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UNIFORM EXPONENTIAL GROWTH FOR SOME SL(2, R) MATRIX PRODUCTS

Given a hyperbolic matrix H ∈ SL(2, R), we prove that for almost every R ∈ SL(2, R), any product of length n of H and R grows exponentially fast with n provided the matrix R occurs less than o(

Introduction

For t, θ ∈ R, let H = H(t) be the hyperbolic matrix exp 1 2 t 0 0 exp -1 2 t

and let R = R(θ) be the rotation matrix cos θ sin θ sin θ cos θ . For a finite word w = w n . . . w 1 on the symbols H and R, we let |w| denote its length and we let m(w) denote the number of occurrences of R in w. For any such word, and for any choice of parameters t and θ, we let A w (t, θ) denote the corresponding matrix product in SL(2, R), and denote by A w (t, θ) its norm. By the Oseledets Theorem, for a typical large word w on H and R, the size of the matrix product is given up to subexponential error, by e L(t,θ)|w| , where L(t, θ) is the Lyapunov exponent of the Bernoulli product giving equal probabilities for H and R. By Furstenberg's Theorem (cf [START_REF] Furstenberg | Harry Noncommuting random products[END_REF]), L(t, θ) > 0 unless t = 0 or θ = π/2 mod π, thus hyperbolic behavior prevails under a very mild "transversality condition" on the pair (H, R).

Here we are interested in the following subtler question: Assuming some stronger transversality condition on the pair (H, R), can one ensure hyperbolic behavior just by limiting the frequency of rotation elements in the word? A basic question in this direction, raised by Bochi and Fayad in [START_REF] Bochi | Dichotomies between uniform hyperbolicity and zero Lyapunov exponents for SL(2, R) cocycles[END_REF], is whether for almost every t and θ, a condition of the type C(t, θ)m(w) ≤ |w| implies that A w (t, θ) grows exponentially. While this question is still open, in [START_REF] Fayad | Exponential growth of product of matrices in SL(2,R)[END_REF], Fayad and Krikorian showed that for almost every t and θ, one has exponential growth provided m(w) ≤ |w| α with 0 < α < 1/2. Our goal in this paper will be to show that the weaker condition C(t, θ)m(w) log m(w) log log m(w) ≤ |w| suffices.

Theorem 1. For every t > 0, 0 < γ < t 2 and almost every θ ∈ R, there exists ǫ > 0 such that for any word w on H and R, if m(w) ≤ ǫ|w|(log |w| log log |w|) -1 , then the spectral radius of A w (t, θ) is at least e |w|γ .

In fact, our proof allows us to take for R a general matrix of SL(2, R), presented in its Cartan decomposition form, as follows.
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Theorem 2. For every t > 0, s > 0, α ∈ R, 0 < γ < t 2 and almost every θ ∈ R, there exists ǫ > 0 such that for any word w on H = H(t) and R = R(θ)H(s)R(α), if m(w) ≤ ǫ|w|(log |w| log log |w|) -1 , then the spectral radius of A w is at least e |w|γ .

Corollary. For every t > 0, 0 < γ < t 2 and almost every R ∈ SL(2, R) with respect to the Haar measure, there exists ǫ > 0 such that for any word w on H = H(t) and R, if m(w) ≤ ǫ|w|(log |w| log log |w|) -1 , then the spectral radius of A w is at least e |w|γ .

Proof of the theorems

We now give a detailed proof of theorem 1. Then we shall indicate how theorem 2 is obtained following the same lines.

From now on we fix t > 0, and drop the dependence on t from the notation. For a given word w we shall use the notations

w [i j] = w j . . . w i for 1 ≤ i ≤ j ≤ |w|. We also let a w , b w , c w , d w : R → R be defined so that A w (θ) = a w (θ) b w (θ) c w (θ) d w (θ) .
Let us say that a function ψ :

Z + → R + is good if (1) ∀k, l ≥ 1, ψ(k) + ψ(l) ≤ ψ(k + l) -log 2.
We will mostly work with multiples (by reals greater than 1) of the functions

ψ 1 (m) = m(1 + log 2 m) and ψ 2 (m) = m(1 + log m)(1 +
log log max{e, m}) (with 0 log 0 = 0). Both ψ 1 and ψ 2 are easily seen to be good. Given a good function ψ and 0 < γ ≤ t 2 , for any word w of length n, we let

