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We consider the asymptotic behaviour of a sequence (θn), θn = τn

, where (τn) n≥1 are non-singular transformations on a probability space.

After briefly discussing some definitions and problems in this general framework, we consider the case of piecewise expanding transformations of the interval. Exactness and statistical properties (a central limit theorem for BV functions after a moving centering) can be shown for some families of such transformations.

The method relies on an extension of the spectral theory of transfer operators to the case of a sequence of transfer operators.

Introduction

Let (θ n ) be a sequence of non-singular transformations on a probability space (X, A, m). When the measure is preserved, the extension of notions (ergodicity, mixing,...) from the case of the iterates of a single transformation to a sequence (θ n ) was considered by D. Berend and V. Bergelson ( [START_REF] Berend | Ergodic and mixing sequences of transformations[END_REF]) and some examples were given of what they called sequential dynamical systems.

Recently some authors have given examples of sequential systems of hyperbolic type ( [START_REF] Bakhtin | Random processes generated by a hyperbolic sequence of mappings (I, II)[END_REF], [START_REF] Arnoux | Anosov families, renormalization and nonstationary subshifts[END_REF], [START_REF] Polterovich | Stable mixing for cat maps and quasi-morphisms of the modular group[END_REF]). In the last reference, a property of stable mixing for a sequence of automorphisms of the 2-torus has been discussed by L. Polterovich and Z. Rudnick. Sequential systems have been also considered in [START_REF] Berger | One-dimensional dynamical systems and Benford's law[END_REF] in the context of the "Bendford law", for transformations composed on IR + before taking mod 1. Another situation where sequential systems appear is that of random sequences of transformations (see for instance [START_REF] Kifer | Random Perturbations of Dynamical Systems[END_REF], [START_REF] Keller | Stochastic stability in some chaotic dynamical systems[END_REF], [START_REF] Baladi | On the spectra of randomly perturbed expanding maps[END_REF], [START_REF] Buzzi | Exponential decay of correlation for random Lasota-Yorke maps[END_REF], [START_REF] Viana | Stochastic dynamics of deterministic systems[END_REF]).

We consider here the asymptotic behaviour of a sequence (θ n ),

θ n = τ n • τ n-1 • • • • τ 1 ,
where (τ n ) n≥1 are piecewise expanding transformations of the interval [0, 1), and discuss properties like exactness and limit theorems for such sequential systems. (The measure m is the Lebesgue measure, which is only quasi-invariant.)

A motivation is the following. Let x → βx mod 1 be a β-transformation for β > 1. Suppose that at each step of the iteration we make a small error and replace β by β n tending to β. If θ n (x) is defined by : θ 0 (x) = x, θ n (x) = β n θ n-1 (x) mod 1, n ≥ 1, is it true that for a.e. x ∈ [0, 1] the asymptotic distribution of the sequence (θ n (x)) n≥0 is, , the absolutely continuous invariant measure (ACIM) of the transformation x → βx mod 1 ?

A positive answer can be proved for β-transformations and more generally for some classes of piecewise expanding transformations of [0, 1]. Moreover, statistical properties for such sequences, like a CLT for BV functions (after a moving centering), could be investigated. It is closely related to the question of stochastic stability of expanding transformations. But we will give also global results and obtain exactness for some families of such transformations. The method relies on an extension of the spectral theory of transfer operators to the case of a sequence of transfer operators.

In the first section we consider the general case of a sequential dynamical system where the measure m is only quasi-invariant and briefly discuss some definitions and problems in this general framework. In section 2 general results on products of operators of quasi-compact type are given. In sections 3, 4 and 5 we apply these results to the particular case of sequences of piecewise expanding maps on the interval and prove a "Borel-Cantelli Lemma" and a central limit theorem for regular functions.

We would like to thank T. Hill for discussions and questions on the asymptotic distribution of perturbed iterates during a workshop on ergodic theory in Chapel Hill in 2004, and Idris Assani for organizing this workshop. We thank also the referee for his careful reading of the manuscript and his remarks.

We denote by (θ n ) the sequence of composed transformations:

θ n = τ n • τ n-1 • • • • τ 1 , n ≥ 1. If (τ n
) is a constant sequence (i.e. τ n = τ for a transformation τ ∈ C) (θ n ) is simply the sequence of iterated transformations (τ n ).

Notations 1.1. If τ is a transformation in C, we denote by T the operator of composition by τ . The transfer operator P τ corresponding to τ is defined in L 1 (m) by:

P τ f g dm = f g • τ dm, ∀f ∈ L 1 , g ∈ L ∞ .
When τ n , n = 1, 2, ..., are transformations in C, we write simply T n , P n for the operators corresponding to τ n and

Π n = P n P n-1 • • • P 1 .
With these notations, we have for f ∈ L 1 , g ∈ L ∞ :

T 1 • • • T n g(x) = g(τ n • • • τ 1 x), T 1 • • • T n g f dm = g P n • • • P 1 f dm = g Π n f dm,
P n (T n g f ) = g P n f.

• Invariant measure, wandering sets

In the case of an unique transformation τ , a classical problem is the existence of a τ -invariant measure which is equivalent to the measure m, or at least absolutely continuous with respect to m. Such a probability measure µ is called an ACIM for τ . In that case, we have µ = ϕm, with ϕ ≥ 0, ϕ dm = 1 and P τ ϕ = ϕ.

In general, when the transformations τ k depend on k, there is no joint invariant measure, but it is convenient to make for the sequence (Π n 1) the following assumption (1.1) which implies its equi-integrability since we have Π n 1 1 = 1:

for every ε > 0, there exists η(ε) > 0 such that (1.1) ∀B ∈ A, m(B) < η(ε) ⇒ m(θ -1 n B) = B Π n 1 dm < ε.

In particular (1.1) is satisfied if there is p ∈]1, +∞] such that the sequence (Π n 1) is bounded for the L p -norm. As we will see, this is the case (for the uniform norm), for some families of piecewise expanding maps of the interval.

Using the Dunford-Pettis compactness criterion, it is easy to deduce, for a single transformation τ , the existence of an ACIM for τ from (1.1) (Theorem of Hajian and Kakutani).

We say that a set A is mean wandering if it satisfies:

lim N 1 N N j=1 m(θ -1 j A) = 0.
With property (1.1), one can prove the existence of a mean wandering set A 0 which is "maximal" in the sense that

: if B is such that lim N 1 N N 1 m(θ -1 j B) = 0, then B ⊂ A 0 (up to a set of m-measure 0).
To show it, let us take a sequence (C k ) of mean wandering sets such that lim k m(C k ) = sup A m(A), the supremum being taken on the family of sets A which are mean wandering.

