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Limit theorems for sequential expanding dynamical systems
on [0, 1]

Jean-Pierre Conze and Albert Raugi

Abstract. We consider the asymptotic behaviour of a sequence (θn), θn =
τn ◦ τn−1 · · · ◦ τ1, where (τn)n≥1 are non-singular transformations on a prob-
ability space.

After briefly discussing some definitions and problems in this general
framework, we consider the case of piecewise expanding transformations of
the interval. Exactness and statistical properties (a central limit theorem for
BV functions after a moving centering) can be shown for some families of such
transformations.

The method relies on an extension of the spectral theory of transfer op-
erators to the case of a sequence of transfer operators.

Introduction

Let (θn) be a sequence of non-singular transformations on a probability space
(X,A, m). When the measure is preserved, the extension of notions (ergodicity,
mixing,...) from the case of the iterates of a single transformation to a sequence
(θn) was considered by D. Berend and V. Bergelson ([BB84]) and some examples
were given of what they called sequential dynamical systems.

Recently some authors have given examples of sequential systems of hyperbolic
type ([Ba95], [AF04], [PR03]). In the last reference, a property of stable mixing
for a sequence of automorphisms of the 2-torus has been discussed by L. Polterovich
and Z. Rudnick. Sequential systems have been also considered in [BBH05] in
the context of the “Bendford law”, for transformations composed on IR+ before
taking mod 1. Another situation where sequential systems appear is that of random
sequences of transformations (see for instance [Ki88], [Ke82], [BY93], [Bu99],
[Vi97]).

We consider here the asymptotic behaviour of a sequence (θn), θn = τn ◦
τn−1 · · ·◦ τ1, where (τn)n≥1 are piecewise expanding transformations of the interval
[0, 1), and discuss properties like exactness and limit theorems for such sequential
systems. (The measure m is the Lebesgue measure, which is only quasi-invariant.)
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Key words and phrases. sequential dynamical systems, expanding maps, transfer operator,

CLT.
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A motivation is the following. Let x → βx mod 1 be a β-transformation for
β > 1. Suppose that at each step of the iteration we make a small error and replace
β by βn tending to β. If θn(x) is defined by : θ0(x) = x, θn(x) = βn θn−1(x) mod 1,
n ≥ 1, is it true that for a.e. x ∈ [0, 1] the asymptotic distribution of the sequence
(θn(x))n≥0 is, , the absolutely continuous invariant measure (ACIM) of the trans-
formation x → βx mod 1 ?

A positive answer can be proved for β-transformations and more generally for
some classes of piecewise expanding transformations of [0, 1]. Moreover, statistical
properties for such sequences, like a CLT for BV functions (after a moving cen-
tering), could be investigated. It is closely related to the question of stochastic
stability of expanding transformations. But we will give also global results and
obtain exactness for some families of such transformations. The method relies on
an extension of the spectral theory of transfer operators to the case of a sequence
of transfer operators.

In the first section we consider the general case of a sequential dynamical system
where the measure m is only quasi-invariant and briefly discuss some definitions
and problems in this general framework. In section 2 general results on products
of operators of quasi-compact type are given. In sections 3, 4 and 5 we apply
these results to the particular case of sequences of piecewise expanding maps on
the interval and prove a “Borel-Cantelli Lemma” and a central limit theorem for
regular functions.

We would like to thank T. Hill for discussions and questions on the asymptotic
distribution of perturbed iterates during a workshop on ergodic theory in Chapel
Hill in 2004, and Idris Assani for organizing this workshop. We thank also the
referee for his careful reading of the manuscript and his remarks.
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1. Sequential dynamical systems

We consider a probability space (X,A, m) and a family C of non-singular trans-
formations on it: for τ ∈ C, we assume that τ m % m.

We will call sequential dynamical system any sequence (τn) of transformations
in C.
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We denote by (θn) the sequence of composed transformations:

θn = τn ◦ τn−1 · · · ◦ τ1, n ≥ 1.

If (τn) is a constant sequence (i.e. τn = τ for a transformation τ ∈ C) (θn) is simply
the sequence of iterated transformations (τn).

Notations 1.1. If τ is a transformation in C, we denote by T the operator of
composition by τ . The transfer operator Pτ corresponding to τ is defined in L1(m)
by: ∫

Pτf g dm =
∫

f g ◦ τ dm, ∀f ∈ L1, g ∈ L∞.

When τn, n = 1, 2, ..., are transformations in C, we write simply Tn, Pn for the
operators corresponding to τn and

Πn = PnPn−1 · · ·P1.

With these notations, we have for f ∈ L1, g ∈ L∞:

T1 · · ·Tng(x) = g(τn · · · τ1x),∫
T1 · · ·Tng f dm =

∫
g Pn · · ·P1f dm =

∫
g Πnf dm,

Pn(Tng f) = g Pnf.

• Invariant measure, wandering sets

In the case of an unique transformation τ , a classical problem is the existence of
a τ -invariant measure which is equivalent to the measure m, or at least absolutely
continuous with respect to m. Such a probability measure µ is called an ACIM for
τ . In that case, we have µ = ϕm, with ϕ ≥ 0,

∫
ϕ dm = 1 and Pτϕ = ϕ.

In general, when the transformations τk depend on k, there is no joint invari-
ant measure, but it is convenient to make for the sequence (Πn1) the following
assumption (1.1) which implies its equi-integrability since we have ‖Πn1‖1 = 1:

for every ε > 0, there exists η(ε) > 0 such that

(1.1) ∀B ∈ A, m(B) < η(ε) ⇒ m(θ−1
n B) =

∫

B
Πn1 dm < ε.

In particular (1.1) is satisfied if there is p ∈]1, +∞] such that the sequence
(Πn1) is bounded for the Lp-norm. As we will see, this is the case (for the uniform
norm), for some families of piecewise expanding maps of the interval.

Using the Dunford-Pettis compactness criterion, it is easy to deduce, for a single
transformation τ , the existence of an ACIM for τ from (1.1) (Theorem of Hajian
and Kakutani).

We say that a set A is mean wandering if it satisfies:

lim
N

1
N

N∑

j=1

m(θ−1
j A) = 0.

With property (1.1), one can prove the existence of a mean wandering set A0 which
is “maximal” in the sense that : if B is such that limN

1
N

∑N
1 m(θ−1

j B) = 0, then
B ⊂ A0 (up to a set of m-measure 0).
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To show it, let us take a sequence (Ck) of mean wandering sets such that
limk m(Ck) = supA m(A), the supremum being taken on the family of sets A which
are mean wandering.

Let A0 =
⋃

k Ck. This set is mean wandering: let ε > 0, η(ε) > 0 given by
(1.1) and k such that m(A0 − ∪k

1Ci) ≤ η. We have, for N big enough,

1
N

N∑

j=1

m(θ−1
j A) ≤ ε+

k∑

i=1

1
N

N∑

j=1

m(θ−1
j Ci) ≤ 2ε

and the set A0 is clearly maximal.

We note that m(Ac
0) > 0. From the maximality of A0, it follows that, if A ∈ A

is such that m(A ∩ Ac
0) > 0, then

(1.2) lim sup
N

1
N

N∑

1

m(θ−1
j A) > 0.

• Ergodicity and mixing

We say that a sequence (τn) is ergodic in mean if θn = τn ◦ τn−1 · · ·◦ τ1 satisfies
the equivalent conditions:

lim
N

1
N

N∑

k=1

[m(B ∩ θ−1
k A) − m(B)m(θ−1

k A)] = 0(1.3)

∀g ∈ L1, f ∈ L∞ lim
N

1
N

N∑

k=1

〈f ◦ θk −
∫

f ◦ θk dm, g〉 = 0.(1.4)

We say that the sequence is mixing if

(1.5) ∀A, B ∈ A lim
n

[m(B ∩ θ−1
n A) − m(B)m(θ−1

n A)] = 0.

Proposition 1.2. Let A be such that m(A ∩ Ac
0) > 0. Ergodicity in mean

implies that, for almost all x, the sequence (θnx) visits A infinitely often and, if
m(B) > 0,

lim sup
N

1
N

N∑

j=1

m(θ−1
j A ∩ B) > 0.

Remark 1.3. If the sequence (Πn1) is uniformly bounded, condition (1.3) is
equivalent to the convergence in Lp-norm, for 1 ≤ p < ∞ (cf. [BB84]):

(1.6) lim
N

1
N

‖
N−1∑

k=0

[f ◦ θk −
∫

f ◦ θk dm]‖p = 0, ∀f ∈ Lp.

This is a consequence of the inequality, for p ≥ 1:

‖ 1
n

n−1∑

k=0

[1A ◦ θk − m(1A ◦ θk)]‖2p
p ≤ ‖ 1

n

n−1∑

k=0

[1A ◦ θk − m(1A ◦ θk)]‖2
1

and the fact that the set of functions f such that (1.6) holds is closed in (Lp, ‖ ‖p).
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Remark 1.4. For the iterates of a single transformation, ergodicity in mean
characterizes the usual ergodicity property of τ -invariant measure and is equivalent
to the “pointwise ergodicity”. But this consequence of the ergodic theorem is not
true in the general case of a sequential dynamical system.

For example, let (τt, t ∈ IR) be an aperiodic measure preserving flow on a
probability space (X,A, m). M. Akcoglu, A. Bellow, A. del Junco and R. Jones
([ABJJ93]) have shown that for any increasing sequence of integers (nk) and any
sequence (tk 1= 0) converging to zero, the following “strong sweeping out property”
is true: given any ε > 0, there is a set A with m(A) < ε and

lim inf
N

1
N

N∑

1

1A(τnk+tkx) = 0, lim sup
N

1
N

N∑

1

1A(τnk+tkx) = 1.

Therefore, if we sample a dynamical system with a small error tending to 0, we
cannot expect to still have a law of large number valid for any bounded measurable
observable.

This suggest that, for a sequential dynamical system, “pointwise ergodicity”
should be defined with respect to particular families of (regular) functions or sets.
The sequence (τn) can be called pointwise ergodic if, for a.a. x,

(1.7) ∀f ∈ F , lim
n

1
n

n∑

k=1

[f(θkx) −
∫

f ◦ θk dm] = 0,

where F is a convenient set of functions or the set of characteristic functions of sets
which form an algebra generating the σ-algebra A.

