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Bisets as categories,

and tensor product of induced bimodules

Serge Bouc

Abstract : Bisets can be considered as categories. This note uses this point of view to

give a simple proof of a Mackey-like formula expressing the tensor product of two induced

bimodules.
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1. Introduction

Let R be a commutative ring, let G and H be finite groups, let X be a
subgroup of H ×G, and M be an RX-module. If m ∈ M and (h, g) ∈ X, set
h ·m · g−1 = (h, g) ·m : this is a slight extension of the usual correspondence
between R(H × G)-modules and (RH, RG)-bimodules.

The object of this note is to give a simple proof of the following result :

1.1. Theorem : Let R be a commutative ring, let G, H, and K be finite
groups, let X be a subgroup of H ×G and Y be a subgroup of K ×H. Let M
be an RX-module, and N be an RY -module. Then there is an isomorphism
of (RK, RG)-bimodules

(IndK×H
Y N)⊗RH (IndH×G

X M) ∼= ⊕
t∈[p2(Y )\H/p1(X)]

IndK×G
Y ∗(t,1)X

(N⊗k2(Y )∩tk1(X)
(t,1)M) ,

where the notation is as follows (cf. [1]) :

p1(X) = {h ∈ H | ∃g ∈ G, (h, g) ∈ X}, k1(X) = {h ∈ H | (h, 1) ∈ X}

p2(Y ) = {h ∈ H | ∃k ∈ K, (k, h) ∈ Y }, k2(Y ) = {h ∈ H | (1, h) ∈ Y }

Y ∗ (t,1)X = {(k, g) ∈ K × G | ∃h ∈ H, (k, h) ∈ Y, (ht, g) ∈ X} .

The action of (k, g) ∈ Y ∗ (t,1)X on N ⊗k2(Y )∩tk1(X)
(t,1)M is given by

k · (n ⊗ m) · g−1 = (k · n · h−1) ⊗ (ht · m · g−1) ,

if h ∈ H is chosen such that (k, h) ∈ Y and (ht, g) ∈ X.
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2. Functors over bisets

Recall that when G and H are groups, an (H, G)-biset U is a set equipped
with a left action of H and a right action of G which commute, i.e. such that
(hu)g = h(ug) for any h ∈ H , u ∈ U , and g ∈ G.

2.1. Notation : Let G and H be groups. When U is an (H, G)-biset, let
〈U〉 denote the following category :

• The objects of 〈U〉 are the elements of U .

• If u, v ∈ U , then

Hom〈U〉(u, v) = {(h, g) ∈ H × G | hu = vg} .

• If u, v, w ∈ U , the composition of the morphisms (h, g) : u → v and
(h′, g′) : v → w is the morphism (h′h, g′g) : u → w.

• If u ∈ U , the identity morphism Idu : u → u is the pair (1, 1) ∈ G×G.

Note that the category 〈U〉 is a groupoid (any morphism is an isomor-
phism), and that for any u ∈ U , the group

A(u) = Hom〈U〉(u, u) = {(h, g) ∈ H × G | hu = ug}

is a subgroup of H × G.
A functor M from 〈U〉 to a category C consists of a collection of objects

M(u) of C, for u ∈ U , together with morphisms

M(h, g) : M(u) → M(hug−1)

in the category C, for (h, g) ∈ H×G, fulfilling the usual functorial conditions.
In particular, for each u ∈ U , there is a group homomorphism A(u) →
AutCM(u).

Functors from 〈U〉 to C are the objects of a category Fun(〈U〉, C), in which
the morphisms are natural transformation of functors.

2.2. Notation : When C is a subcategory of the category Sets of sets,
and M is a functor 〈U〉 → C, the image of m ∈ M(u) by the map M(h, g) :
M(u) → M(hug−1), for (h, g) ∈ H × G, will be denoted by hmg−1.

In this case, a functor M : 〈U〉 → C is a collection of objects M(u) of C,
for u ∈ U , together with morphisms m 7→ hmg−1 : M(u) → M(hug−1) in C,
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for (h, g) ∈ H ×G, such that h′(hmg−1)g′−1 = (h′h)m(g′g)−1 and 1m1 = m,
for any (h, g), (h′, g′) in H × G, any u ∈ U , and any m ∈ M(u).

2.3. Example : Suppose that C = Sets. Then the disjoint union
⊔

M =
⊔

u∈U

M(u) becomes an (H, G)-biset, and the map
⊔

M → U sending elements

of M(u) to u, for u ∈ U , is a map of (H, G)-bisets. Conversely, if π : S → U
is a map of (H, G)-bisets, then the assignment u 7→ π−1(u) is a functor from
〈U〉 to Sets.

In other words, a functor 〈U〉 → Sets is just an (H, G)-biset over U .
More precisely, the category Fun(〈U〉, Sets) of such functors is equivalent to
the category of (H, G)-bisets over U .

2.4. Example : Let R be a commutative ring. In the remainder of this
note, the category C will be the category R-Mod of (left) R-modules. If M
is functor from 〈U〉 to R-Mod, then for each u ∈ U , the R-module M(u) has
a natural structure of RA(u)-module.

Conversely, let [H\U/G] be a set of representatives of (H, G)-orbits on U .
Equivalently [H\U/G] is a set of representatives of isomorphism classes in the
category 〈U〉. Since 〈U〉 is a groupoid, it is equivalent to its full subcategory
[H\U/G]. In particular, this yields an equivalence of categories

(2.5) Fun(〈U〉, R-Mod) ∼=
∏

u∈[H\U/G]

RA(u)-Mod .