Let A 0 = k C k . This set is mean wandering: let ε > 0, η(ε) > 0 given by (1.1) and k such that m(A 0 -∪ k 1 C i ) ≤ η. We have, for N big enough, 1

N N j=1 m(θ -1 j A) ≤ ε + k i=1 1 N N j=1 m(θ -1 j C i ) ≤ 2ε
and the set A 0 is clearly maximal.

We note that m(A c 0 ) > 0. From the maximality of A 0 , it follows that, if

A ∈ A is such that m(A ∩ A c 0 ) > 0, then (1.2) lim sup N 1 N N 1 m(θ -1 j A) > 0.
• Ergodicity and mixing

We say that a sequence (

τ n ) is ergodic in mean if θ n = τ n • τ n-1 • • • • τ 1 satisfies the equivalent conditions: lim N 1 N N k=1 [m(B ∩ θ -1 k A) -m(B)m(θ -1 k A)] = 0 (1.3) ∀g ∈ L 1 , f ∈ L ∞ lim N 1 N N k=1 f • θ k -f • θ k dm, g = 0. (1.4)
We say that the sequence is mixing if

(1.5) ∀A, B ∈ A lim n [m(B ∩ θ -1 n A) -m(B) m(θ -1 n A)] = 0.
Proposition 1.2. Let A be such that m(A ∩ A c 0 ) > 0. Ergodicity in mean implies that, for almost all x, the sequence (θ n x) visits A infinitely often and, if m(B) > 0, lim sup

N 1 N N j=1 m(θ -1 j A ∩ B) > 0. Remark 1.3. If the sequence (Π n 1) is uniformly bounded, condition (1.3) is equivalent to the convergence in L p -norm, for 1 ≤ p < ∞ (cf. [BB84]): (1.6) lim N 1 N N -1 k=0 [f • θ k -f • θ k dm] p = 0, ∀f ∈ L p .
This is a consequence of the inequality, for p ≥ 1:

1 n n-1 k=0 [1 A • θ k -m(1 A • θ k )] 2p p ≤ 1 n n-1 k=0 [1 A • θ k -m(1 A • θ k )] 2 1
and the fact that the set of functions f such that (1.6) holds is closed in (L p , p ).

Remark 1.4. For the iterates of a single transformation, ergodicity in mean characterizes the usual ergodicity property of τ -invariant measure and is equivalent to the "pointwise ergodicity". But this consequence of the ergodic theorem is not true in the general case of a sequential dynamical system. For example, let (τ t , t ∈ IR) be an aperiodic measure preserving flow on a probability space (X, A, m). M. Akcoglu, A. Bellow, A. del Junco and R. Jones ( [START_REF] Akcoglu | Divergence of averages obtained by sampling a flow[END_REF]) have shown that for any increasing sequence of integers (n k ) and any sequence (t k = 0) converging to zero, the following "strong sweeping out property" is true: given any ε > 0, there is a set A with m(A) < ε and lim inf

N 1 N N 1 1 A (τ n k +t k x) = 0, lim sup N 1 N N 1 1 A (τ n k +t k x) = 1.
Therefore, if we sample a dynamical system with a small error tending to 0, we cannot expect to still have a law of large number valid for any bounded measurable observable.

This suggest that, for a sequential dynamical system, "pointwise ergodicity" should be defined with respect to particular families of (regular) functions or sets. The sequence (τ n ) can be called pointwise ergodic if, for a.a. x,

(1.7) ∀f ∈ F, lim n 1 n n k=1 [f (θ k x) -f • θ k dm] = 0,
where F is a convenient set of functions or the set of characteristic functions of sets which form an algebra generating the σ-algebra A.

We will give later examples of sequences of piecewise expanding maps of the interval which are pointwise ergodic in the previous meaning.

• Stochastic and sequential stabilities

Definitions 1.5. Let T be a metric set of parameters and let C = {τ t : t ∈ T be a family of transformations on (X, A, m). Fix t 0 ∈ T , and for ε > 0, let U ε be an ε-neighbourhood of t 0 . Let Y be a random variable with values in U ε and law ν ε . Consider the operator P νε defined by

P νε f = IE(P τY f ).
Assume that the transformation τ = τ t0 has a unique ACIM µ and that there exists a measure µ ε which is invariant by P νε . We say that the transformation τ is stochastically stable (in the family T ) if lim ε→0 µ ε = µ.

In particular, if µ ε = δ τε , τ ε ∈ U ε , "stochastic stability" becomes stability by deterministic perturbations. The property of sequential stability, that we consider now, is close to this property.

Assuming the space X to be a metric space, we say that τ is sequentially stable in T if, for every sequence (t n ) in T such that lim n t n = t 0 , writing simply τ n = τ tn , we have for every continuous f :

lim N 1 N N -1 n=0 f (τ n τ n-1 ...τ 1 x) = µ(f ), for m-a.a. x.
This means that, if we make a small error at each step, replacing the transformation τ by τ n , with lim n τ n = τ , then we have for m-almost all points x the same asymptotic distribution for the sequence (θ n (x) = τ n τ n-1 ...τ 1 x) as for (τ n x), namely the distribution given by the τ -ACIM µ.

• Asymptotic σ-algebra, exactness Fix a sequence{τ n } ⊂ C, and for k ≥ 1 set

A k = τ -1 1 • • • τ -1 k A.
The sequence of σ-algebras (A k ) is strictly decreasing if the transformations τ n are non-invertible.

The asymptotic σ-algebra is defined as the intersection:

A ∞ = k≥1 τ -1 1 • • • τ -1 k A.
Let f be in L 1 (m). We use the notations of 1.1. Remark that for f ∈ L ∞ the quotients |Π n f |/Π n 1 are bounded by f ∞ on {Π n 1 > 0} and we have Π n f (x) = 0 on the set {Π n 1 = 0}. We define these quotients as 0 on {Π n 1 = 0}. The following relations hold:

m(T 1 • • • T n f ) = m(f Π n 1), (1.8) IE(f | A k ) = T 1 • • • T k Π k f Π k 1 , (1.9)
and, for 0 ≤ < k ≤ n:

(1.10) IE(T 1 • • • T f | A k ) = T 1 • • • T k P k • • • P +1 (f Π 1) Π k 1 .
By the martingale theorem, for every f ∈ L 1 (m), we have convergence of the sequence of conditional expectations (IE(f |A n )) n≥1 to IE(f |A ∞ ) and therefore:

lim n T 1 ...T n ( Π n f Π n 1 ) -IE(f |A ∞ ) 1 = 0.
in norm 1 and m-a.e.

Definition 1.6. We say that the sequence (τ n ) is exact if its asymptotic σ-algebra A ∞ is trivial.

Exactness implies mixing and is equivalent to lim n Π n f 1 = 0, ∀f ∈ L 1 0 (m), since we have by (1.9):

(1.11)

IE(f |A n ) 1 = T 1 ...T n ( Π n f Π n 1 ) 1 = Π n f 1 .
Examples 1.7.