We will give later examples of sequences of piecewise expanding maps of the
interval which are pointwise ergodic in the previous meaning.

• Stochastic and sequential stabilities

Definitions 1.5. Let T be a metric set of parameters and let C = {τt : t ∈ T
be a family of transformations on (X,A, m). Fix t0 ∈ T , and for ε > 0, let Uε be
an ε-neighbourhood of t0. Let Y be a random variable with values in Uε and law
νε. Consider the operator Pνε defined by

Pνεf = IE(PτY f).

Assume that the transformation τ = τt0 has a unique ACIM µ and that there
exists a measure µε which is invariant by Pνε . We say that the transformation τ is
stochastically stable (in the family T ) if limε→0 µε = µ.

In particular, if µε = δτε , τε ∈ Uε, “stochastic stability” becomes stability by
deterministic perturbations. The property of sequential stability, that we consider
now, is close to this property.

Assuming the space X to be a metric space, we say that τ is sequentially stable
in T if, for every sequence (tn) in T such that limn tn = t0, writing simply τn = τtn ,
we have for every continuous f :

lim
N

1
N

N−1∑

n=0

f(τnτn−1...τ1x) = µ(f), for m-a.a. x.
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This means that, if we make a small error at each step, replacing the trans-
formation τ by τn, with limn τn = τ , then we have for m-almost all points x the
same asymptotic distribution for the sequence (θn(x) = τnτn−1...τ1x) as for (τnx),
namely the distribution given by the τ -ACIM µ.

• Asymptotic σ-algebra, exactness

Fix a sequence{τn} ⊂ C, and for k ≥ 1 set

Ak = τ−1
1 · · · τ−1

k A.

The sequence of σ-algebras (Ak) is strictly decreasing if the transformations τn
are non-invertible.

The asymptotic σ-algebra is defined as the intersection:

A∞ =
⋂

k≥1

τ−1
1 · · · τ−1

k A.

Let f be in L1(m). We use the notations of 1.1. Remark that for f ∈ L∞ the
quotients |Πnf |/Πn1 are bounded by ‖f‖∞ on {Πn1 > 0} and we have Πnf(x) = 0
on the set {Πn1 = 0}. We define these quotients as 0 on {Πn1 = 0}. The following
relations hold:

m(T1 · · ·Tnf) = m(fΠn1),(1.8)

IE(f | Ak) = T1 · · ·Tk

(Πkf

Πk1
)
,(1.9)

and, for 0 ≤ * < k ≤ n:

(1.10) IE(T1 · · ·T$f | Ak) = T1 · · ·Tk

(Pk · · ·P$+1(f Π$1)
Πk1

)
.

By the martingale theorem, for every f ∈ L1(m), we have convergence of the
sequence of conditional expectations (IE(f |An))n≥1 to IE(f |A∞) and therefore:

lim
n

‖T1...Tn(
Πnf

Πn1
) − IE(f |A∞)‖1 = 0. in norm ‖ ‖1 and m-a.e.

Definition 1.6. We say that the sequence (τn) is exact if its asymptotic
σ-algebra A∞ is trivial.

Exactness implies mixing and is equivalent to limn ‖Πnf‖1 = 0, ∀f ∈ L1
0(m),

since we have by (1.9):

(1.11) ‖IE(f |An)‖1 = ‖T1...Tn(
Πnf

Πn1
)‖1 = ‖Πnf‖1.

Examples 1.7.

A) We take first for C the family of translations on a compact group.

1) It is easy to see that mean ergodicity of a sequence (τn) defined by τnx =
x + αn is equivalent to the equidistribution of the sequence (un) defined by un =
α1 + · · ·αn.
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For the torus TT d, the property is satisfied by a sequence (αn) converging mod-
ulo 1 to α, if the translation by α modulo 1 is ergodic: for all continuous functions
f on the torus, the sequence ( 1

N

∑N−1
n=0 f(. + α1 + · · ·αn)) is equicontinuous and

any converging subsequence has a limit which is invariant by translation by α and
therefore is equal to m(f).

2) Let (Xn) be a sequence of iid r.v. with values in the torus and τn(ω)x =
x + Xn(ω). We have (almost surely in ω) ergodicity of (τn(ω)) if and only if the
law of X0 is not supported by a lattice (the translations modulo 1 do not belong
to a finite subgroup of the circle).

B) Let us consider the following matrices A and B:

A =




2 1 0
1 1 0
0 0 2



 , B =




2 0 0
0 2 1
0 1 1



 .

We obtain a sequence (τn) of transformations which preserve the Lebesgue
measure on the torus TT 3 by taking for τn either τnx = Ax mod 1, or τnx =
Bx mod 1.

It can be shown that the sequence is exact if each matrix appears infinitely
often in the sequence.

C) Hyperbolic automorphisms of the 2-torus

We give now an example with invertible transformations.

Let A be a hyperbolic element in SL(2, ZZ), (Bn) a sequence in SL(2, ZZ) such
that the sequence (trace(Bn)) is bounded. Let p ≥ 1 be a fixed integer. We consider
the sequence of transformations on the 2-torus defined by:

(1.12) θnx = BnApBn−1A
p...B1A

px mod 1.

L. Polterovich and Z. Rudnick have called a sequence of the form (1.12) a
“kicked system” and defined “stable mixing” for the element A as the property
that, for all sequences of kicks (Bk) with bounded trace, there exists p0 such that
the sequence defined by (1.12) is mixing, for every p ≥ p0.

They proved ([PR03]) that A is stably mixing if and only if A is not conjugate
to its inverse.

The following questions can be asked:
- Do we have the CLT for the Hlderian functions ?
- Is there a notion of K-system for a sequence of invertible transformations, which
would be satisfied by examples like (1.12) ?
- These questions (stable mixing, CLT,...) can be asked in higher dimension or for
other classes of diffeomorphisms.

Before considering in section 3 the example of sequences of expanding maps on
the interval [0, 1], we prove in the next section some general results on products of
operators of “quasi-compact” type.
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2. Decorrelation for products of operators

We state in this section some general results which extend to a product of
transfer operators classical spectral results for the iterates of a single operator.

Notations - Hypothesis 2.1. Let (B, ‖ ‖) be a normed space, V be a subspace
of B equipped with a norm | |v such that ‖ ‖ ≤ | |v, P be a set of contractions of
(B, ‖ ‖) leaving the subspace V invariant.

We assume the following hypotheses:
(H1) The unit ball of (V , | |v) is relatively compact in (B, ‖ ‖).
(H2) There is a countable family in V which is dense in (B, ‖ ‖).
(H3) There are an integer r ≥ 1 and constants ρr ∈]0, 1[, M0, Cr > 0 such that:

∀R ∈ P , |Rf |v ≤ M0|f |v, ∀f ∈ V ;

for all r-tuples R1, ..., Rr of operators in P:

(2.1) ∀f ∈ V , |Rr...R1f |v ≤ ρr|f |v + Cr‖f‖.

The operators we will consider further are adjoint of the operators of compo-
sition by expanding transformations of the interval. B will be L1([0, 1], m), where
m is the Lebesgue measure on [0, 1], and V the space of BV (bounded variation)
functions. This is the example that we have in mind in this section 2.

Remark 2.2. In applications, we will show (2.1) for some families of operators.
Remark that the norm | |′v defined by:

| f |′v = |f |v +
r−1∑

k=1

ρ−k/r
r sup

R"k
,...,R"1∈P

|R$k ...R$1f |v

is equivalent to the norm | |v and satisfies for a constant C′ the inequality:

∀f ∈ V , ∀R ∈ P , |Rf |′v ≤ ρ1/r
r |f |′v + C′‖f‖.

Taking | |′v instead of | |v, we can assume during this paragraph that there exists
ρ ∈]0, 1[ and C0 > 0 such that the operators R in P satisfy the inequality:

(2.2) ∀f ∈ V , ∀R ∈ P , |Rf |v ≤ ρ|f |v + C0‖f‖.

Remark 2.3. If the unit ball (V , | |v) is not closed in (B, ‖ ‖), we can consider
the subspace V1 of B defined as follows. For f ∈ B, we set

‖f‖v = lim
δ→0+

inf(|φ|v,φ ∈ V : ‖f − φ‖ < δ).

Let V1 = {f ∈ B : |f |v < ∞}. Now the unit ball of (V1, | |v) is compact in (B, ‖ ‖).
Replacing (V , | |v) by (V1, | |v), we can therefore assume the compactness of the unit
ball of (V , | |v) in (B, ‖ ‖).

From now on we will make this assumption. This implies in particular that,
for a sequence (fn) in V such that |fn|v ≤ C and ‖fn − f‖ → 0, we have f ∈ V and
|f |v ≤ C.
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We define a distance on P by taking

d(R, R′) = sup
{f∈V:|f |v≤1}

‖Rf − R′f‖.

For P ∈ P , we note B(P, δ) := {R ∈ P : d(R, P ) < δ}.

For convenience we set R0 = Id, the identity operator of B. From (2.2) we get
easily the following inequalities:

Lemma 2.4. For each n ≥ 1, for all choices of operators R1, ..., Rn, P in P, all
f ∈ V, we have, setting M = 1 + C0(1 − ρ)−1:

|Rn · · ·R1f |v ≤ ρn|f |v + C0

n−1∑

k=0

ρn−1−k‖Rk · · ·R1R0f‖,(2.3)

|Rn · · ·R1f |v ≤ M |f |v, n ≥ 1,(2.4)

d(Rn · · ·R1, P
n) ≤ M

n∑

j=1

d(Rj , P ), n ≥ 1.(2.5)

Lemma 2.5. Let (Pk) be a sequence of operators in P and Πn = PnPn−1...P1.
For every strictly increasing sequence of integers there are a subsequence (nk) of
the integers and an operator Λ from B into V such that ΛB is contained in V,
dim(ΛB) < +∞ and for each f ∈ B, we have:

‖Πnkf − Λf‖ → 0,(2.6)
|Λf |v ≤ M‖Λf‖.(2.7)

Proof: For every g ∈ V , the set {Πng : n ∈ IN∗} is relatively compact in (B, ‖ ‖)
by (H1) and (2.4). Let D = (gp)p∈IN be a sequence of elements of V which is dense
in (B, ‖ ‖). Using the diagonal process we obtain a strictly increasing sequence
of natural numbers (nk) = (ϕ(k))k≥1 such that, for every p ∈ IN , the sequence(
Πϕ(k)fp

)
k≥1

converges in (B, ‖ ‖) to a function of V , denoted by Λfp, satisfying
|Λfp|v ≤ C0(1 − ρ)−1‖fp‖ ≤ M‖fp‖.

