → ∞ and kn → ∞ such that kn = o(k n ), we have, conditionally on N n = k n and Ñn = kn ,

k1/2 n a n (ρ -ρ) d -→ N ( λcc 1 , dc 2 1 ) (3.12) k1/2 n a n ân a n -1 d -→ N ( λcc 2 , dc 2 2 ) (3.13) k1/2 n σn σ n -1 d -→ N ( λcc 3 , dc 2 3 ) (3.14)
for some constants c 1 , c 2 , c 3 depending on γ and ρ (which expressions are given in the proof of the theorem).

Remark 4

The condition kn = o(k n ) means that we take less excesses for the estimation of the first-order parameter γ than for the estimation of the second-order parameter ρ.

Remark 5 Proposition 1 is valid in the whole scope ρ ≤ 0, whereas Theorem 2 excludes the case ρ = 0. However, according to (3.12) and the expression of c 1 , the asymptotic mean square error (AMSE) of ρ tends to 0 when ρ → 0, while this is not the case for many other estimators of ρ studied in the litterature, for which the AMSE goes to infinity when ρ → 0. This has to be linked with the fact that our estimator of ρ looks especially competitive in situations where |ρ| is small, as it will be seen in the simulations below (Section 4).

Remark 6

In our simulations, we used the PWM estimator defined by Hosking & Wallis in [START_REF] Hosking | Parameter and quantile estimation for the generalized Pareto distribution[END_REF] (and studied in [START_REF] Diebolt | Asymptotic behaviour of the probability-weighted moments and penultimate approximation[END_REF]).

Proof of Theorem 2

We keep using the notations previously introduced in the proof of Proposition 1 and add the following one :

V ′′ n,γ = H γ V n /σ n -v γ a n = H γ V ′ n,γ where v γ = (1 -γ) -1 , (2(2 -γ)) -1 , (3(3 -γ)) -1 .
We first study the deviation

ρ -ργ = ψ 1,γ ( V ′′ n,γ ) -ψ 1,γ ( V ′′ n,γ ) = ψ 1,γ ( V ′′ n,γ ) -ψ 1,γ ( V ′′ n,γ ) + ψ 1,γ ( V ′′ n,γ ) -ψ 1,γ ( V ′′ n,γ ) = γ -γ + ψ 1,γ ( V ′′ n,γ ) -ψ 1,γ ( V ′′ n,γ ) (3.15)
where we used the fact that ψ 1,γ (x, y, z) = -γ + (x -4y + 3z)/(x -2y + z). We thus have to concentrate on the second term. If we note J the 3 × 3 diagonal matrix with diagonal coefficients 1, 2 and 3, after some calculations we obtain the following essential development

V ′′ n,γ -V ′′ n,γ = (H γ -H γ ) V ′ n,γ + H γ ( V ′ n,γ -V ′ n,γ ) = (γ -γ)J V ′ n,γ + H γ (v γ -v γ )/a n = (γ -γ)J V ′ n,γ + γ - γ a n J v γ . (3.16)
Note that, according to assumptions (3.11), (3.10) and the second order condition (1.2) (which ensures that ãn an → 0, when ρ < 0), we have

γ - γ a n = ãn a n k1/2 n (γ -γ) k1/2 n ãn → 0 as n→ ∞, in probability. (3.17) Since V ′ n,γ → V ′ as n→ ∞, V ′′ n,γ = H γ V ′ n,γ
converges in probability to V ′′ (defined in (3.5)), and consequently relations (3.16) and (3.17) imply that

lim n→∞ V ′′ n,γ = lim n→∞ V ′′ n,γ = V ′′ in probability. (3.18)
Therefore, in view of (3.15) and (3.18), there exists some sequence W n converging to

V ′′ such that ρ -ρ = (γ -γ) + a -1 n (γ -γ) < ∇ψ 1,γ (W n ) , J v γ + a n J V ′ n,γ > + (ρ γ -ρ).
The central term of the right-hand side of the relation above makes it impossible to have √ k n a n as the speed for the asymptotic normality of ρρ (because