A) We take first for C the family of translations on a compact group.

1) It is easy to see that mean ergodicity of a sequence (τ n ) defined by τ n x = x + α n is equivalent to the equidistribution of the sequence (u n ) defined by

u n = α 1 + • • • α n .
For the torus T T d , the property is satisfied by a sequence (α n ) converging modulo 1 to α, if the translation by α modulo 1 is ergodic: for all continuous functions f on the torus, the sequence ( 1

N N -1 n=0 f (. + α 1 + • • • α n ))
is equicontinuous and any converging subsequence has a limit which is invariant by translation by α and therefore is equal to m(f ).

2) Let (X n ) be a sequence of iid r.v. with values in the torus and τ n (ω)x = x + X n (ω). We have (almost surely in ω) ergodicity of (τ n (ω)) if and only if the law of X 0 is not supported by a lattice (the translations modulo 1 do not belong to a finite subgroup of the circle). B) Let us consider the following matrices A and B:

A =   2 1 0 1 1 0 0 0 2   , B =   2 0 0 0 2 1 0 1 1   .
We obtain a sequence (τ n ) of transformations which preserve the Lebesgue measure on the torus T T 3 by taking for τ n either τ n x = Ax mod 1, or τ n x = Bx mod 1.

It can be shown that the sequence is exact if each matrix appears infinitely often in the sequence.

C) Hyperbolic automorphisms of the 2-torus

We give now an example with invertible transformations.

Let A be a hyperbolic element in SL(2, Z Z), (B n ) a sequence in SL(2, Z Z) such that the sequence (trace(B n )) is bounded. Let p ≥ 1 be a fixed integer. We consider the sequence of transformations on the 2-torus defined by:

(1.12)

θ n x = B n A p B n-1 A p ...B 1 A p x mod 1.
L. Polterovich and Z. Rudnick have called a sequence of the form (1.12) a "kicked system" and defined "stable mixing" for the element A as the property that, for all sequences of kicks (B k ) with bounded trace, there exists p 0 such that the sequence defined by (1.12) is mixing, for every p ≥ p 0 .

They proved ([PR03]

) that A is stably mixing if and only if A is not conjugate to its inverse.

The following questions can be asked: -Do we have the CLT for the Hlderian functions ? -Is there a notion of K-system for a sequence of invertible transformations, which would be satisfied by examples like (1.12) ? -These questions (stable mixing, CLT,...) can be asked in higher dimension or for other classes of diffeomorphisms.

Before considering in section 3 the example of sequences of expanding maps on the interval [0, 1], we prove in the next section some general results on products of operators of "quasi-compact" type.

Decorrelation for products of operators

We state in this section some general results which extend to a product of transfer operators classical spectral results for the iterates of a single operator.

Notations -Hypothesis 2.1. Let (B, ) be a normed space, V be a subspace of B equipped with a norm | | v such that ≤ | | v , P be a set of contractions of (B,

) leaving the subspace V invariant.

We assume the following hypotheses:

(H 1 ) The unit ball of (V, | | v ) is relatively compact in (B,
). (H 2 ) There is a countable family in V which is dense in (B,

). (H 3 ) There are an integer r ≥ 1 and constants ρ r ∈]0, 1[, M 0 , C r > 0 such that:

∀R ∈ P, |Rf | v ≤ M 0 |f | v , ∀f ∈ V;
for all r-tuples R 1 , ..., R r of operators in P:

(2.1) ∀f ∈ V, |R r ...R 1 f | v ≤ ρ r |f | v + C r f .
The operators we will consider further are adjoint of the operators of composition by expanding transformations of the interval. B will be L 1 ([0, 1], m), where m is the Lebesgue measure on [0, 1], and V the space of BV (bounded variation) functions. This is the example that we have in mind in this section 2.

Remark 2.2. In applications, we will show (2.1) for some families of operators. Remark that the norm | | v defined by:

| f | v = |f | v + r-1 k=1 ρ -k/r r sup R k ,...,R 1 ∈P |R k ...R 1 f | v is equivalent to the norm | | v
and satisfies for a constant C the inequality:

∀f ∈ V, ∀R ∈ P, |Rf | v ≤ ρ 1/r r |f | v + C f . Taking | | v instead of | | v ,
we can assume during this paragraph that there exists ρ ∈]0, 1[ and C 0 > 0 such that the operators R in P satisfy the inequality:

(2.2) ∀f ∈ V, ∀R ∈ P, |Rf | v ≤ ρ|f | v + C 0 f . Remark 2.3. If the unit ball (V, | | v ) is not closed in (B, )
, we can consider the subspace V 1 of B defined as follows. For f ∈ B, we set

f v = lim δ→0 + inf(|φ| v , φ ∈ V : f -φ < δ). Let V 1 = {f ∈ B : |f | v < ∞}. Now the unit ball of (V 1 , | | v ) is compact in (B, ). Replacing (V, | | v ) by (V 1 , | | v ), we can therefore assume the compactness of the unit ball of (V, | | v ) in (B, ).
From now on we will make this assumption. This implies in particular that, for a sequence

(f n ) in V such that |f n | v ≤ C and f n -f → 0, we have f ∈ V and |f | v ≤ C.
We define a distance on P by taking

d(R, R ) = sup {f ∈V:|f |v≤1}
Rf -R f .

For P ∈ P, we note B(P, δ) := {R ∈ P : d(R, P ) < δ}.

For convenience we set R 0 = Id, the identity operator of B. From (2.2) we get easily the following inequalities: Lemma 2.4. For each n ≥ 1, for all choices of operators R 1 , ..., R n , P in P, all f ∈ V, we have, setting

M = 1 + C 0 (1 -ρ) -1 : |R n • • • R 1 f | v ≤ ρ n |f | v + C 0 n-1 k=0 ρ n-1-k R k • • • R 1 R 0 f , (2.3) |R n • • • R 1 f | v ≤ M |f | v , n ≥ 1, (2.4) d(R n • • • R 1 , P n ) ≤ M n j=1 d(R j , P ), n ≥ 1. (2.5)
Lemma 2.5. Let (P k ) be a sequence of operators in P and Π n = P n P n-1 ...P 1 . For every strictly increasing sequence of integers there are a subsequence (n k ) of the integers and an operator Λ from B into V such that ΛB is contained in V, dim(ΛB) < +∞ and for each f ∈ B, we have:

Π n k f -Λf → 0, (2.6) |Λf | v ≤ M Λf . (2.7) Proof: For every g ∈ V, the set {Π n g : n ∈ IN * } is relatively compact in (B, )
by (H 1 ) and (2.4). Let D = (g p ) p∈I N be a sequence of elements of V which is dense in (B, ). Using the diagonal process we obtain a strictly increasing sequence of natural numbers (n k ) = (ϕ(k)) k≥1 such that, for every p ∈ IN , the sequence Π ϕ(k) f p k≥1 converges in (B, ) to a function of V, denoted by Λf p , satisfying

|Λf p | v ≤ C 0 (1 -ρ) -1 f p ≤ M f p .
Let f ∈ B and (h p ) p∈I N be a sequence of D which converges to f in (B, ). The real sequence ( h p ) p∈I N converges to f and sup p∈I N h p < +∞. It follows that, for every p ∈ IN , |Λh p | v ≤ M sup n∈I N h n . Taking, if necessary, a subsequence, we can suppose that the sequence (Λh p ) p∈I N converges in (B, ) to a function Λf ,

satisfying |Λf | v ≤ M lim sup p h p ≤ M f . The inequalities Π ϕ(k) f -Λf ≤ Π ϕ(k) f -Π ϕ(k) h p + Π ϕ(k) h p -Λf ≤ f -h p + Π ϕ(k) h p -Λf show that, for every f ∈ B, the sequence Π ϕ(k) f k≥1 converges in (B, ) to Λf . Now, for each k, p ∈ IN * such that k > p, we can write Π ϕ(k) = P ϕ(k) • • • P ϕ(p)+1 Π ϕ(p) .
As before, taking a subsequence ϕ(ξ(k)) k∈I N of ϕ(k) k∈I N we can suppose that, for every f ∈ B, the sequence

P ϕ(ξ(k)) • • • P ϕ(p)+1 f converges in (B, ) to a limit denoted by Λ p f satisfying |Λ p f | v ≤ M f . For each p ∈ IN * , we obtain |Λf | v = |Λ p Π ϕ(p) f | v ≤ M Π ϕ(p) f , and consequently |Λf | v ≤ M Λf .
The operator Λ defined on B satisfies (2.6), (2.7), Λ(B) ⊂ V. By (H 1 ), (2.7) and Riesz Theorem we have dim(ΛB) < +∞.

Definitions 2.6. In the following, we denote by V 0 a subspace of V which is invariant by the operators P ∈ P.

We say that a sequence of operators

(P k ) in P is exact in V 0 if (2.8) lim n P n P n-1 ...P 1 f = 0, ∀f ∈ V 0 .
A single operator

P ∈ P is exact in V 0 if lim n P n f = 0, ∀f ∈ V 0 .
• Decorrelation:

Property (Dec): We say that a subset of operators P 0 ⊂ P satisfies the decorrelation property (Dec) in V 0 if there exist λ ∈]0, 1[ and K > 0 such that, for all integers ≥ 1, all -tuples of operators R 1 , ..., R in P 0 :

(2.9)

∀f ∈ V 0 , |R • • • R 1 f | v ≤ Kλ |f | v . Let ε 0 = (1-ρ) 2C0
, where ρ and C 0 are the constants of (2.2). The following result uses an argument of convolution as in [START_REF] Conze | Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains[END_REF].

Proposition 2.7. Let P 0 be a subset of P such that there exists an integer q for which every product of q operators R 1 , ..., R q in P 0 satisfies:

(2.10) ∀f ∈ V 0 , R q • • • R 1 f ≤ ε 0 |f | v .
Then P 0 verifies the property (Dec) in V 0 .

Proof: We can complete the sequence (R n • • • R 1 ) 1≤n≤ by taking R n = R , for n ≥ . Let f be in V 0 . We define the sequences α f , ζ, β, β q (with support in Z Z + ) by:

α f (n) = |R n • • • R 1 f | v , n ≥ 0, ζ(n) = C 0 ε 0 ρ n-q-1 , if n ≥ q + 1, = 0, if n ≤ q, β(n) = B|f | v ρ n , n ≥ 0, with B = 1 + C 0 ρ -q -1 1 -ρ , β q (n) =    ρ n |f | v + C 0 q-1 k=0 ρ n-1-k |f | v , if n ≥ q ρ n |f | v + C 0 n-1 k=0 ρ n-1-k |f | v , if 1 ≤ n ≤ q -1 |f | v , if n = 0.
We have β q (n) ≤ β(n), n ≥ 0, and from (2.3) and (2.10), for n ≥ q + 1,

|R n • • • R 1 f | v ≤ ρ n |f | v + C 0 q-1 k=0 ρ n-1-k R k • • • R 1 f + C 0 ε 0 n-q-1 k=0 ρ n-1-q-k |R k • • • R 1 f | v ,
and for 1 ≤ n ≤ q:

|R n • • • R 1 f | v ≤ ρ n |f | v + C 0 n-1 k=0 ρ n-1-k R k • • • R 1 f . Therefore we have: α f (n) ≤ β q (n) + (ζ * α f )(n), ∀n ∈ Z Z, and α f (n) ≤ -1 p=0 (ζ * p * β q )(n) + (ζ * * α f )(n), ∀n ∈ Z Z, ∀ ≥ 1. Since (ζ * * α f )(n) = 0, for such that (q + 1) > n, this implies |R n • • • R 1 f | v ≤ p≥0 (ζ * p * β q )(n) ≤ p≥0 (ζ * p * β)(n), ∀n ≥ 1.
For t such that 0 < ρt < 1 and C 0 ε 0 t q+1 < 1ρt, we have:

p≥0 n≥0 (ζ * p * β)(n) t n = p≥0 n≥0 ζ(n) t n p n≥0 β(n) t n = p≥0 B|f | v (C 0 ε 0 ) p t p(q+1) 1 1 -ρt p+1 = B|f | v 1 -ρt -C 0 ε 0 t q+1 .
Let r(t) = 1-ρt-C 0 ε 0 t q+1 . ¿From the choice of ε 0 , we get C 0 ε 0 (1-ρ) -1 = 1/2 and therefore r(1) > 0.

For q ≥ 1, the polynomial r has only one real positive root t 0 , which is strictly between 1 and 1 + 1 q+1 . The other roots have a modulus > t 0 . Therefore there exists a constant K > 0 such that

p≥0 (ζ * p * β)(n) ≤ K|f | v t -n 0 , ∀n ∈ IN . We deduce that |R n • • • R 1 f | v is bounded by Kλ n |f | v , with λ = t -1 0 .
The constants K and λ depend only on ρ, C 0 and q. By Lemma 2.5 and Proposition 2.7, we get for an operator P in P 0 the classical spectral properties: Proposition 2.8. For all operators P ∈ P restricted to V we have

(2.11) P f = L P f + Q P f,
where the spectral radius of Q P is < 1: there are constants γ 0 ∈]0, 1[ and C 1 > 0 such that

(2.12) ∀f ∈ V, |Q n P f | v ≤ C 1 γ n 0 |f | v , L P is an operator of finite rank of the form (2.13) L P (f ) = p j=0 c j (f )e j ,
where the elements e j , 1 ≤ j ≤ p, p ∈ IN , are proper vectors for P with proper values χ j of modulus 1 and the c j are linear forms such that c j (e i ) = δ i,j , ∀1 ≤ i, j ≤ p.