Let f ∈ B and (hp)p∈IN be a sequence of D which converges to f in (B, ‖ ‖). The
real sequence (‖hp‖)p∈IN converges to ‖f‖ and supp∈IN ‖hp‖ < +∞. It follows that,
for every p ∈ IN , |Λhp|v ≤ M supn∈IN ‖hn‖. Taking, if necessary, a subsequence,
we can suppose that the sequence (Λhp)p∈IN converges in (B, ‖ ‖) to a function Λf ,
satisfying |Λf |v ≤ M lim supp ‖hp‖ ≤ M‖f‖.

The inequalities

‖Πϕ(k)f −Λf‖ ≤ ‖Πϕ(k)f −Πϕ(k)hp‖+‖Πϕ(k)hp−Λf‖ ≤ ‖ f −hp‖+‖Πϕ(k)hp−Λf‖

show that, for every f ∈ B, the sequence
(
Πϕ(k)f

)
k≥1

converges in (B, ‖ ‖) to Λf .

Now, for each k, p ∈ IN∗ such that k > p, we can write

Πϕ(k) = Pϕ(k) · · ·Pϕ(p)+1Πϕ(p).

As before, taking a subsequence
(
ϕ(ξ(k))

)
k∈IN

of
(
ϕ(k)

)
k∈IN

we can suppose that,
for every f ∈ B, the sequence Pϕ(ξ(k)) · · ·Pϕ(p)+1f converges in (B, ‖ ‖) to a limit
denoted by Λpf satisfying |Λpf |v ≤ M ‖f‖.
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For each p ∈ IN∗, we obtain

|Λf |v = |ΛpΠϕ(p)f |v ≤ M ‖Πϕ(p)f‖ ,

and consequently
|Λf |v ≤ M ‖Λf‖.

The operator Λ defined on B satisfies (2.6), (2.7), Λ(B) ⊂ V . By (H1), (2.7)
and Riesz Theorem we have dim(ΛB) < +∞.

Definitions 2.6. In the following, we denote by V0 a subspace of V which is
invariant by the operators P ∈ P .

We say that a sequence of operators (Pk) in P is exact in V0 if

(2.8) lim
n

‖PnPn−1...P1f‖ = 0, ∀f ∈ V0.

A single operator P ∈ P is exact in V0 if limn ‖Pnf‖ = 0, ∀f ∈ V0.

• Decorrelation:

Property (Dec): We say that a subset of operators P0 ⊂ P satisfies the
decorrelation property (Dec) in V0 if there exist λ ∈]0, 1[ and K > 0 such that, for
all integers * ≥ 1, all *-tuples of operators R1, ..., R$ in P0:

(2.9) ∀f ∈ V0, |R$ · · ·R1f |v ≤ Kλ$|f |v.

Let ε0 = (1−ρ)
2C0

, where ρ and C0 are the constants of (2.2). The following result
uses an argument of convolution as in [CR03].

Proposition 2.7. Let P0 be a subset of P such that there exists an integer q
for which every product of q operators R1, ..., Rq in P0 satisfies:

(2.10) ∀f ∈ V0 , ‖Rq · · ·R1f‖ ≤ ε0|f |v.

Then P0 verifies the property (Dec) in V0.

Proof: We can complete the sequence (Rn · · ·R1)1≤n≤$ by taking Rn = R$, for
n ≥ *. Let f be in V0. We define the sequences αf , ζ,β,βq (with support in ZZ+)
by:

αf (n) = |Rn · · ·R1f |v, n ≥ 0,

ζ(n) = C0ε0ρ
n−q−1, if n ≥ q + 1, = 0, if n ≤ q,

β(n) = B|f |v ρn, n ≥ 0, with B = 1 + C0
ρ−q − 1
1 − ρ

,

βq(n) =






ρn |f |v + C0
∑q−1

k=0 ρ
n−1−k |f |v, if n ≥ q

ρn |f |v + C0
∑n−1

k=0 ρ
n−1−k |f |v, if 1 ≤ n ≤ q − 1

|f |v, if n = 0.
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We have βq(n) ≤ β(n), n ≥ 0, and from (2.3) and (2.10),
for n ≥ q + 1,

|Rn · · ·R1f |v ≤ ρn|f |v + C0

q−1∑

k=0

ρn−1−k‖Rk · · ·R1f‖

+ C0ε0

n−q−1∑

k=0

ρn−1−q−k|Rk · · ·R1f |v,

and for 1 ≤ n ≤ q:

|Rn · · ·R1f |v ≤ ρn|f |v + C0

n−1∑

k=0

ρn−1−k‖Rk · · ·R1f‖.

Therefore we have: αf (n) ≤ βq(n) + (ζ ∗ αf )(n), ∀n ∈ ZZ, and

αf (n) ≤
$−1∑

p=0

(ζ∗p ∗ βq)(n) + (ζ∗$ ∗ αf )(n), ∀n ∈ ZZ, ∀* ≥ 1.

Since (ζ∗$ ∗ αf )(n) = 0, for * such that *(q + 1) > n, this implies

|Rn · · ·R1f |v ≤
∑

p≥0

(ζ∗p ∗ βq)(n) ≤
∑

p≥0

(ζ∗p ∗ β)(n), ∀n ≥ 1.

For t such that 0 < ρt < 1 and C0ε0tq+1 < 1 − ρt, we have:
∑

p≥0

∑

n≥0

(ζ∗p ∗ β)(n) tn =
∑

p≥0

( ∑

n≥0

ζ(n) tn
)p ( ∑

n≥0

β(n) tn
)

=
∑

p≥0

B|f |v (C0ε0)p tp(q+1)
( 1
1 − ρt

)p+1

=
B|f |v

1 − ρt − C0ε0tq+1
.

Let r(t) = 1−ρt−C0ε0tq+1. ¿From the choice of ε0, we get C0ε0(1−ρ)−1 = 1/2
and therefore r(1) > 0.

For q ≥ 1, the polynomial r has only one real positive root t0, which is strictly
between 1 and 1 + 1

q+1 . The other roots have a modulus > t0. Therefore there
exists a constant K > 0 such that

∑

p≥0

(ζ∗p ∗ β)(n) ≤ K|f |vt−n
0 , ∀n ∈ IN.

We deduce that |Rn · · ·R1f |v is bounded by Kλn|f |v, with λ = t−1
0 . The constants

K and λ depend only on ρ, C0 and q.

By Lemma 2.5 and Proposition 2.7, we get for an operator P in P0 the classical
spectral properties:

Proposition 2.8. For all operators P ∈ P restricted to V we have

(2.11) Pf = LP f + QP f,
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where the spectral radius of QP is < 1: there are constants γ0 ∈]0, 1[ and C1 > 0
such that

(2.12) ∀f ∈ V , |Qn
P f |v ≤ C1γ

n
0 |f |v,

LP is an operator of finite rank of the form

(2.13) LP (f) =
p∑

j=0

cj(f)ej ,

where the elements ej , 1 ≤ j ≤ p, p ∈ IN , are proper vectors for P with proper values
χj of modulus 1 and the cj are linear forms such that cj(ei) = δi,j , ∀1 ≤ i, j ≤ p.

If P is exact in V0, P |V0 = Q|V0 and

(2.14) ∀f ∈ V0, |Pnf |v ≤ C1γ
n
0 |f |v.

If B is the space L1(m) for a probability measure m on a space X and if P ∈ P
is a positive operator, there exists a function hP ≥ 0 with maximal support which
is P -invariant and the proper values χj of P are roots of unity.

Proof: We apply several times Lemma 2.5.

For λ of modulus 1 and f in B, the sequence
(
Sn,λf =

1
n

n−1∑

k=0

λ−kP kf
)
n≥1

converges in (B, ‖ ‖) either to zero or to a λ-eigenvector Πλ(f) of P . Indeed any
non-null cluster value of this sequence, which is relatively compact in (B, ‖ ‖), is
a λ-eigenvector for P . For every integer p ≥ 1 and every λ-eigenvector h of P ,
writing n = *p + r (Euclidian division), we get:

Sn,λf − h =
1
n

(
p

$−1∑

j=0

λ−j P j(Sp,λf − h) + rλ−$ P $(Sr,λ(f − h))
)

and therefore lim supn→+∞ ‖Sn,λf−h‖ ≤ M‖Sp,λf−h‖. This inequality shows that
the sequence

(
Sn,λf

)
n≥1

can have only one cluster value ; hence the convergence.

We have that dim(ΛB) < +∞ for any limiting value Λ of (Pn), so that the
set {λj : 1 ≤ j ≤ p} of eigenvalues of modulus 1 of P is finite. The operator
QP = P −

∑p
j=1 Πλj has no eigenvalues of modulus 1.

If Λ = limn Qϕ(n)
P for a subsequence (ϕ(n)), we have: QPΛ = ΛQP and

|Qn
P |ΛB|v → 0. This implies:

Λf = lim
n

Qϕ(n+1)−ϕ(n)
P Qϕ(n)

P f = lim
n

Qϕ(n+1)−ϕ(n)
P Λf = 0.

Therefore QP is exact in V . By Proposition 2.7 we get the spectral gap for QP .

For the last assertion, we use the same arguments as in [Sc67] (Appendix).