√ k n a n (γ -γ) → 0 in probability but √ k n (γ -γ) does not) : we have instead k1/2 n a n (ρ -ρ) = k1/2 n a n (γ -γ) + k1/2 n (γ -γ) < ∇ψ 1,γ (W n ) , J v γ + a n J V ′ n,γ > + ( kn /k n ) 1/2 k n a n (ρ γ -ρ).
which, according to assumptions (3.10), (3.11) and Proposition 1, converges in distribution to the gaussian distribution with mean λcc 1 and variance dc 2 1 where

c 1 = ∇ t 1 J v γ = p 2 ((1 -γ -ρ)(1 -γ) -1 -2(2 -γ -ρ)(2 -γ) -1 + (3 -γ -ρ)(3 -γ) -1 ) = -pρ (1 -γ)(2 -γ)(3 -γ)
The proof of the asymptotic normality for the other two parameters relies on the same tools as above. As before, there exists some sequence (W n ) converging to V ′′ in probability such that

σn σ n - σn,γ σ n = a n (ψ 3 ( V ′′ n,γ ) -ψ 3 ( V ′′ n,γ )) = (γ -γ) < ∇ψ 3 (W n ) , J v γ + a n J V ′ n,γ > .
The limiting distribution of k1/2 n (σ n /σ n -1) is therefore N ( λcc 3 , dc 2 3 ) where c 3 = ∇ t 3 Jv γ . The case of ân needs a few more details. Setting h(u) = ψ2 (u)(1 + d 2 (u)/d 1 (u)) -1 (d 2 (u)/d 1 (u)) and e = (1, 1, 1) t , using (3.4) we find that

ân -ân,γ = φ 2,γ ( V n /σ n -v γ + v γ ) -φ 2,γ ( V n /σ n -v γ + v γ ) = ψ 2 (a n V ′′ n,γ + e) -ψ 2 (a n V ′′ n,γ + e) = ψ2 (a n V ′′ n,γ ) -ψ2 (a n V ′′ n,γ ) + h(a n V ′′ n,γ ) -h(a n V ′′ n,γ ) = a n ( ψ2 ( V ′′ n,γ ) -ψ2 ( V ′′ n,γ )) + a 2 n o P (1) 
where we used (3.18) and the following facts :

d 2 (V ′′ ) = 0, ψ2 (V ′′ ) = 1, ψ2 (αu) = α ψ2 (u) and (d 2 /d 1 )(αu) = α(d 2 /d 1 )(u)
for any α = 0 and u ∈ U . We thus have, for some sequence

(W n ) converging to V ′′ in probability, k1/2 n a n (â n /a n -1) = k1/2 n (γ-γ) < ∇ ψ2 (W n ) , J v γ +a n J V ′ n,γ > + o P ( k1/2 n a 2 n )+( kn /k n ) 1/2 k n a n (â n,γ /a n -1)
which converges in distribution to N ( λcc 2 , dc 2 2 ) where c 2 = ∇ t 2 Jv γ .

Simulation results

In this section, we shall present some of the graphics obtained, concerning bias and mean square errors of our estimator of ρ, compared with two others, for three different classes of underlying distributions.

For the three estimators considered, the P.O.T. method we use consists in choosing a threshold u n = F -1 (p n ) for the estimation of ρ, as well as a second threshold ũn = F -1 (p n ) for the preliminary estimation of γ (only when necessary, since one of the estimators studied below does not rely on such an initial estimation of γ) : the corresponding number of excesses k n and kn are then random, and p n and pn are the sample fractions retained for the estimation of ρ and γ respectively. In our simulations, we take, for γ = γ( kn ), the Hosking and Wallis' estimator defined in [START_REF] Hosking | Parameter and quantile estimation for the generalized Pareto distribution[END_REF] and studied in [START_REF] Diebolt | Asymptotic behaviour of the probability-weighted moments and penultimate approximation[END_REF] and [START_REF] Diebolt | Approximation of the distribution of excesses through a generalized probability-weighted moments method[END_REF].