If P is exact in V 0 , P | V0 = Q| V0 and (2.14) ∀f ∈ V 0 , |P n f | v ≤ C 1 γ n 0 |f | v .
If B is the space L 1 (m) for a probability measure m on a space X and if P ∈ P is a positive operator, there exists a function h P ≥ 0 with maximal support which is P -invariant and the proper values χ j of P are roots of unity.

Proof: We apply several times Lemma 2.5.

For λ of modulus 1 and f in B, the sequence S n,λ f = 1

n n-1 k=0 λ -k P k f n≥1 converges in (B,
) either to zero or to a λ-eigenvector Π λ (f ) of P . Indeed any non-null cluster value of this sequence, which is relatively compact in (B,

), is a λ-eigenvector for P . For every integer p ≥ 1 and every λ-eigenvector h of P , writing n = p + r (Euclidian division), we get:

S n,λ f -h = 1 n p -1 j=0 λ -j P j (S p,λ f -h) + rλ -P (S r,λ (f -h))
and therefore lim sup n→+∞ S n,λ f -h ≤ M S p,λ f -h . This inequality shows that the sequence S n,λ f n≥1 can have only one cluster value ; hence the convergence.

We have that dim(ΛB) < +∞ for any limiting value Λ of (P n ), so that the set {λ j : 1 ≤ j ≤ p} of eigenvalues of modulus 1 of P is finite. The operator

Q P = P - p j=1 Π λj has no eigenvalues of modulus 1. If Λ = lim n Q ϕ(n) P
for a subsequence (ϕ(n)), we have:

Q P Λ = ΛQ P and |Q n P |ΛB | v → 0. This implies: Λf = lim n Q ϕ(n+1)-ϕ(n) P Q ϕ(n) P f = lim n Q ϕ(n+1)-ϕ(n) P Λf = 0.
Therefore Q P is exact in V. By Proposition 2.7 we get the spectral gap for Q P .

For the last assertion, we use the same arguments as in [START_REF] Schaefer | Topological vector spaces[END_REF] (Appendix).

To apply Proposition 2.7 to a subset P 0 of P, we have to check (2.10). We consider two cases: locally, i.e. in a neighbourhood of a given operator, or globally.

• A local result

Lemma 2.9. If P is exact in V 0 , for every ε > 0, there are an integer q(ε) ≥ 1 and a real δ(ε) > 0 such that, for all products of q operators R 1 , ..., R q in B(P, δ(ε))∩ P, we have:

∀f ∈ V 0 , R q • • • R 1 f ≤ ε|f | v .
Proof: let q = q(ε) ≥ 1 be such that C 1 γ q 0 ≤ ε 2 . For f ∈ V 0 , we have from 2.8:

P q f ≤ ε 2 |f | v .
For all products R q • • • R 1 such that R i ∈ B(P, δ(ε)), i = 1, ..., q, we get by Lemma 2.4:

R q • • • R 1 f ≤ R q • • • R 1 f -P q f + P q f ≤ qM δ(ε)|f | v + ε 2 |f | v ≤ ε|f | v , for δ(ε) such that qM δ(ε) ≤ ε/2.
Applying this result (with ε = ε 0 ) and Proposition 2.7 we get:

Proposition 2.10. If P is exact in V 0 , there exists δ 0 > 0 such that the set P 0 = B(P, δ 0 ) satisfies the condition of decorrelation (Dec) in V 0 .

• A non-local result

Let P 0 be a subset of P such that the following compactness condition holds: Condition (C): For any sequence (R n ) in P 0 , there are a subsequence (R nj ) and an operator R ∈ P 0 such that

(2.15) ∀f ∈ B, lim j R nj f -Rf = 0.
In the next section, we will give examples of families of expanding transformations of the interval for which the set of corresponding transfer operators satisfies this compactness condition and the criterion of the following proposition.

Proposition 2.11. If P 0 is a set of operators in P verifying the compactness condition (C) and such that all sequences (P n ) in P 0 are exact in V 0 , then it satisfies the decorrelation condition (Dec) in V 0 .

Proof: If (2.10) is not satisfied there are, for each

p ≥ 1, operators R 1,p , • • • , R p,p in P 0 such that R p,p • • • R 1,p f p ≥ ε 0 , for some f p in V 0 with |f p | v = 1.
As they are contractions of B, this implies:

R ,p • • • R 1,p f p ≥ ε 0 , ∀ ≤ p.
By compactness of the unit ball of V in B we construct a strictly increasing sequence (p j ) such that (f pj ) converges for the norm to an element g in V such that |g| v ≤ 1. By compactness of P 0 and the diagonal process, there is a subsequence of (R r,pj ) which converges (in the sense of (2.15)) for each r to an operator Rr ∈ P 0 .

Thus we have

R • • • R1 g ≥ ε 0 , ∀ ≥ 1,
contrary to the hypothesis. The condition (Dec) follows then from Proposition 2.7.

• Two lemmas

Lemma 2.12. Let P ∈ P and (P n ) n≥1 be operators such that

(2.16) lim n P n f -P f = 0, ∀f ∈ B.
We have, for all integers r ≥ 1, lim n d(P n • • • P n-r+1 , P r ) = 0. There exists a sequence (g n ) in the space L P (B), image of L P (cf.(2.11)), such that, uniformly on the unit ball of V:

(2.17)

P n • • • P 1 f -g n → 0. When B = L 1 (m), if P ∈ P is exact in V 0 = {f ∈ V : m(f ) = 0}, then (P n ) is exact in V 0 and lim n P n • • • P 1 f -m(f )h P = 0
, where h P is P invariant.

Proof: As the P n 's are contractions, the convergence in (2.16) is uniform on the compact sets of B. Therefore we have lim n d(P n , P ) = 0, which implies the first statement using (2.5).

Let ε > 0. We have, from (2.11) and (2.14) for r big enough,

P r P n-r • • • P 1 f -L r P (P n-r • • • P 1 f ) = Q r P P n-r • • • P 1 f ≤ C 1 M γ r 0 |f | v ≤ ε.
From the first statement, we have, uniformly on the unit ball of V:

lim n P n P n-1 • • • P n-r+1 [P n-r • • • P 1 f ] -P r [P n-r • • • P 1 f ] = 0.
This implies (2.17).