To apply Proposition 2.7 to a subset P0 of P , we have to check (2.10). We
consider two cases: locally, i.e. in a neighbourhood of a given operator, or globally.
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• A local result

Lemma 2.9. If P is exact in V0, for every ε > 0, there are an integer q(ε) ≥ 1
and a real δ(ε) > 0 such that, for all products of q operators R1, ..., Rq in B(P, δ(ε))∩
P, we have:

∀f ∈ V0, ‖Rq · · ·R1f‖ ≤ ε|f |v.

Proof: let q = q(ε) ≥ 1 be such that C1γ
q
0 ≤ ε

2 . For f ∈ V0, we have from 2.8:

‖P qf‖ ≤ ε

2
|f |v.

For all products Rq · · ·R1 such that Ri ∈ B(P, δ(ε)), i = 1, ..., q, we get by Lemma
2.4:

‖Rq · · ·R1f‖ ≤ ‖Rq · · ·R1f − P qf‖ + ‖P qf‖

≤ qMδ(ε)|f |v +
ε

2
|f |v ≤ ε|f |v,

for δ(ε) such that qMδ(ε) ≤ ε/2.

Applying this result (with ε = ε0) and Proposition 2.7 we get:

Proposition 2.10. If P is exact in V0, there exists δ0 > 0 such that the set
P0 = B(P, δ0) satisfies the condition of decorrelation (Dec) in V0.

• A non-local result

Let P0 be a subset of P such that the following compactness condition holds:

Condition (C): For any sequence (Rn) in P0, there are a subsequence (Rnj )
and an operator R ∈ P0 such that

(2.15) ∀f ∈ B, lim
j

‖Rnj f − Rf‖ = 0.

In the next section, we will give examples of families of expanding transforma-
tions of the interval for which the set of corresponding transfer operators satisfies
this compactness condition and the criterion of the following proposition.

Proposition 2.11. If P0 is a set of operators in P verifying the compactness
condition (C) and such that all sequences (Pn) in P0 are exact in V0, then it satisfies
the decorrelation condition (Dec) in V0.

Proof: If (2.10) is not satisfied there are, for each p ≥ 1, operators R1,p, · · · , Rp,p

in P0 such that ‖Rp,p · · ·R1,pfp‖ ≥ ε0, for some fp in V0 with |fp|v = 1. As they
are contractions of B, this implies:

‖R$,p · · ·R1,pfp‖ ≥ ε0, ∀* ≤ p.

By compactness of the unit ball of V in B we construct a strictly increasing
sequence (pj) such that (fpj ) converges for the norm ‖ ‖ to an element g in V
such that |g|v ≤ 1. By compactness of P0 and the diagonal process, there is a
subsequence of (Rr,pj ) which converges (in the sense of (2.15)) for each r to an
operator R̃r ∈ P0.
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Thus we have
‖R̃$ · · · R̃1g‖ ≥ ε0, ∀* ≥ 1,

contrary to the hypothesis. The condition (Dec) follows then from Proposition 2.7.

• Two lemmas

Lemma 2.12. Let P ∈ P and (Pn)n≥1 be operators such that

(2.16) lim
n

‖Pnf − Pf‖ = 0, ∀f ∈ B.

We have, for all integers r ≥ 1, limn d(Pn · · ·Pn−r+1, P r) = 0. There exists a
sequence (gn) in the space LP (B), image of LP (cf.(2.11)), such that, uniformly on
the unit ball of V:

(2.17) ‖Pn · · ·P1f − gn‖ → 0.

When B = L1(m), if P ∈ P is exact in V0 = {f ∈ V : m(f) = 0}, then (Pn) is
exact in V0 and limn ‖Pn · · ·P1f − m(f)hP ‖ = 0, where hP is P invariant.

Proof: As the Pn’s are contractions, the convergence in (2.16) is uniform on
the compact sets of B. Therefore we have limn d(Pn, P ) = 0, which implies the first
statement using (2.5).

Let ε > 0. We have, from (2.11) and (2.14) for r big enough,

‖P rPn−r · · ·P1f − Lr
P (Pn−r · · ·P1f)‖ = ‖Qr

P Pn−r · · · P1f‖ ≤ C1Mγr
0 |f |v ≤ ε.

From the first statement, we have, uniformly on the unit ball of V :

lim
n

‖PnPn−1 · · · Pn−r+1[Pn−r · · · P1f ] − P r[Pn−r · · · P1f ]‖ = 0.

This implies (2.17).

Lemma 2.13. For a constant C2 ≥ 1, we have for all integers p ≤ n:

‖Pn · · ·P1 ϕ− Pn ϕ‖ ≤ C2 |ϕ|v
n∑

k=1

min(d(Pn−k+1, Pn−k), γk−1
0 }

≤ C2 |ϕ|v
( p∑

k=1

d(Pn−k+1, P ) + (1 − γ0)−1 γp
0

)
.

Proof: We have from (2.5) and (2.14) :

‖Pn · · ·P1 ϕ− Pn ϕ‖ ≤
n∑

k=1

‖P k−1Pn−k+1 · · ·P1 ϕ− P kPn−k · · ·P1 ϕ‖

≤ |ϕ|v
n∑

k=1

min{C M d(Pn−k+1, Pn−k), C1 M γk−1
0 }.
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3. Application to some classes of expanding maps of [0, 1]

• Classes of expanding maps of the interval

There is a large number of works on expanding maps of the interval, following
Lasota-Yorke (1973) ([LY73]), Keller ([Ke80], [Ke85]), Rychlik ([Ry83]). (For
the central limit theorem for these systems, see in particular the following references:
A. Broise [Br96], M. Viana [Vi97]).

In what follows, we consider the probability space (X,A, m), where X is [0, 1],
A the Borel σ-algebra and m the Lebesgue measure. We apply the results of section
2 to the space B = L1(m) with the subspace V of BV (bounded variation) functions
on [0, 1].

We write V (f) for the variation of a function f ∈ V . The space V is equipped
with the norm

|f |v := V (f) + ‖f‖1,

where ‖ ‖1 is relative to the Lebesgue measure. For f ∈ V , we have: ‖f‖∞ ≤ |f |v.
The hypotheses (H1) and (H2) of section 2 are satisfied.

We consider a class C of piecewise expanding transformations τ of I = [0, 1]
and the corresponding set of transfer operators

P = {Pτ , τ ∈ C}.

If (τn) is a sequence of transformations in C, by composition we get the sequence:

θn = τn ◦ τn−1 · · · ◦ τ1, n ≥ 1.

Let us recall the following notations

Ak = τ−1
1 · · · τ−1

k A,

Πk = Pk · · ·P1,

where Pk = Pτk .

We assume that the transformations τ in C satisfy the following hypothesis:

Hypothesis 3.1. There exists a finite or countable partition (Ij) of I such
that the restriction of τ to each interval Ij is strictly monotone on Ij and can be
extended into a derivable function with a BV derivative on Ij . The transformations
τ satisfy:

γ(τ) := inf
j

inf
x∈Ij

|τ ′(x)| > 1,(3.1)

K := sup
j

sup
x )=y∈Ij

|τ
′(x) − τ ′(y)

x − y
| < ∞.(3.2)

Let us remark that the subspace V0 = {f ∈ V : m(f) = 0} is invariant by the
operators Pτ , τ ∈ C.

To get (2.1) which allows to apply the results of section 2, we have to consider
classes C0 of transformations in C for which the following condition holds:
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Condition (Dr): We will say that a class C0 in C satisfies (Dr) if the corre-
sponding set of transfer operators P0 = {Pτ , τ ∈ C0} verifies the conditions (H3) of
section 2.

In particular, if C0 satisfies (Dr) for some integer r ≥ 1, each operator Pτ

corresponding to τ ∈ C0 satisfies for constants ρr ∈]0, 1[, Cr the so-called Lasota-
Yorke (or Doeblin-Fortet)1 inequality:

(3.3) ∀f ∈ V , |P r
τ f |v ≤ ρr|f |v + Cr‖f‖1.

By proposition 2.8, Pτ has in the space V an invariant function hτ ≥ 0 of
greatest support such that m(hτ ) = 1 and this function is the density of an ACIM
for τ .

As a consequence of Lemma 2.5, we have also:

Proposition 3.2. : For any sequence (τn) belonging to a set of transformations
C0 which satisfies (Dr) for some integer r ≥ 1, the asymptotic σ-algebra A∞ =⋂

k≥1 τ
−1
1 · · · τ−1

k A is finite.

• A counterexample to stability

If we perturb a transformation τ0 verifying (3.3), the inequality (3.3) with
bounded constants Cr independent from the perturbed transformations τ can be
lost. A counterexample has been given by G. Keller in [Ke82] and M. Blank and
G. Keller in [BK97]. Let us recall it.

Example 3.3.

Let r and b be two parameters such that b ≥ 1/2 and 0 < r < 1/4. We consider
the transformation τb of [0, 1] into itself defined by: τb(x) = 1 − x/r, for 0 ≤ x ≤ r,
τb(x) = 2b(1 − 2r)−1 (x − r), for r ≤ x ≤ 1/2, τb(x) = τb(1 − x), for 1/2 ≤ x ≤ 1.

Each transformation τb has an unique ACIM (cf. [Ko75]). Let hb be its density.
For 1/2 < b ≤ 1−2r, we have: τb([1−b, b]) ⊂ [1−b, b], which implies that hb has its
support in the interval [1 − b, b]. If (bn) is a sequence such that 1/2 < bn ≤ 1 − 2r
and limn bn = 1/2, the sequence of invariant measures (hbnm) converges weakly to
the measure δ1/2, the Dirac mass at the point 1/2. Therefore the transformation
τ1/2 is not stochastically stable in {τb, 1/2 < b ≤ 1 − 2r}.

This counterexample to stochastic stability gives also a counterexample to the
property of sequential stability 1.5. It is characteristic of the obstruction to sto-
chastic or sequential stability. If we write to simplify τn = τbn , we get, using the
notations of 1.1 that we can have lim ‖Πn1‖∞ = +∞, if the convergence of (bn) to
1/2 is slow enough. In particular in that case, the family (Πn1) is not bounded in
variation.