2.6. Remark : In the situation of Example 2.4, the direct sum

Σ(M) = ⊕
u∈U

M(u)

has a natural structure of (RH, RG)-bimodule, i.e. using the usual group
isomorphism (h, g) 7→ (h, g−1) from H × Gop to H × G, of left R(H × G)-
module.

Moreover, is is easy to see that there is an isomorphism of (RH, RG)-
bimodules

Σ(M) ∼= ⊕
u∈[H\U/G]

IndH×G
A(u) M(u) .

3. Product of bisets, and product of functors

Let G, H and K be groups. If U is an (H, G)-biset and V is a (K, H)-biset,
recall that the product (or composition) of V and U is the set

V ×H U = (V × U)/H ,
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where the right action of H on (V × U) is defined by (v, u) · h = (vh, h−1u),
for v ∈ V , u ∈ U , and h ∈ H . The set V ×H U is a (K, G)-biset for the
following action

∀z ∈ K, ∀x ∈ G, ∀v ∈ V, ∀u ∈ U, z · (v,
H

u) · x = (zv,
H

ux) ,

where (v,
H

u) denotes the H-orbit of (v, u).

3.1. Definition : Let G, H, and K be finite groups. Let U be a finite
(H, G)-biset, and V be a finite (K, H)-biset. If M is a functor 〈U〉 → R-Mod

and N is a functor 〈V 〉 → R-Mod, the tensor product N ⊗H M is the functor
〈V ×H U〉 → R-Mod defined by

(N ⊗H M)(v,
H

u) =
(

⊕
h∈H

N(vh) ⊗R M(h−1u)
)

/Iv,u ,

where Iv,u is the R-submodule generated by the elements of the form

[ny ⊗ y−1m]hy − [n ⊗ m]h ,

where y ∈ H, and where [n⊗m]h denotes the element n⊗m of the component
indexed by h ∈ H in the direct sum, for n ∈ N(vh), and m ∈ M(h−1u).

If (k, g) ∈ K × G, then by definition

k [n ⊗ m]h g = [kn ⊗ mg]h .

3.2. Remark : It follows from this definition that

(N ⊗H M)
(

(v,
H

u)
)

∼= N(v) ⊗RHv,u
M(u) ,

where Hv,u is the set of elements h ∈ H such that vh = v and hu = u.

3.3. Lemma : There is an isomorphism of (RK, RG)-bimodules

Σ(N) ⊗RH Σ(M) ∼= Σ(N ⊗H M) ,

sending (from right to left) the element [n ⊗ m]h to n ⊗RH m.

Proof : To be more precise, the map α from

Σ(N ⊗H M) = ⊕
(v,

H
u)∈V ×HU

(

⊕h∈H N(vh) ⊗R M(h−1u)
)

/Iv,u

4



sending the element [n ⊗ m]h in the component indexed by (v,
H

u) to the
element n ⊗ m of the tensor product

Σ(N) ⊗RH Σ(M) =
(

⊕
v∈V

N(v)
)

⊗RH

(

⊕
u∈U

M(u)
)

is well defined. To show that it is an isomorphism, define a map

β : Σ(N) ⊗RH Σ(M) → Σ(N ⊗H M)

in the following way : choose a set S of representatives of the classes (v,
H

u).
Now map the element n ⊗RH m ∈ N(v) ⊗ M(u) ⊆ Σ(N) ⊗RH Σ(M) to
[n ⊗ m]h, where h ∈ H is chosen such that (vh−1, hu) ∈ S. Again, it is easy
to see that this map is well defined, and that the maps α and β are mutual
inverse isomorphisms of (RK, RG)-bimodules.

3.4. Corollary : Let G, H, and K be finite groups. Let X be a subgroup
of H × G and Y be a subgroup of K × H. Let M be an RX-module, and N
be an RY -module. Then there is an isomorphism of (RK, RG)-bimodules

(IndK×H
Y N)⊗RH (IndH×G

X M) ∼= ⊕
t∈[p2(Y )\H/p1(X)]

IndK×G
Y ∗(t,1)X

(N⊗k2(Y )∩tk1(X)
(t,1)M) .

Proof : Set U = (H × G)/X. Then U is an (H, G)-biset by h · (t, s)X · g =
(ht, g−1s)X, and this biset is transitive. If u is the point X of U , then
A(u) = X, and the equivalence of categories 2.5 reads

Fun(〈U〉, R-Mod) ∼= RX-Mod .

More precisely, for an RX-module M , this equivalence yields a functor M̃ :
〈U〉 → R-Mod in the following way : for any (h, g) ∈ H × G, set

M̃
(

(h, g)X
)

= M .

Next, fix a set S of representatives of elements of U , i.e. X-cosets in H ×G.
For (t, s) ∈ S, and (h, g) ∈ H × G, define a map

M̃(h, g) : M̃
(

(t, s)X
)

= M → M̃
(

(ht, gs)X
)

= M

by M̃(h, g)(m) = (y, x)m, where (y, x) is the unique element of X such that
(ht, gs)(y, x)−1 ∈ S.

Then it is easy to check that M̃ is indeed a functor, and that there is an
isomorphism of (RH, RG)-bimodules

Σ(M̃ ) ∼= IndH×G
X M .
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Similarly, set V = (K × H)/Y , and define a functor Ñ〈V 〉 → R-Mod, using
the RY -module N . Then the corollary is a straightforward consequence
of the lemma, applied to the functors M̃ and Ñ , using Remark 2.6 and
Remark 3.2.
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