F w (ψ, γ) = F w be the set of all θ ∈ [0, π) such that log |a w [1 k] | ≥ kγ -ψ(m(w [1 k] )) and log |a w [k+1 n] | ≥ (n -k)γ -ψ(m(w [k+1 n] )) for all 0 < k < n, but log |a w | < nγ -ψ(m(w)). (2) 
Notice that if F w is not empty, necessarily w 1 = w n = R. In view of (1), it follows that on the set F w , (3)

|a w | ≤ 1 2 |a w [1 k] a w [k+1 n] |, ∀ 0 < k < n.
Lemma 1. For every w we have, writing |w| = n and m(w) = m:

(4) |F w | ≤ 8n 2 e ψ([ m 2 ])+ψ(m-[ m 2 ])-ψ(m) .
Proof. Since a ω is in general a polynomial of degree m(ω) in cos θ, as is easily checked, the set F w is the union of at most 4nm intervals. Now, in order to bound the size of such an interval, we show that the derivative of a w with respect to θ at any (fixed) point of F w is not too small. Since the derivative of R(θ) is R( π 2 )R(θ), using the product rule, it is easy to derive the following formula for the derivative of a w :

(5)

a ′ w = k, w k =R c w [1 k] a w [k+1 n] -a w [1 k] b w [k+1 n] .
On the one hand, we have, for all 0 < k < n,

(6) a w = a w [1 k] a w [k+1 n] + c w [1 k] b w [k+1 n] .
In view of (3), this shows that

(7) 1 2 ≤ - c w [1 k] b w [k+1 n] a w [1 k] a w [k+1 n] ≤ 3 2 . 
In particular, for each 0

< k < n, c w [1 k] a w [k+1 n] and -a w [1 k] b w [k+1 n]
have the same sign.

On the other hand, one easily sees that ∀1 < k < n, the upper left entry of the matrix A w

[k+1 n] R( π 2 )A w [1 k] is c w [1 k] a w [k+1 n] -a w [1 k] b w [k+1 n] = c w [1 k-1] a w [k n] - a w [1 k-1] b w [k n] if w k = R and c w [1 k] a w [k+1 n] -a w [1 k] b w [k+1 n] = e -t c w [1 k-1] a w [k n] - e t a w [1 k-1] b w [k n] if w k = H (indeed, R( π 2 )H(t) = H(-t)R( π 2 ) = H(t)H(-2t)R( π 2 
)). After finite iteration, we deduce from these observations that the quantities c w

[1 k] a w [k+1 n] and -a w [1 k] b w [k+1 n]
for k varying from 1 to n -1 have all the same sign; among them, the summands in (5). Therefore, taking k with

w k = R so that m(w [1 k] ) = [ m 2 ] where m = m(w), we have |a ′ w | ≥ |c w [1 k] a w [k+1 n] | + |a w [1 k] b w [k+1 n] | ≥ 2|a w [1 k] a w [k+1 n] c w [1 k] b w [k+1 n] | 1 2 .
From ( 7) and ( 2), we get (at any point θ ∈ F w ):

|a ′ w | ≥ |a w [1 k] a w [k+1 n] | ≥ e n t
From the above minoration, we deduce that any interval in F w as defined by ( 2)

is of length less than 2e ψ([ m 2 ])+ψ(m-[ m 2 ])-ψ(m)
. Since F w is the union of at most 4nm such intervals, the result follows.

Lemma 2. If F w = ∅ then n ≤ m(1 + 1 t ψ(m)),
where n = |w| and m = m(w). We have

(9) a w = e r t 2 a w [1 k] a w [k+r+1 n] + e -r t 2 c w [1 k] b w [k+r+1 n] .
Observe that in general max(a

2 ω + c 2 ω , b 2 ω + d 2 ω ) ≤ e |ω|t , so that here |c w [1 k] b w [k+r+1 n] | ≤ e (n-r) t 2 .
From ( 1),( 2) and (9), we get

2e n t 2 -ψ(m) ≤ e n t 2 -ψ(m(w [1 k] ))-ψ(m(w [k+r+1 n] )) ≤ e r t 2 |a w [1 k] a w [k+r+1 n] | < e n t 2 -ψ(m) + e (n-2r) t 2 .
Hence rt < ψ(m), which combined with (8) gives the result.

From now on, let E(ψ, γ) denote the set of all θ ∈ [0, π) such that (10) log |a w (θ)| < |w|γψ(m(w)) for some word w.