1In their paper of 1937 [DF37], Wolfgang Doeblin and Robert Fortet introduced the tech-
nique of what later has been called “quasi-compact operators”. For the study of the “chanes
liaisons compltes”, a concept due to O. Onicescu and Gh. Mihoc, they used an inequality of the
type of 3.3. In [LY73] A. Lasota and J. A. Yorke proved and used this type of inequality (in the
BV-norm) in the context of dynamical systems, for expanding maps of the interval.
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• Classes where (Dr) holds

We give now a series of examples where the condition (Dr) (i.e. inequality (2.1))
can be obtained. To get it, the method is the same as for a single transformation or
a random product of transformations (cf. [LY73], [Ke80],[Li95],[Br96], [Vi97]),
[Bu99]).

We will consider the following assumption on a transformation τ . We suppose
that for a subdivision 0 = a0 < a1 < a2 < ... < ap = 1 of [0, 1], the restriction of
τ to Ij =]aj , aj+1[ is C1 and strictly monotone. Let σj be the inverse application
of the restriction of τ to Ij . Write b+

j = limx→a+
j
τ(x) (resp. b−j = limx→a−

j
τ(x)).

The condition is:

(3.4) ∀n ≥ 0, ∀j, τn(b±j ) 1∈ {a0, a1, ..., ap}.

Theorem 3.4. Condition (Dr) is satisfied by each following family C0 of trans-
formations:

a) C0 is a class of transformations τ ∈ C such that the coefficient γ(τ) of
dilatation defined by (3.1) verifies γ(τ) ≥ 2 + a, a > 0 independent of τ ;

b) C0 is a (convenient) neighbourhood in C of a transformation τ verifying (3.4);
c) C0 is the family of transformations τ : x → βx mod 1 (β-transformations)

such that β ≥ 1 + a, a > 0 independent of τ ;

Proof:
1) Let τ be a transformation C. The corresponding transfer operator Pτ is

given by:

Pτf(x) =
∑

j

f(σjx)
1

|τ ′(σjx)|1τ(Ij)(x).

If ϕ is a function on [0, 1] and J =]u, v[⊂ [0, 1], the variation of ϕ1J can be
bounded via the following inequality where [u, v] ⊂ [c, d] ⊂ [0, 1]:

V (ϕ 1J) ≤ V[u,v](ϕ) + |ϕ(u)| + |ϕ(v)| ≤ V[u,v](ϕ) + V[c,d](ϕ) + 2 inf
t∈[c,d]

|ϕ(t)|

≤ V[u,v](ϕ) + V[c,d](ϕ) +
2

m([c, d])

∫

[c,d]
|ϕ(t)| dt.(3.5)

If [c, d] = [u, v], the inequality reduces to:

V (ϕ 1J) ≤ V[u,v](ϕ) + |ϕ(u)| + |ϕ(v)| ≤ V[u,v](ϕ) + V[u,v](ϕ) + 2 inf
t∈[u,v]

|ϕ(t)|

≤ 2V[u,v](ϕ) +
2

m([u, v])

∫

[u,v]
|ϕ(t)| dt.(3.6)
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2 a) We apply first (3.6) for the intervals [c, d] and τ(Ij) =]αj ,βj [. This gives
for the variation of Pτf :

V (Pτf) ≤
∑

j

V [(
f

τ ′
) ◦ σj 1τ(Ij)]

≤
∑

j

V[αj ,βj] [(
f

τ ′
) ◦ σj ] +

∑

j

[|( f

τ ′
)(σjαj)| + |( f

τ ′
)(σjβj)|]

≤ 2
∑

j

V[αj ,βj ] [(
f

τ ′
) ◦ σj ] +

∑

j

1
m(τ(Ij))

∫

[αj ,βj]
|( f

τ ′
)(σjx)| dx

≤ 2
∑

j

V[αj ,βj ] [(
f

τ ′
) ◦ σj ] +

∑

j

1
m(τ(Ij))

∫

[aj ,aj+1]
|f | dx.

The first term on the right (cf. [Br96]) is less than

2
γ

V (f) + 2
K

γ2
‖f‖1.

The second term is less than 2
δ ‖f‖1, where δ = infj m(τIj). Therefore we get:

(3.7) V (Pτf) ≤ 2
γ

V (f) + 2
K

γ2
‖f‖1 +

2
δ

‖f‖1.

The inequality (3.7) implies that (Dr) is satisfied for r = 1 in the case a) of the
proposition.

2 b) For this case, we refer to Viana [Vi97].

2 c) β-transformations

Let a > 0 and βk, k ≥ 1, be real numbers such that βk ≥ 1 + a. Denote by τk :
x → βkx mod 1, the corresponding β-transformations and write θr(x) = τr...τ1x.
We show the existence of r > 0 depending only on a such that (Dr) is verified.

Let us consider the partition Pn of [0, 1] into monotonicity intervals of θn for
a given n. We call full intervals of rank n the open intervals J ∈ Pn such that the
transformation θn applies J surjectively on I =]0, 1[.

Let Jp
1 , ..., Jp

t denote the full intervals in increasing order and Jk,1, ...Jk,$(k), for
k = 1, ..., t, the non-full consecutive intervals between Jp

k and Jp
k+1.

Let w(r) = maxk=1,...,t *(k) be the maximal number of non-full intervals sep-
arated by two full intervals (we include the case of contiguous full intervals at the
left of the end point 1).

If [u, v] = Jk,j is a non-full interval, we bound the variation on this interval by
an application of (3.5) to [u, v] and to the interval [c, d] = J̃p

k = Jp
k ∪$(k)

j=1 Jk,j which
is the union of the full interval Jp

k (at the left of [u, v]) and of the non-full intervals
which are consecutive to Jp

k .
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Let πr = β1...βr. As m(J) = π−1
r if J is a full interval and the intervals J̃p

k are
pairwise disjoint, we get:

V (Pr ...P1f) ≤ 1
πr

∑

J∈Pr

VJ (f) + 2
w(r)
πr

∑

k

[V (J̃p
k , f) +

1
m(J̃p

k )

∫

J̃p
k

|f | dt ]

≤ 1 + 2w(r)
πr

V (f) + 2w(r)‖f‖1.

For β-transformations, we have w(r) ≤ r. Indeed let Jp
k be a full interval and

Jk,1, ..., Jk,$(k) non-full intervals following Jp
k at the right. At the next step Jp

k can
give rise possibly at the right to a monotonicity non-full interval for θr+1 ; on the
other hand, if one of the intervals Jk,j gives rise to more then one monotonicity
interval for θr+1, among these intervals at least one is full and at most one is not
full. This shows that w(r + 1) ≤ w(r) + 1. Therefore we have w(r) ≤ r, ∀r ≥ 1. If
we choose r such that 1 + 2r < πr we get (Dr).

• Exactness of some sequences of expanding maps

A) Transformations τ : x → βx + α mod 1, with β > 2.

We take for C0 the family of transformations of the interval I = [0, 1] of the
form τ : x → βx + α mod 1, with β ≥ 2 + a, where a is a fixed > 0 real.

In the following lemma, we extend a result of Wilkinson [Wi74] for a single
transformation τ : x → βx + α mod 1 to the case of a sequence (τk).

Lemma 3.5. For every ε > 0, there exists an integer r ≥ 0 such that, for every
n ≥ 1, we can cover I, up to a set of measure less then ε, by full intervals of rank
between n and n + r.

Proof: Let πn be the product πn = βnβn−1...β1, T (n) the number of atoms of
the partition Pn, F (n) the number of full intervals of rank n

If J is a full interval of rank n, we have: πnm(J) = 1, and therefore (summing
on full intervals of rank n) we get F (n) = πn

∑
J m(J) ≤ πn.

Since an interval of rank n − 1 gives at rank n at most 2 non-full intervals we
have: T (n) ≤ πn + 2T (n − 1) ; hence, for a constant C:

T (n) ≤ πn + 2πn−1 + ... + 2n−1 ≤ πn(1 +
2
βn

+
22

βnβn−1
+ ... +

2n−1

βnβn−1..β1
) ≤ Cπn.

Let ε > 0 be given and n an integer ≥ 1. Let us take first the partial covering
of [0, 1] by full intervals of rank n. There remains non-full intervals of rank n (at
most T (n)) which we partially cover by full intervals of rank n + 1. This step gives
rise to at most 2T (n) non-full intervals. Using this procedure up until n + r, there
remains a non-covered set which is formed of non-full intervals of measure at most

1
πn+r

and whose total measure is less then

2rT (n)
πn+r

≤ C2rπn

πn+r
=

C2r

βn+rβn+r−1...βn+1
≤ C(

2
2 + a

)r ≤ ε,

for r big enough (independent from n).
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B) Transformations τ : x → βx mod 1.

Let us take now for C0 the family of transformations of [0, 1] of the form τ :
x → βx mod 1, with β ≥ 1 + a, where a is a fixed > 0 real.

By the same argument, changing only the recurrence formula into : T (n) ≤
πn + T (n − 1), we have T (n) ≤

∑n
1 πk and therefore:

T (n)
πn+r

≤
∑n

1 πk

πn+r
=

1
βn+rβn+r−1...β1

(πn + πn−1 + ... + 1)

≤ 1
βn+rβn+r−1...βn+1

(1 +
1
βn

+
1

βnβn−1
+ ... +

1
βnβn−1..β1

) ≤ C(1 + a)−r.

Theorem 3.6. For both families of transformations A) and B), any sequence
(τn) is exact.

Proof: The proof is that of [Ro61] for the iterates of a single β-transformation.

Let A be in the asymptotic σ-algebra with m(A) > 0 Let us show that m(A) =
1. We have A = θ−1

n θnA. Let ε > 0.

By Lemma 3.5 the family of full intervals (of arbitrary rank) generates the
Borel σ-algebra. Therefore there exists a full interval J such that

m(J ∩ A) ≥ (1 − ε)m(J).

(If not, we would have m(B ∩ A) ≤ (1 − ε)m(B), for every B, in particular for
B = A.)