Lemma 2.13. For a constant C 2 ≥ 1, we have for all integers p ≤ n:

P n • • • P 1 ϕ -P n ϕ ≤ C 2 |ϕ| v n k=1 min(d(P n-k+1 , P n-k ), γ k-1 0 } ≤ C 2 |ϕ| v p k=1 d(P n-k+1 , P ) + (1 -γ 0 ) -1 γ p 0 .
Proof: We have from (2.5) and (2.14) :

P n • • • P 1 ϕ -P n ϕ ≤ n k=1 P k-1 P n-k+1 • • • P 1 ϕ -P k P n-k • • • P 1 ϕ ≤ |ϕ| v n k=1 min{C M d(P n-k+1 , P n-k ), C 1 M γ k-1 0 }.
3. Application to some classes of expanding maps of [0, 1]

• Classes of expanding maps of the interval

There is a large number of works on expanding maps of the interval, following Lasota-Yorke (1973) ([LY73]), Keller ([Ke80], [START_REF] Keller | Generalized bounded variation and applications to piecewise monotonic transformations[END_REF]), Rychlik ([Ry83]). (For the central limit theorem for these systems, see in particular the following references: A. Broise [START_REF] Broise | Transformations dilatantes de l'intervalle et thormes limites, in Etudes spectrales d'oprateurs de transfert et applications[END_REF], M. Viana [START_REF] Viana | Stochastic dynamics of deterministic systems[END_REF]).

In what follows, we consider the probability space (X, A, m), where X is [0, 1], A the Borel σ-algebra and m the Lebesgue measure. We apply the results of section 2 to the space B = L 1 (m) with the subspace V of BV (bounded variation) functions on [0, 1].

We write V (f ) for the variation of a function f ∈ V. The space V is equipped with the norm

|f | v := V (f ) + f 1 ,
where 1 is relative to the Lebesgue measure. For f ∈ V, we have:

f ∞ ≤ |f | v .
The hypotheses (H 1 ) and (H 2 ) of section 2 are satisfied.

We consider a class C of piecewise expanding transformations τ of I = [0, 1] and the corresponding set of transfer operators

P = {P τ , τ ∈ C}.
If (τ n ) is a sequence of transformations in C, by composition we get the sequence:

θ n = τ n • τ n-1 • • • • τ 1 , n ≥ 1.

Let us recall the following notations

A k = τ -1 1 • • • τ -1 k A, Π k = P k • • • P 1 , where P k = P τ k .
We assume that the transformations τ in C satisfy the following hypothesis: Hypothesis 3.1. There exists a finite or countable partition (I j ) of I such that the restriction of τ to each interval I j is strictly monotone on I j and can be extended into a derivable function with a BV derivative on I j . The transformations τ satisfy:

γ(τ ) := inf j inf x∈Ij |τ (x)| > 1, (3.1) K := sup j sup x =y∈Ij | τ (x) -τ (y) x -y | < ∞. (3.2) Let us remark that the subspace V 0 = {f ∈ V : m(f ) = 0} is invariant by the operators P τ , τ ∈ C.
To get (2.1) which allows to apply the results of section 2, we have to consider classes C 0 of transformations in C for which the following condition holds:

Condition (D r ): We will say that a class C 0 in C satisfies (D r ) if the corresponding set of transfer operators P 0 = {P τ , τ ∈ C 0 } verifies the conditions (H 3 ) of section 2.

In particular, if C 0 satisfies (D r ) for some integer r ≥ 1, each operator P τ corresponding to τ ∈ C 0 satisfies for constants ρ r ∈]0, 1[, C r the so-called Lasota-Yorke (or Doeblin-Fortet) 1 inequality:

(3.3) ∀f ∈ V, |P r τ f | v ≤ ρ r |f | v + C r f 1 .
By proposition 2.8, P τ has in the space V an invariant function h τ ≥ 0 of greatest support such that m(h τ ) = 1 and this function is the density of an ACIM for τ .

As a consequence of Lemma 2.5, we have also: Proposition 3.2. : For any sequence (τ n ) belonging to a set of transformations C 0 which satisfies (D r ) for some integer r ≥ 1, the asymptotic σ-algebra

A ∞ = k≥1 τ -1 1 • • • τ -1 k A is finite.
• A counterexample to stability

If we perturb a transformation τ 0 verifying (3.3), the inequality (3.3) with bounded constants C r independent from the perturbed transformations τ can be lost. A counterexample has been given by G. Keller in [START_REF] Keller | Stochastic stability in some chaotic dynamical systems[END_REF] and M. Blank and G. Keller in [START_REF] Blank | Stochastic stability versus localisation in one-dimensional chaotic dynamical systems[END_REF]. Let us recall it.

Example 3.3.

Let r and b be two parameters such that b ≥ 1/2 and 0 < r < 1/4. We consider the transformation τ b of [0, 1] into itself defined by: τ b (x) = 1x/r, for 0

≤ x ≤ r, τ b (x) = 2b(1 -2r) -1 (x -r), for r ≤ x ≤ 1/2, τ b (x) = τ b (1 -x), for 1/2 ≤ x ≤ 1.
Each transformation τ b has an unique ACIM (cf. [START_REF] Kowalski | Invariant measures for piecewise monotonic transformations[END_REF]). Let h b be its density. For 1/2 < b ≤ 1 -2r, we have:

τ b ([1 -b, b]) ⊂ [1 -b, b], which implies that h b has its support in the interval [1 -b, b]. If (b n ) is a sequence such that 1/2 < b n ≤ 1 -2r
and lim n b n = 1/2, the sequence of invariant measures (h bn m) converges weakly to the measure δ 1/2 , the Dirac mass at the point 1/2. Therefore the transformation τ 1/2 is not stochastically stable in {τ b , 1/2 < b ≤ 1 -2r}. This counterexample to stochastic stability gives also a counterexample to the property of sequential stability 1.5. It is characteristic of the obstruction to stochastic or sequential stability. If we write to simplify τ n = τ bn , we get, using the notations of 1.1 that we can have lim Π n 1 ∞ = +∞, if the convergence of (b n ) to 1/2 is slow enough. In particular in that case, the family (Π n 1) is not bounded in variation.

1 In their paper of 1937 [START_REF] Doeblin | Fortet: Sur des chanes liaisons compltes[END_REF], Wolfgang Doeblin and Robert Fortet introduced the technique of what later has been called "quasi-compact operators". For the study of the "chanes liaisons compltes", a concept due to O. Onicescu and Gh. Mihoc, they used an inequality of the type of 3.3. In [LY73] A. Lasota and J. A. Yorke proved and used this type of inequality (in the BV-norm) in the context of dynamical systems, for expanding maps of the interval.

• Classes where (D r ) holds

We give now a series of examples where the condition (D r ) (i.e. inequality (2.1)) can be obtained. To get it, the method is the same as for a single transformation or a random product of transformations (cf. [START_REF] Lasota | On the existence of invariant measures for piecewise monotonic transformations[END_REF], [START_REF] Keller | Un thorme de la limite centrale pour une classe de transformations monotones par morceaux[END_REF], [START_REF] Liverani | Decay of correlations in piecewise expanding maps[END_REF], [START_REF] Broise | Transformations dilatantes de l'intervalle et thormes limites, in Etudes spectrales d'oprateurs de transfert et applications[END_REF], [START_REF] Viana | Stochastic dynamics of deterministic systems[END_REF]), [START_REF] Buzzi | Exponential decay of correlation for random Lasota-Yorke maps[END_REF]).