Lemma 3. There exists some constant c > 0 such that |E(λψ

1 , t 2 )| = O λ≥1 (e -cλ ). Proof. Let E n = E n (λψ 1 , t 2 ) ⊂ E = E(λψ 1 , t
2 ) be the set of θ such that n is the minimal length of a word w such that (10) holds. Clearly E is the disjoint union of the E n 's and each E n is covered by the F w 's with |w| = n.

We then apply lemmas 1 and 2 to estimate |E n | for n ≥ 2 as follows:

(11)

|E n | ≤ |w|=n |F w | ≤ 8n 2 m n m e λ(ψ1(m-[ m 2 ])+ψ1([ m 2 ])-ψ1(m)) ,
where the sum runs over the 2 ≤ m ≤ n such that n ≤ m(1 + 1 t λψ 1 (m)), which implies n ≤ C 0 λm 2 log 2 m. Here and in the sequel, C 0 , C 1 , . . . stand for positive constants independent of m, n or λ.

For n = 1, notice that

E 1 = { θ | | cos θ| < e t 2 -λ }. It is readily seen that ∀m ≥ 2, ψ 1 (m -[ m 2 ]) + ψ 1 ([ m 2 ]) -ψ 1 (m) ≤ -C 1 m log m.
On the other hand, by the use of Stirling's formula, we find that (12) n m ≤ e m log n-m log m+C2m .

So, summing over n in (11) and then reversing the order of summation yields

|E| ≤ |E 1 | + m≥2 e (C3-C1λ)m log m n≤C0λm 2 log 2 m n (m+2)
≤ C 4 e -λ + m≥2 e (C5-C1λ)m log m+(m+3) log λ .

For large λ, this sum is finite and less than e -cλ .

Lemma 4. Let 0 < γ < t 2 . There exists some constant c > 0 such that |E(λψ 2 , γ)\ E(λψ 1 , t

2 )| = O λ≥1 (e -cλ ). Proof. We first notice that if F w (λψ 2 , γ) \ E(λψ 1 , t

2 ) = ∅, then λψ 1 (m(w)) ≥ ( t 2γ)|w|. Thus, proceeding as in the previous lemma, we get (even for n = 1)

|E n (λψ 2 , γ) \ E(λψ 1 , t 2 )| ≤ 8n 2 λψ1(m)≥( t 2 -γ)n m≥2 n m e λ(ψ2(m-[ m 2 ])+ψ2([ m 2 ])-ψ2(m)) .
Here

∀m ≥ 2, ψ 2 (m -[ m 2 ]) + ψ 2 ([ m 2 
])ψ 2 (m) ≤ -C 6 m(1 + log log max{e, m}). Using again (12), we obtain

|E(λψ 2 , γ) \ E(λψ 1 , t 2 )| ≤ m≥2 e (C7-C6λ)m(1+log log max{e,m})-m log m n≤C8λm log 2 m n (m+2) 
≤ m≥2 e (C9-C6λ)m(1+log log max{e,m})+(m+3) log λ .

We conclude as before.

The lemmata 3 and 4 show that for 0 < γ < t 2 , the sum λ∈N * |E(λψ 2 , γ)| converges. By the Borel-Cantelli lemma, we conclude that for almost every θ, there exists λ ≥ 1 such that for all word w, log |a w (θ)| ≥ |w|γλψ 2 (m(w)).

It follows that for almost every θ, if |w| is large and m(w) is much smaller than |w|(log |w| log log |w|) -1 , then 1 |w| log A w (θ) is close to t 2 , as well as 1 |w| 2 log A ww (θ) .

But

A ww (θ) -A w trA w + id = A w (θ) 2 -A w trA w + id = 0, since A w ∈ SL(2, R), which shows that 1 |w| log |trA w | is close to t 2 , yielding the estimate on the spectral radius in theorem 1.

In order to prove theorem 2 by the same method, we consider, instead of the words on H and R, words w = w n . . . w 1 on H(t), R(θ), H(s) and R(α) such that the last three ones always appear consecutively, except maybe at the ends of the word, and m(w) is now the number of these occuring in w. Then the proof goes the same way, notably the considerations of sign in lemma 1.

Proof.

  Let us fix some θ ∈ F w , and write w = w [k+r+1 n] H r w [1 k] with r maximal. Since w 1 = w n = R, as we have already observed, one has 0 < k < nr, m(w [1 k] ), m(w [k+r+1 n] ) ≥ 1

-ψ([ m 2 ])-ψ(m-[ m 2 ])