Let n be the rank of J . The restriction of θn to J is an affine bijection from J
onto ]0, 1[. We have:

m(θn(J − J ∩ A)) = m(J − J ∩ A)/m(J) = 1 − m(J ∩ A)/m(J) ≤ ε;

therefore:

m(θnA) ≥ m(θn(J ∩ A)) ≥ m(θnJ) − m(θn(J − J ∩ A))
≥ m(θnJ) − ε = 1 − ε,

m(θ−1
n (θnA)c) =

∫
1(θnA)c Πn1 dm ≤ Cε.

• Decorrelation, law of large numbers

Let C0 be a set of transformations of [0, 1] such that:
1) C0 one of the families satisfying the statement of Theorem 3.4;
2) any sequence (τn) in C0 is exact;
3) C0 verifies a compactness condition: if (σn) is a sequence in C0, there exists a
subsequence (σnj ) and a transformation τ ∈ C0 such that

(3.8) lim
j

‖f ◦ σnj − f ◦ τ‖1 = 0, ∀f ∈ L1(m).

This condition implies the compactness condition (C) for the corresponding set
of transfer operators P0 = {Pσ,σ ∈ C0}. In the previous paragraph we provided
some examples of such sets of transformations.
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The hypothesis of Proposition 2.11 is satisfied and therefore Proposition 2.7
can be applied. Therefore the condition of decorrelation (Dec) is satisfied by C0.

Consider now transformations τn, n = 1, 2, ..., in the class C0. Let f be a
function in V . Using the notations (1.1), we set

(3.9) f̃k := f − m(fΠk1).

It follows from (1.10) that:

IE(T1 · · ·Tkf̃k T1 · · ·T$f̃$) = IE(T1 · · ·Tkf̃k T1 · · ·Tk

(Pk · · ·P$+1f̃$ Π$1)
Πk1

)
)

= IE(f̃k Pk · · ·P$+1(f̃$ Π$1)).

As f̃$ Π$1 ∈ V0 and

(3.10) |f̃$ Π$1|v ≤ 3M |f |v,
the condition (Dec) implies:

|
∫

T1 · · ·Tk f̃k T1 · · ·T$ f̃$ dm| ≤ 3MD′λ−|k−$||f |v‖f‖1.

It is well known that, if (Zn) is a sequence of centered square integrable random
variables such that |IE(ZnZn+$)| ≤ ε$, where (εn) is a summable sequence, the law
of large numbers holds for the sequence (Zn). This implies the following law of
large numbers:

Theorem 3.7. Under the previous conditions, we have, for f ∈ V and m-a.e.
x,

lim
n

1
n

n∑

k=1

[f(τk · · · τ1x) −
∫

T1 · · ·Tkf dm] = 0.

• Application in a neighbourhood of a transformation, equidistribu-
tion

Due to Proposition 2.10 and Theorem 3.4, the result of Theorem 3.7 is valid
in a neighbourhood of an exact transformation τ in C which satisfies (3.4). Let τn,

n = 1, 2, ..., be transformations in C such that limn |τnx − τx| = 0, for each x ∈ I.

The exact transformation τ has an unique ACIM with density h and we have
by Lemma 2.12 limn

∫
f Πk1dm =

∫
f h dm ; therefore:

lim
n

1
n

n∑

k=1

∫
T1 · · ·Tkf dm =

∫
f h dm.

We deduce from it the following equidistribution theorem (sequential stability):

Theorem 3.8. 1) If τ = limn τn, if τ is exact and verifies (3.4), then for m-
a.a. x, the asymptotic distribution of the sequence (θn(x) = τn · · · τ1x)n≥0 is given
by the measure hm: for every BV function f , we have

lim
n

1
n

n−1∑

k=0

f(τk · · · τ1x) =
∫ 1

0
f h dm.
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2) If (βn) is a sequence such that limn βn = β > 1, and (θn(x))n≥0 is defined by
θ0(x) = x, θn+1(x) = (βnθn(x)) mod 1, n ≥ 0, then we have the same conclusion:
for almost all x, the sequence (θn(x))n≥0 is distributed according to the measure
h m, where h is the density of the ACIM for τ : x → βx mod 1.

In particular if β is an integer ≥ 2, the sequence (θn(x))n≥0 is uniformly dis-
tributed on [0, 1] for a.a. x.

• Rate of convergence of (Πnϕ) to m(ϕ)h, case of β-transformations

The convergence given by Lemma 2.12 is qualitative. For the β-transformations,
the rate of convergence is related to the rate of convergence of (βn) towards β. To
prove it, we need a measure of the regularity of functions.

For a real t > 0 and f a bounded Borel function, we set

w(f, x, t) = sup
|y−x|≤t

|f(y) − f(x)|,

w̃(f, t) =
∫ 1

0
w(f, x, t) dm(x) =

∫ 1

0
sup

|y−x|≤t
|f(y) − f(x)| dm(x).

By Fubini’s Theorem, we get:

(3.11) w̃(f, t) ≤ 2tV (f).

Lemma 3.9. There exists a constant C such that for any two reals β1,β2 > 1
with P1, P2 the transfer operators corresponding resp. to the transformations x →
β1x mod 1, x → β2x mod 1, we have:

(3.12) d(P1, P2) ≤ C|β1 − β2|.

Proof: To simplify we assume that β2 > β1 and [β2] = [β1].
We have:

|P2f(x) − P1f(x)| = |
[β1]−1∑

k=0

1
β2

f(
x + k

β2
) +

1
β2

f(
x + [β1]
β2

)1[0,{β2}](x)

−
[β1]−1∑

k=0

1
β1

f(
x + k

β1
) − 1

β1
f(

x + [β1]
β1

)1[0,{β1}](x)|

≤ (1 − β2

β1
)P2|f |(x) +

[β1]−1∑

k=0

1
β1

|f(
x + k

β2
) − f(

x + k

β1
)|

+
1
β1

|f(
x + [β1]
β1

)|1[0,{β1}](x)| + 1
β1

|f(
x + [β1]
β2

)|1[0,{β2}](x)|

≤ |β2 − β1|
β1

P2|f |(x) + P1w(f, .,
1
β2

− 1
β1

)(x)

+
1
β1

‖f‖∞ |1[0,{β1}](x) − 1[0,{β2}](x)|.

Since m is P -invariant, we have:
∫

Pw(f, .,
1
β2

− 1
β1

)(x) dm(x) = w̃(f,
1
β2

− 1
β1

).
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Integrating in the previous equality and using 3.11, we get for some constant C:

‖P2f − P1f‖1 ≤ C|f |v|β2 − β1|.

Using this Lemma and Lemma 2.13, we can now give a rate of convergence of
the sequence (Πnϕ) to m(ϕ)h, for a BV function ϕ. Recall that the constant γ0 as
defined in Proposition 2.8, inequality (2.14).

Lemma 3.10. There exists a constant C1 ≥ 1 such that for all integers p ≤ n

‖Pn · · ·P1 ϕ− Pn ϕ‖1 ≤ C1 |ϕ|v
n∑

k=1

min{|βn−k+1 − β|, γk−1
0 }

≤ C1 |ϕ|v
( p∑

k=1

|βn−k+1 − β| + (1 − γ0)−1 γp
0

)
.

As a corollary of the previous result we get:

Corollary 3.11. If |βn − β| < 1
nθ , with θ > 0, we have, for a constant A

independent from n and from ϕ ∈ V:

‖Πnϕ− m(ϕ)h‖1 ≤ A log n

nθ
|ϕ|v.

4. A Borel-Cantelli lemma

A law of large numbers of the type of the Borel-Cantelli Lemma, stronger than
Theorem 3.7, can be obtained under a condition of minoration for the sequence
(Πn1), which can be checked for the β-transformations, when the βn’s are in a
convenient neighbourhood of a fixed β.

Condition (Min): There exists δ > 0 such that Πn1(x) ≥ δ, ∀x ∈ [0, 1], ∀n ≥
0.

This condition and boundedness of the sequence of functions (Πn1) imply that
the integrals

∫
T1 · · ·Tkf dm and

∫
f dm are of the same order, i.e. for f ≥ 0 and

all k ≥ 1,
δm(f) ≤ m(T1 · · ·Tkf) ≤ sup

n
‖Πn1‖∞m(f).

Theorem 4.1. Assuming the conditions (Dec) and (Min), if (fn)n≥0 is a se-
quence of positive BV functions such that

∑

n≥0

m(fn) = +∞ and sup
n≥0

|fn|v < +∞,

then the sequence (Fn)n≥0 defined by

(4.1) Fn(x) =
∑n

k=0 fk(τk · · · τ1x)∑n
k=0 m(T1 · · ·Tkfk)

, n ≥ 0,

converges m-p.p. to 1.
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Proof: 1) We show that there is a constant C such that
∫

E
(Fn − 1)2 dm ≤ C∑n

k=0 m(T1 · · ·Tkfk)
.

Write f̃k = fk − m(fkΠk1), ∀k ≥ 0. We have for some constants C1, C2, for
each n ≥ 1:

( n∑

k=0

m(T1 · · ·Tkfk)
)2

∫

E
(Fn − 1)2 dm

≤ 2
∑

0≤k≤$≤n

∫

E
T1 · · ·Tkf̃k T1 · · ·T$f̃$ dm

≤ C1

∑

0≤$≤n

( ∑

0≤k≤$

λ−($−k)|fk|v
)

m(f$)

≤ C2 sup
j

|fj|v
∑

0≤$≤n

m(f$)

≤ C2
1
δ

sup
j

|fj |v
∑

0≤$≤n

m(T1 · · ·T$f$),

hence the result.

2) As the functions (fn) are uniformly bounded, we can assume ‖fn‖∞ ≤ 1.
Let ψ be the sequence defined by ψ(n) = inf{* :

∑$
k=0 m(T1 · · ·Tkfk) ≥ n2}, n ≥ 1.

We have

n2 ≤
ψ(n)∑

k=0

m(T1 · · ·Tkfk) ≤ (n + 1)2, n ≥ 1.

The subsequence (Fψ(n)) converges m-a.s. to 1, since
∑

n≥1

∫

E
|Fψ(n) − 1|2 dm ≤

∑

n≥1

C

n2
< +∞.