We will consider the following assumption on a transformation τ . We suppose that for a subdivision 0 = a 0 < a 1 < a 2 < ... < a p = 1 of [0, 1], the restriction of τ to I j =]a j , a j+1 [ is C 1 and strictly monotone. Let σ j be the inverse application of the restriction of τ to

I j . Write b + j = lim x→a + j τ (x) (resp. b - j = lim x→a - j τ (x)
). The condition is:

(3.4) ∀n ≥ 0, ∀j, τ n (b ± j ) ∈ {a 0 , a 1 , ..., a p }.
Theorem 3.4. Condition (D r ) is satisfied by each following family C 0 of transformations: a) C 0 is a class of transformations τ ∈ C such that the coefficient γ(τ ) of dilatation defined by (3.1) verifies γ(τ ) ≥ 2 + a, a > 0 independent of τ ; b) C 0 is a (convenient) neighbourhood in C of a transformation τ verifying (3.4); c) C 0 is the family of transformations τ : x → βx mod 1 (β-transformations) such that β ≥ 1 + a, a > 0 independent of τ ; Proof: 1) Let τ be a transformation C. The corresponding transfer operator P τ is given by:

P τ f (x) = j f (σ j x) 1 |τ (σ j x)| 1 τ (Ij) (x).
If ϕ is a function on [0, 1] and J =]u, v[⊂ [0, 1], the variation of ϕ1 J can be bounded via the following inequality where

[u, v] ⊂ [c, d] ⊂ [0, 1]: V (ϕ 1 J ) ≤ V [u,v] (ϕ) + |ϕ(u)| + |ϕ(v)| ≤ V [u,v] (ϕ) + V [c,d] (ϕ) + 2 inf t∈[c,d] |ϕ(t)| ≤ V [u,v] (ϕ) + V [c,d] (ϕ) + 2 m([c, d]) [c,d] |ϕ(t)| dt. (3.5) If [c, d] = [u, v],
the inequality reduces to:

V (ϕ 1 J ) ≤ V [u,v] (ϕ) + |ϕ(u)| + |ϕ(v)| ≤ V [u,v] (ϕ) + V [u,v] (ϕ) + 2 inf t∈[u,v] |ϕ(t)| ≤ 2V [u,v] (ϕ) + 2 m([u, v]) [u,v] |ϕ(t)| dt. (3.6)
2 a) We apply first (3.6) for the intervals [c, d] and τ (I j ) =]α j , β j [. This gives for the variation of P τ f :

V (P τ f ) ≤ j V [( f τ ) • σ j 1 τ (Ij) ] ≤ j V [αj ,βj] [( f τ ) • σ j ] + j [|( f τ )(σ j α j )| + |( f τ )(σ j β j )|] ≤ 2 j V [αj ,βj ] [( f τ ) • σ j ] + j 1 m(τ (I j )) [αj ,βj] |( f τ )(σ j x)| dx ≤ 2 j V [αj ,βj ] [( f τ ) • σ j ] + j 1 m(τ (I j )) [aj ,aj+1] |f | dx.
The first term on the right (cf. [START_REF] Broise | Transformations dilatantes de l'intervalle et thormes limites, in Etudes spectrales d'oprateurs de transfert et applications[END_REF]) is less than

2 γ V (f ) + 2 K γ 2 f 1 .
The second term is less than 2 δ f 1 , where δ = inf j m(τ I j ). Therefore we get:

(3.7)

V (P τ f ) ≤ 2 γ V (f ) + 2 K γ 2 f 1 + 2 δ f 1 .
The inequality (3.7) implies that (D r ) is satisfied for r = 1 in the case a) of the proposition.

2 b) For this case, we refer to Viana [START_REF] Viana | Stochastic dynamics of deterministic systems[END_REF].

c) β-transformations

Let a > 0 and β k , k ≥ 1, be real numbers such that β k ≥ 1 + a. Denote by τ k : x → β k x mod 1, the corresponding β-transformations and write θ r (x) = τ r ...τ 1 x. We show the existence of r > 0 depending only on a such that (D r ) is verified.

Let us consider the partition P n of [0, 1] into monotonicity intervals of θ n for a given n. We call full intervals of rank n the open intervals J ∈ P n such that the transformation θ n applies J surjectively on I =]0, 1[. Let J p 1 , ..., J p t denote the full intervals in increasing order and J k,1 , ...J k, (k) , for k = 1, ..., t, the non-full consecutive intervals between J p k and J p k+1 .

Let w(r) = max k=1,...,t (k) be the maximal number of non-full intervals separated by two full intervals (we include the case of contiguous full intervals at the left of the end point 1).

If [u, v] = J k,j is a non-full interval, we bound the variation on this interval by an application of (3.5) to [u, v] 

and to the interval [c, d] = Jp k = J p k ∪ (k)
j=1 J k,j which is the union of the full interval J p k (at the left of [u, v]) and of the non-full intervals which are consecutive to J p k .

Let π r = β 1 ...β r . As m(J) = π -1 r if J is a full interval and the intervals Jp k are pairwise disjoint, we get:

V (P r ...P 1 f ) ≤ 1 π r J∈Pr V J (f ) + 2 w(r) π r k [V ( Jp k , f ) + 1 m( Jp k ) Jp k |f | dt ] ≤ 1 + 2w(r) π r V (f ) + 2w(r) f 1 .
For β-transformations, we have w(r) ≤ r. Indeed let J p k be a full interval and J k,1 , ..., J k, (k) non-full intervals following J p k at the right. At the next step J p k can give rise possibly at the right to a monotonicity non-full interval for θ r+1 ; on the other hand, if one of the intervals J k,j gives rise to more then one monotonicity interval for θ r+1 , among these intervals at least one is full and at most one is not full. This shows that w(r + 1) ≤ w(r) + 1. Therefore we have w(r) ≤ r, ∀r ≥ 1. If we choose r such that 1 + 2r < π r we get (D r ).

• Exactness of some sequences of expanding maps A) Transformations τ : x → βx + α mod 1, with β > 2.

We take for C 0 the family of transformations of the interval I = [0, 1] of the form τ : x → βx + α mod 1, with β ≥ 2 + a, where a is a fixed > 0 real.

In the following lemma, we extend a result of Wilkinson [START_REF] Wilkinson | Ergodic properties of certain linear mod one transformations[END_REF] for a single transformation τ : x → βx + α mod 1 to the case of a sequence (τ k ).