We compare our estimator, denoted in this section by ρP W M , with two others: the one presented in Fraga Alves, de Haan, Gomes [START_REF] Fraga Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], which will be noted ρF GH and the one presented in Fraga Alves, de Haan, Lin [START_REF] Fraga Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF], which will be noted ρF HL . They are defined as

ρF GH = - 3(T (τ ) n (k n ) -1) T (τ ) n (k n ) -3
(see [START_REF] Fraga Alves | A new class of semi-parametric estimators of the second order parameter[END_REF] for the definition of T (τ ) n (k n )), with the tuning parameter τ equal to 0 whenever one expects ρ to be in the range [-1, 0) and equal to 1 otherwise (as suggested for instance in [START_REF] Caeiro | A note on the asymptotic variance at optimal levels of a biascorrected Hill estimator[END_REF]), and

ρF HL = 3 -8γ -( kn ) + 6 -12γ -( kn ) T n (k n ) -3
(see [START_REF] Fraga Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF] for the definition of T n (k n ) and γ-( kn ), the latter being an estimator of γ -= min(0, γ)). Recall that k n is the number of excesses used for the estimation of ρ and the calculation of Tn (k n ), and kn the one used for the estimation of γ -. The estimator ρF GH does not depend on an initial estimation of the parameter γ, though.

The models presented in our simulations are the following :

• The Burr(λ, τ ) distribution (for which γ = 1/λτ and ρ = -1/λ) defined by

F (x) = (1 + x τ ) -λ , x > 0.
• The Arcsin model (for which γ = ρ = -2) defined by

F (x) = 2 π arcsin √ x, x ∈ (0, 1). 
• The model, for which γ > 0 and ρ = 0 (see [START_REF] Fraga Alves | A note on second order conditions in extreme value theory: linking general and heavy tail conditions[END_REF]), defined by

U (t) = F -1 (1/t) = t γ (1 + ln t), t > 0. (4.1)
We consider 1000 samples of size n (where n = 5000 for the Arcsin model and 1000 otherwise) and present the bias and the mean square error of the three estimators of ρ considered above, as function of the fraction p n of the excesses used for the estimation of ρ. The sample fraction pn used for the calculation of ρP W M was chosen as 0.1 for the Burr model (as in [START_REF] Diebolt | Asymptotic behaviour of the probability-weighted moments and penultimate approximation[END_REF]), 0.05 for the third model, and in the sense of the minimization of the simulated MSE for the Arcsin model. For the preliminary estimation of γ -in the calculation of ρF HL , the sample fraction pn was set to the same values as for our estimator ρP W M , except for the Arcsin model where the criterion of minimization of the asymptotic MSE was chosen (as suggested in [START_REF] Fraga Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF], see figure 4 and details therein). Note however that the simulations undertaken showed that ρF HL was much less sensitive to the choice of kn than ρP W M .

Our simulations (see Figures 1 and2) confirm that in order to estimate the correct value of ρ, one should generally use even more than half of the order statistics of the sample. This is coherent with our theoretical result which says that the number of order statistics to use for the estimation of ρ must be of larger order than the order needed for the estimation of the tail index γ.

The flat pattern of the RMSE of ρP W M for a reasonably wide region of sample fractions makes the exact determination of the optimal choice of the sample fraction p n to use less relevant, from a practical point of view.

The figures presented here show that our estimator can be competitive especially when |ρ| is small. The same conclusions have been drawn for sample sizes n = 500 and n = 5000 for the distributions presented here. Note that none of the 4 particular distributions presented here satisfy the restriction -1 < γ < 1/2 imposed in our theorems. 

B θn (x) dx = +∞ 0 G γ,σn (x) + a n D γ,ρ (x/σ n ) dx = ν 0 + a n +∞ 0 D γ,ρ (x/σ n ) dx.
and, for j ∈ {1, 2},

ṽj = +∞ 0 B j+1 θn (x) j+1 dx = 1 j+1 +∞ 0 G γ,σn (x) + a n D γ,ρ (x/σ n ) j+1 dx = 1 j+1 +∞ 0 G j+1 γ,σn (x) dx + a n s+(B θn ) 0 G j γ,σn (x) D γ,ρ (x/σ n ) dx + o(a n ) = ν j + a n +∞ 0 G j γ,σn (x) D γ,ρ (x/σ n ) dx + o(a n ).