For n ∈ IN , let r = r(n) such that ψ(r) ≤ n ≤ ψ(r + 1). The inequalities

(
r

r + 2
)2 Fψ(r) ≤ Fn ≤

∑ψ(r+1)
k=0 m(T1 · · ·Tkfk)

∑ψ(r)
k=0 m(T1 · · ·Tkfk)

Fψ(r+1) ≤ (
r + 2

r
)2 Fψ(r+1)

imply the convergence of (Fn)n≥0 m-a.s. towards 1.

Remark 4.2. The previous “Borel-Cantelli Lemma” applied to sequences of
regular sets gives information on the visits of regular sets of small measure by the
sequence (θn(x)).

Let (Bn) be a sequence of sets such that supn |1Bn |v < ∞. Then if (Dec) and
(Min) are satisfied, we have either:

∑
k m(Bk) < +∞ or

∑

k≥0

1Bk(θkx) = +∞, for a.a. x.

For example in the case of [0, 1], we can take for (Bn) a sequence of intervals
of length 1/n. We get that, infinitely often, θnx ∈ Bn.

For r > 0 and a ∈]0, 1[, let k(x, r) := inf{* : θ$(x) ∈ [a − r, a + r]}.
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Let γ be any real > 1, M = supn ‖Πn1‖∞. Let us take ε > 0 such that
δ(γ − 1) > 2Mγε.

By (4.1) there exists N = N(γ, ε, x) such that, for n ≥ N ,
nγ∑

n

1Bk(θkx) ≥ (1 − ε)(
nγ∑

1

m(θ−1
k Bk)) − (1 + ε)(

n∑

1

m(θ−1
k Bk))

≥ δ
nγ∑

n

m(Bk) − 2Mε(
nγ∑

1

m(Bk)) ≥ δ(γ − 1)Logn − 2MεγLogn.

This implies that k(x, 1/n) ≤ nγ , for n ≥ N(γ, ε, x) and therefore for a.a. x:

lim sup
r→0

Logk(x, r)
Log1/r

≤ 1.

• Minoration of Πn1 (case of β-transformations)

In this paragraph, we show that the condition (Min) is satisfied in the class of
β-transformations for a neighbourhood of each β-transformation.

We consider reals βn > 1 and the corresponding β-transformations.

Let χ0(x) = 1 and, for n ≥ 1

(4.2) χn(x) = 1 +
n∑

j=1

β−1
n β−1

n−1...β
−1
n−j+1 1{x<τnτn−1...τn−j+11}.

We have:

∀n ≥ 0, Pn+1χn(x) =
∑

k≥0

β−1
n+1χn(

x + k

βn+1
)1I(

x + k

βn+1
) = χn+1(x) + cn,

where cn is a constant. By integration with respect to the Lebesgue measure, we
get that cn = m(χn) − m(χn+1).

On the other hand, if βn is such that |βn − β| ≤ a, for some a > 0 such that
β − a > 1, then the functions χn satisfy:

1 ≤ χn(x) ≤ β − a

β − a − 1
:= M, ∀x ∈ [0, 1].

When βk = β > 1, for each k, we get:

0 ≤ χn+1 − χn ≤ β−(n+1) and lim
n

cn = 0.

In that case, the sequence (χn) converges to the sum

χ = 1 +
∞∑

j=1

β−j 1{x<τ j1}

which is P -invariant and gives, up to a factor, the density of the ACIM for the
β-transformation. This shows also that the density is bounded from below by the
constant β−1

β > 0 (cf. Renyi [Re57], Parry [Pa60]).

In the general case, if the βn’s are close to a fixed β, as in the estimation of
the rate of convergence of (Πnϕ), one can show that ‖χn+1 − χn‖1 is small and
therefore also the constant cn, for a small enough.
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Iterating, we get:

PnPn−1...Pn−kχn−k−1

= χn + cn−1 + cn−2Pn1 + cn−3PnPn−11 + ... + cn−k−1PnPn−1...Pn−k+11,

hence

(4.3) |PnPn−1...Pn−kχn−k−1 − χn| ≤ C
k+1∑

j=1

|cn−j|.

Proposition 4.3. For everyβ > 1, there exists a > 0, δ > 0 such that, if
βn ∈ [β − a,β + a], then Πn1(x) ≥ δ.

Proof: Recall that we have |Pn...Pn−k1‖∞ ≤ C, independently of n and k,
|m(χj) − m(χj+1)| < ε for j big enough. On an other hand we have (cf. (2.14)):

|Πn1 − Pn...Pn−r1|v ≤ Cγr
0 .

We fix r such that MCγr
0 ≤ 1/4. For n big enough it follows from (4.3):

PnPn−1...Pn−rχn−r−1 ≥ χn − rε ≥ 1 − rε,

hence:

PnPn−1...Pn−r1 ≥ M−1PnPn−1...Pn−rχn−r−1 ≥ M−1(1 − rε)

and finally, taking δ = 1
2M and ε ≤ 1

4r , we obtain the inequality:

Πn1 ≥ M−1(1 − rε) − Cγr
0 ≥ δ.

5. Central limit theorems

In the following, we assume that the transformations τn belong to a family of
transformations C0 such that the conditions (Dec) and (Min) are satisfied.

As we have seen, this is the case for any β0 > 1, when C0 is the set of β-
transformations for β in a suitable neighbourhood of β0 > 1.

We will show the convergence towards the normal law for the sums
n−1∑

k=0

f(τk · · · τ1x)

after centering and normalisation. (We have to center at each step of the iteration
since there is no joint invariant measure for the transformations τn.) We consider
also the more general case of a sequence of functions fn.

We define the operators Qn, for n ≥ 1, by

g → Qng =
Pn(gΠn−11)

Πn1
.

Let (fn) be a sequence in V such that supn≥0 |fn|v < +∞. Write

f̃n = fn − m(T1 · · ·Tnfn).
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Let hn be defined by the relations hn+1 = Qn+1f̃n +Qn+1hn, with h0 = 0. We get:

hn = Qnf̃n−1 + QnQn−1f̃n−2 + ... + QnQn−1...Q1f̃0

=
1
Πn1

[Pn(f̃n−1Πn−11) + PnPn−1(f̃n−2Πn−21) + ... + PnPn−1...P1(f̃0Π01)].

The functions f̃n−kΠn−k1 belong to V0. Therefore, under condition (Dec), we
have an exponential decay for the norm | |v of the general term of the previous sums
and the sequence (hn) is bounded for the norm | |v. In particular it is bounded for
the uniform norm. We write

ϕn = f̃n + hn − Tn+1hn+1,(5.1)
Un = T1...Tnϕn.(5.2)

¿From (1.10), the sequence (Un) is a sequence of reversed martingale for the
filtration (An) and we have

n−1∑

0

T1...Tkf̃k =
n−1∑

0

Uk + T1 · · ·Tnhn.

Therefore we can replace
∑n−1

0 T1...Tkf̃k by a reversed martingale, the error term
being bounded. We can now apply a theorem of B.M. Brown ([Br71]) (see 5.8
below) on martingales to get the CLT.

We write Sn =
∑n−1

k=0 T1 · · ·Tkf̃k.

Theorem 5.1. Let (fn) be a sequence in V such that supn≥0 |fn|v < +∞.
Assuming (Dec) and (Min), we have:
- either the norms ‖Sn‖2 are bounded and in that case, for a.e. x, the sequence

n−1∑

k=0

f̃k(τk · · · τ1x), n≥1

is bounded,
- or the sequence

(
f0 − m(f0) + T1f1 − m(T1f1) + . . . + T1 · · ·Tn−1 fn−1 − m(T1 · · ·Tn−1 fn−1)

‖Sn‖2
)n≥1

converges in law to N(0, 1).

Proof: Let:

σ2
n =

n−1∑

k=0

IE[U2
k ], Vn =

n−1∑

k=0

IE[U2
k |Ak+1].

We have to check conditions i) and ii) of Theorem 5.8 :
i) the sequence of v.a.r. (σ−2

n Vn)n≥1 converges in probability to 1 ;

ii) for every ε > 0, lim
n→+∞

σ−2
n

n−1∑

k=0

IE[U2
k1{|Uk|>εσn} ] = 0.

The difference |‖Sn‖2 − ‖
∑n−1

k=0 Uk‖2| = |‖Sn‖2 − (
∑n−1

k=0 IE[U2
k ]) 1

2 | ≤ ‖Sn −∑n−1
k=0 Uk‖2 is bounded. We have

IE[U2
k |Ak+1] = T1 · · ·TkTk+1

(Pk+1(ϕ2
k Πk1)

Πk+11
)
.
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If the sequence (σn) tends to +∞, ii) is satisfied since the functions Uk are
uniformly bounded. For the first condition, we apply the law of large numbers
(Theorem 4.1) to the sequence

(
Pk+1(ϕ2

k Πk1)
Πk+11

)
= (

Pk+1[(f̃k + hk − Tk+1hk+1)2Πk1]
Πk+11

).

Using the fact that the functions Πn1 are bounded from below from 0, we get

sup
k

|Pk+1(ϕ2
k Πk1)

Πk+11
|v < ∞

and we can apply 4.1, under the assumption
∞∑

0

∫
(Tk · · ·T1f̃k + Tk · · ·T1hk − Tk+1 · · ·T1hk+1)2 dm = +∞.

In that case, we have limn σn = +∞ and limn ‖Sn‖2 = +∞.

On the contrary if this series converges, we have by a martingale theorem that
the series

n−1∑

k=0

[Tk · · ·T1f̃k + Tk · · ·T1hk − Tk+1 · · ·T1hk+1]

converges for a.a. x and the sum
∑n−1

k=0 fk(τk · · · τ1x) − (m(f0) + m(T1f1) + . . . +
m(T1 · · ·Tn−1 fn−1)) can be written as the sum of a (for a.a. x) bounded sequence
and of Tk · · ·T1hk − Tk+1 · · ·T1hk+1 which is uniformly bounded in k.

Remark 5.2. The previous statement can be made more precise (locally) in the
class of β-transformations and for a fixed function f . Denote by hP the relativised
transfer operator corresponding to x → βx mod 1 for a given β > 1 and by hG its
potential (cf. below).