Proof of lemma 3

In the case γ = 0, ρ < 0 and γ + ρ = 0,

D γ,ρ (x) = (1 + γx) -1/γ γρ(γ + ρ) γ(1 + γx) ρ/γ + ρ(1 + γx) -1 -γ -ρ .
At the end of this subsection, we will give expressions of D γ,ρ in the other cases.

We give the sketch of the proof in case γ > 0, ρ < 0 and γ + ρ = 0. All the other cases are similar. We will see below how the restriction γ < 1 appears (similarly, in case γ < 0, appears the restriction γ > -1). In the sequel, we will note σ instead of σ(u n ).

(i) Calculation of v 0 : We have,

+∞ 0 D γ,ρ (x/σ) dx = 1 ρ(γ+ρ) +∞ 0 (1 + γx/σ) (ρ-1)/γ dx + 1 γ(γ+ρ) +∞ 0 (1 + γx/σ) -1/γ-1 dx -1 γρ +∞ 0 (1 + γx/σ) -1/γ dx = 1 ρ(γ+ρ) I 1 + 1 γ(γ+ρ) I 2 -1 γρ I 3 ,
where, for γ < 1,

I 1 = σ 1 -γ -ρ , I 2 = σ, I 3 = σ 1 -γ . Therefore +∞ 0 D γ,ρ (x/σ) dx = σ (1-γ)(1-γ-ρ) and the result for v 0 follows. (ii) Calculation of v 1 : We have, +∞ 0 G γ,σ (x) D γ,ρ (x/σ) dx = 1 ρ(γ+ρ) +∞ 0 (1 + γx/σ) (ρ-2)/γ dx + 1 γ(γ+ρ) +∞ 0 (1 + γx/σ) -2/γ-1 dx -1 γρ +∞ 0 (1 + γx/σ) -2/γ dx = 1 ρ(γ+ρ) I 1 + 1 γ(γ+ρ) I 2 -1 γρ I 3 ,
where, Defining g n and g by g n (x) = V -1 (u n + σ n x) -V -1 (u n ) and g(x) = 1 γ ln(1 + γx),

I 1 = σ 2 -γ -ρ , I 2 = σ/2, I 3 = σ 2 -γ . Therefore +∞ 0 G γ,σ (x) D γ,ρ (x/σ) dx =
we have, F un (σ n y) = e -gn(y) and G γ (y) = e -g(y)

Setting W (x) = x j+1 j+1 , integration by parts yields (where we used the fact that yW (F un (σ n y)) → 0 as y → +∞) and

I 2 = +∞ 0
W (e -g(y) ) dy = +∞ 0 yW ′ (e -g(y) )g ′ (y)e -g(y) dy = +∞ 0 g -1 (s)e -(j+1)s ds.

It follows that, for j ∈ {0, 1, 2}, In order to conclude the proof, it remains to use the dominated convergence theorem to show that 1 anbn (T 1 j,knan uj ) converges to +∞ 0

e -(j+1)s R γ,ρ,β (e s ) ds. Under the third order condition (1.5), we can use the following bound which is proved in [START_REF] Fraga Alves | Third order extended regular variation[END_REF] (see equation (2.9) in Theorem 2.1 of [START_REF] Fraga Alves | Third order extended regular variation[END_REF]): ∀ǫ > 0, ∃n 0 , ∀n ≥ n 0 , ∀s ≥ V -1 (u n0 ) -V -1 (u n ), |Γ n (s) -R γ,ρ,β (e s )| ≤ ǫe ǫs e (γ+ρ+β)s .

Therefore,

+∞ 0 e -(j+1)s (Γ n (s) -R γ,ρ,β (e s )) ds ≤ ǫ +∞ 0 e (j+1-γ-ρ-β-ǫ)s ds, with the right hand side of the inequality being bounded, since ǫ can be set sufficiently small to insure that j + 1γρβǫ > 0. Finally, elementary calculus leads to +∞ 0 e -(j+1)s R γ,ρ,β (e s ) ds = 1 (j + 1)(j + 1γ)(j + 1γρ)(j + 1γρβ) = c j γ,ρ,β which concludes the proof of Lemma 4.

1 γ

 1 un) , D γ,ρ (y) := C 0,ρ (y), if γ = 0, C γ,ρ ln(1 + γy) if γ = 0, and C γ,ρ (y) := e -(1+γ)y I γ,ρ (y) and I γ,ρ (y) :=

1 Figure 1 :

 11 Figure 1: Bias and RMSE of three estimators of ρ for some models (Burr(2, 1/2) and Burr(8, 1/8), for which respectively γ = 1, ρ = -1/2, and γ = 1, ρ = -1/8) as a function of the sample fraction p n . The dashed line is for ρF HL , the thin solid line for ρF GH , and the thick solid line for ρP W M .
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 2551 Figure 2: Bias and RMSE of three estimators of ρ for some models (Arcsin model, for which γ = ρ = -2, and model (4.1) with γ = 1, for which ρ = 0) as a function of the sample fraction p n . The dashed line is for ρF HL , the thin solid line for ρF GH , and the thick solid line for ρP W M .
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 221110112211 2-γ)(2-γ-ρ) and the expression of v 1 follows. (iii) Calculation of v 2 : We have,+∞ 0 ,σ (x) D γ,ρ (x/σ) dx = 1 ρ(γ+ρ) +∞ 0 γx/σ) (ρ-3)/γ dx + 1 γ(γ+ρ) +∞ 0 γx/σ) -3/γ-1 dx γx/σ) -3/γ dx = (γ+ρ) I 1 + 1 γ(γ+ρ) I 2 -1 γρ I 3 , ,σ (x) D γ,ρ (x/σ) dx = σ 3(3-γ)(3-γ-ρ)which yields the result for v 2 . Here are the expressions of D γ,ρ in the different other cases :D γ,ρ (x) = (1+γx) -1/γ γρ (1 + γx) -1 (1 + ln(1 + γx)) -1 if γ = 0, ρ < 0, γ + ρ = 0 = (1+γx) -1/γ γ γx) -1 + (1 + γx) -1 if γ = 0, ρ = 0 (e ρx -1)x if γ = 0, un (σ n y)) j+1 -(G γ (y)) j+1 dy = 1 j+1 +∞ 0 (F un (σ n y)) j+1 -1 j+1 +∞ 0(G γ (y)) j+1 dy =: I 1 -I 2 .

I 1 = 0 W

 10 +∞ (e -gn(y) ) dy = +∞ 0 yW ′ (e -gn(y) )g ′ n (y)e -gn(y) dy = +∞ 0 g -1 n (s)e -(j+1)s ds.

  n (s)g -1 (s) e -(j+1)s ds = +∞ 0 p un (s)e -(j+1)s ds,where p un (s) = V (s+V -1 (un))-un V ′ (V -1 (un)) -s 0 e γu du.Moreover, it is easy to see that +∞ 0 e -(j+1)s I γ,ρ (s) We deduce from the third order condition (1.5) that Γ n (s) := pu n (s) an -I γ,ρ (s) b n n→∞ -→ R γ,ρ,β (e s ).

  2.2 Asymptotic behaviour of the estimators of the Probability-Weighted Moments Let (X 1 , . . . , X n ) be n i.i.d. random variables with distribution function F , and X 1:n , . . . , X n:n denote the corresponding order statistics. For a given thresold u n , we introduce Y 1,Nn , . . . , Y Nn,Nn the N n excesses over u n , in ascending order, i.e. Y j,Nn = X n-Nn+j : nu n where N n =

	n i=1 I Xi>un .

this fact exludes the case j=0, where the weight function is identically equal to 1, from their study.

The restriction γ < 1 2 comes from the study of T 2 0,kn