In a neighbourhood of a β-transformation, if f is not a coboundary for the
transformation x → βx mod 1, the functions f − hk − Tk+1hk+1, which are close
(in L2 norm) to f − hP hGf + T hP hGf, have norms bounded from below. This
shows that the variance in the previous theorem is of order

√
n.

As a particular case of the previous theorem we have, in the case of the iterates
of a single transformation of the interval which belongs to the class C and whose
ACIM has a strictly positive density, the following result: if (fn) is a sequence of BV
functions such that supn≥0 |fn|v < +∞, then the sums

∑n−1
0 T kfk after centering

and normalisation satisfy a CLT.

• CLT when limn τn = τ

We can give a more precise formulation of the CLT for a fixed BV function f ,
when limn τn = τ .

We suppose from now on that the Pτ -invariant normalised function h is m-a.e.
strictly positive. This is the case for the β-transformations as we have shown,
but not always true for transformations of the form x → βx + α mod 1, as in the
following example:

β = 1+
√

5
2 ,α = 3−β

2 , where the density h is zero on interval ]
√

5−1
2 , 1+

√
5

4 [.
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We consider the “relativised” operator hPf = P (h f)
h and its “potential” de-

fined, for f in V such that m(hf) = 0 by:

hGf =
∑

k≥0

(hP )kf =
∑

k≥0

P k(h f)
h

.

The probability h m is hP -invariant.

We set ξ = hGf , so that f can be written f = ξ − hP ξ. The function ξ has
still a bounded variation.

Theorem 5.3. Let f ∈ V be such that m(h f) = 0. Let

σ2 = m
(
h (hGf)2

)
− m

[
h

(
hP hGf

)2]
(5.3)

=
∫ 1

0

hP
[(

hGf(·) − hP hGf(x)
)2]

(x)h(x) dx.(5.4)

If f is not a coboundary for x → βx mod 1, we have: σ2 > 0 and for every density
ϕ ∈ V such that m(ϕ) = 1, under the probability ϕm, the sequence
( 1√

n
(f − m(ϕf) + T1f − m(ϕT1f) + . . . + T1 · · ·Tn−1 f − m(ϕT1 · · ·Tn−1 f))

)

n≥1

converges in distribution to N (0,σ2).

For example for the β-transformations, taking into account Corollary 3.11, we
have:

Corollary 5.4. Suppose that |βn − β| < 1
nθ , with θ > 1

2 . Let f ∈ V such that
m(h f) = 0. Suppose σ2 1= 0. Then for every ϕ ∈ V such that m(ϕ) = 1, under the
probability ϕm, the sequence of real random variables

( 1√
n

(f + T1f + . . . + T1 · · ·Tn−1 f)
)

n≥1

converges in distribution to N (0,σ2).

The proof of Theorem 5.3 will be given in several lemmas. We begin with some
notations:

For η ∈ V and k ∈ IN , let ηk = η − IEϕm[T1 · · ·Tk η] = η − m(ηΠkϕ). We set:

Uk = T1 · · ·Tk (ξk) − IEϕm[T1 · · ·Tk (ξk) | Ak+1],
Wk = IEϕm[T1 · · ·Tk (ξk) | Ak+1] − T1 · · ·Tk+1

(
hP ξ

)
k+1

.

With these notations, we have:
n−1∑

k=0

(
T1 · · ·Tk fk − (Uk + Wk)

)
= T1 · · ·Tn

(
hP ξ

)
n

−
(
hP ξ

)
0
.

Lemma 5.5. Let ψ be an integrable function, (gn) and (ϕn) two sequences of
functions such that: supn ‖gn‖∞ = M < ∞, ‖gnϕn‖1 → 0, ‖ϕn − ψ‖1 → 0. We
have then: ‖gn1{ψ>0}‖1 → 0.
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Proof: We apply the inequality

‖gn1{ψ>0}‖1 ≤ M m
(
{0 < ψ < ε}

)
+

1
ε

∫
|gn||ψ| dm

≤ M m({ψ < ε} ∩ {ψ > 0}) +
1
ε

∫
|gn||ψ − ϕn| dm +

1
ε

∫
|gn||ϕn| dm.

Lemma 5.6. The sequence ( 1√
n

∑n−1
k=0 Wk)n≥1 converges in IL2(ϕm)-norm to

0.

Proof: For f ∈ V , we have ϕm-a.e.

IEϕm[T1 · · ·Tk f | Ak+1] = T1 · · ·Tk+1

(Pk+1

(
f Πkϕ

)

Πk+1ϕ
1{Πk+1ϕ>0}

)
;

ϕm({T1 · · ·Tk+1Πk+1ϕ = 0}) = IEm[1{Πk+1ϕ=0}Πk+1ϕ] = 0.

Hence Wk = T1 · · ·Tk+1 gk+1 with

gk =
Pk

((
ξ
)

k−1
Πkϕ

)

Πkϕ
1{Πkϕ>0} −

(
hP ξ

)
k
.

We have: m(gk Πkϕ) = 0, ∀k ≥ 1 and supk≥1

∣∣gk Πkϕ
∣∣
v

= L < +∞. Moreover
the inequalities:

IEm

[
|gn|Πnϕ

]
= IEm

[∣∣∣Pn

(
ξn−1 Πn−1ϕ

)
−

(
hP ξ

)
n
Πnϕ

∣∣∣
]

≤ IEm

[∣∣∣Pn

(
ξΠn−1ϕ

)
− hP ξΠnϕ

∣∣∣
]

+
∣∣m

(
ξΠn−1ϕ

)
− m

(
hP ξΠnϕ

)∣∣

≤ IEm

[∣∣∣Pn

(
ξΠn−1ϕ

)
− P

(
ξΠn−1ϕ

)∣∣∣
]

+IEm

[∣∣∣P
(
ξΠn−1ϕ

)
− P

(
h ξ

)∣∣∣
]

+IE
[∣∣∣hP ξ

(
h −Πnϕ

)∣∣∣
]

+
∣∣m

(
ξΠn−1ϕ

)
− m

(
hP ξΠnϕ

)∣∣

show that limn→+∞ ‖gnΠnϕ‖IL1(m) = 0. [Remark that hP ξ is bounded by ‖ξ‖∞].

As supk≥0 ‖gk‖∞ < +∞, using Lemma 5.5, this implies:

lim
n→+∞

‖h gn‖IL1(m) = 0 and lim
n→+∞

‖gn‖IL1(m) = 0.

For 1 ≤ * < k, we have then:

IEϕm[WkW$] = IEm[gk+1Pk+1 · · ·P$+2

(
g$+1Π$+1ϕ

)
]

≤ sup
j≥$+1

‖gj+1‖IL1(m) ‖Pk+1 · · ·P$+2

(
g$+1Π$+1ϕ

)
‖v

≤ D λk−$
∣∣g$+1Π$+1ϕ

∣∣
V sup

j≥$+1
‖gj+1‖IL1(m)

≤ D Lλk−$ sup
j≥$+1

‖gj+1‖IL1(m),
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and IEϕm[W 2
k ] ≤ L ‖gk+1‖IL1(m). This implies the result.

Lemma 5.7. The sequence (
1
n

n∑

k=1

IEϕm[U2
k |Gk+1])n≥1 converges in IL1(ϕm)

norm to σ2 given by (5.4).

Proof: We have:

IEϕm[U2
k | Gk+1] = IEϕm[T1 · · ·Tk ξ

2
k | Gk+1] −

(
IEϕm[T1 · · ·Tk ξk | Ak+1]

)2
.

By the martingale property, we have convergence to zero in IL2(ϕm)-norm and
ϕm-a.e. of the sequence

1
n

n−1∑

k=0

(
T1 · · ·Tk ξ

2
k − IEϕm[T1 · · ·Tk ξ

2
k | Ak+1]

)
,

so that the sequence

1
n

n−1∑

k=0

IEϕm[T1 · · ·Tk ξ
2
k | Ak+1]

has, for the IL1(ϕ, m)-norm and ϕm-a.e., the same limit as

1
n

n∑

k=1

T1 · · ·Tk ξ
2
k.

Therefore it converges (Theorem 3.8) to m(h ξ2) −
(
m(h ξ)

)2.

On the other hand the convergence of ‖gnΠnϕ‖IL1(m) to zero (cf. proof of
Lemma 5.6) implies that the sequence of r.r.v.

IEϕm[T1 · · ·Tn ξn | An+1] − T1 · · ·Tn+1

(
hP ξ

)
n+1

converges in IL1(ϕm)-norm to zero. As these r.r.v. are uniformly bounded, this
implies that

(
IEϕm[T1 · · ·Tn ξn| An+1]

)2 − T1 · · ·Tn+1

(
(hP ξ)n+1

)2

converges in IL1(ϕm) to 0.

We deduce from it that the sequence

1
n

n−1∑

k=0

IEϕm[T1 · · ·Tk ξk| Ak+1]
)2

converges for the IL1(ϕm)-norm to m
(
h

(
hP ξ

)2
)

−
(
m(h ξ)

)2. This implies the
result.

To conclude the proof of Theorem 5.3 we apply the following result, whose proof
is analogous to that of the theorem of B.M. Brown [Br71] for direct martingales.
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Theorem 5.8. Let
(
Un,Gn

)
n≥0

be a sequence of differences of square integrable
reversed martingales, defined on a probability space (Ω,F , IP ). For n ≥ 0, let

Sn = U0 + . . . + Un−1, σ2
n =

n−1∑

k=0

IE[U2
k ] and Vn =

n−1∑

k=0

IE[U2
k |Ak+1].

Let us assume the following two conditions:
i) the sequence of r.r.v. (σ−2

n Vn)n≥1 converges in probability to 1.

ii)For each ε > 0, lim
n→+∞

σ−2
n

n−1∑

k=0

IE[U2
k1{|Uk|>εσn} ] = 0.

Then we have:

lim
n→+∞

sup
α∈IR

∣∣IP [
Sn

σn
≤ α] − 1√

2π

∫ α

−∞
e−

x2
2 dx

∣∣ = 0.
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