Lemma 3.5. For every ε > 0, there exists an integer r ≥ 0 such that, for every n ≥ 1, we can cover I, up to a set of measure less then ε, by full intervals of rank between n and n + r.

Proof: Let π n be the product π n = β n β n-1 ...β 1 , T (n) the number of atoms of the partition P n , F (n) the number of full intervals of rank n If J is a full interval of rank n, we have: π n m(J) = 1, and therefore (summing on full intervals of rank n) we get

F (n) = π n J m(J) ≤ π n .
Since an interval of rank n -1 gives at rank n at most 2 non-full intervals we have: T (n) ≤ π n + 2T (n -1) ; hence, for a constant C:

T (n) ≤ π n + 2π n-1 + ... + 2 n-1 ≤ π n (1 + 2 β n + 2 2 β n β n-1 + ... + 2 n-1 β n β n-1 ..β 1 ) ≤ Cπ n .
Let ε > 0 be given and n an integer ≥ 1. Let us take first the partial covering of [0, 1] by full intervals of rank n. There remains non-full intervals of rank n (at most T (n)) which we partially cover by full intervals of rank n + 1. This step gives rise to at most 2T (n) non-full intervals. Using this procedure up until n + r, there remains a non-covered set which is formed of non-full intervals of measure at most 1 πn+r and whose total measure is less then 2 r T (n)

π n+r ≤ C2 r π n π n+r = C2 r β n+r β n+r-1 ...β n+1 ≤ C( 2 2 + a ) r ≤ ε,
for r big enough (independent from n).

B) Transformations τ : x → βx mod 1.

Let us take now for C 0 the family of transformations of [0, 1] of the form τ : x → βx mod 1, with β ≥ 1 + a, where a is a fixed > 0 real. By the same argument, changing only the recurrence formula into :

T (n) ≤ π n + T (n -1), we have T (n) ≤ n 1 π k and therefore: T (n) π n+r ≤ n 1 π k π n+r = 1 β n+r β n+r-1 ...β 1 (π n + π n-1 + ... + 1) ≤ 1 β n+r β n+r-1 ...β n+1 (1 + 1 β n + 1 β n β n-1 + ... + 1 β n β n-1 ..β 1 ) ≤ C(1 + a) -r .
Theorem 3.6. For both families of transformations A) and B), any sequence (τ n ) is exact.

Proof: The proof is that of [START_REF] Rokhlin | Exact endomorphisms of a Lebesgue space[END_REF] for the iterates of a single β-transformation.

Let A be in the asymptotic σ-algebra with m(A) > 0 Let us show that m(A) = 1. We have A = θ -1 n θ n A. Let ε > 0. By Lemma 3.5 the family of full intervals (of arbitrary rank) generates the Borel σ-algebra. Therefore there exists a full interval J such that

m(J ∩ A) ≥ (1 -ε)m(J). (If not, we would have m(B ∩ A) ≤ (1 -ε)m(B), for every B, in particular for B = A.)
Let n be the rank of J. The restriction of θ n to J is an affine bijection from J onto ]0, 1[. We have:

m(θ n (J -J ∩ A)) = m(J -J ∩ A)/m(J) = 1 -m(J ∩ A)/m(J) ≤ ε; therefore: m(θ n A) ≥ m(θ n (J ∩ A)) ≥ m(θ n J) -m(θ n (J -J ∩ A)) ≥ m(θ n J) -ε = 1 -, m(θ -1 n (θ n A) c ) = 1 (θnA) c Π n 1 dm ≤ Cε.
• Decorrelation, law of large numbers Let C 0 be a set of transformations of [0, 1] such that: 1) C 0 one of the families satisfying the statement of Theorem 3.4; 2) any sequence (τ n ) in C 0 is exact; 3) C 0 verifies a compactness condition: if (σ n ) is a sequence in C 0 , there exists a subsequence (σ nj ) and a transformation τ ∈ C 0 such that

(3.8) lim j f • σ nj -f • τ 1 = 0, ∀f ∈ L 1 (m).
This condition implies the compactness condition (C) for the corresponding set of transfer operators P 0 = {P σ , σ ∈ C 0 }. In the previous paragraph we provided some examples of such sets of transformations.

The hypothesis of Proposition 2.11 is satisfied and therefore Proposition 2.7 can be applied. Therefore the condition of decorrelation (Dec) is satisfied by C 0 .

Consider now transformations τ n , n = 1, 2, ..., in the class C 0 . Let f be a function in V. Using the notations (1.1), we set (3.9) fk := fm(f Π k 1).

It follows from (1.10) that:

IE(T 1 • • • T k fk T 1 • • • T f ) = IE(T 1 • • • T k fk T 1 • • • T k P k • • • P +1 f Π 1) Π k 1 ) = IE( fk P k • • • P +1 ( f Π 1)). As f Π 1 ∈ V 0 and (3.10) | f Π 1| v ≤ 3M |f | v ,
the condition (Dec) implies:

| T 1 • • • T k fk T 1 • • • T f dm| ≤ 3M D λ -|k-| |f | v f 1 .
It is well known that, if (Z n ) is a sequence of centered square integrable random variables such that |IE(Z n Z n+ )| ≤ ε , where (ε n ) is a summable sequence, the law of large numbers holds for the sequence (Z n ). This implies the following law of large numbers: Theorem 3.7. Under the previous conditions, we have, for f ∈ V and m-a.e. x,

lim n 1 n n k=1 [f (τ k • • • τ 1 x) -T 1 • • • T k f dm] = 0.
• Application in a neighbourhood of a transformation, equidistribution Due to Proposition 2.10 and Theorem 3.4, the result of Theorem 3.7 is valid in a neighbourhood of an exact transformation τ in C which satisfies (3.4). Let τ n , n = 1, 2, ..., be transformations in C such that lim n |τ n xτ x| = 0, for each x ∈ I.

The exact transformation τ has an unique ACIM with density h and we have by Lemma 2.12 lim n f Π k 1dm = f h dm ; therefore:

lim n 1 n n k=1 T 1 • • • T k f dm = f h dm.
We deduce from it the following equidistribution theorem (sequential stability): Theorem 3.8. 1) If τ = lim n τ n , if τ is exact and verifies (3.4), then for ma.a. x, the asymptotic distribution of the sequence (θ n (x) = τ n • • • τ 1 x) n≥0 is given by the measure hm: for every BV function f , we have

lim n 1 n n-1 k=0 f (τ k • • • τ 1 x) = 1 0 f h dm.
2) If (β n ) is a sequence such that lim n β n = β > 1, and (θ n (x)) n≥0 is defined by θ 0 (x) = x, θ n+1 (x) = (β n θ n (x)) mod 1, n ≥ 0, then we have the same conclusion: for almost all x, the sequence (θ n (x)) n≥0 is distributed according to the measure h m, where h is the density of the ACIM for τ : x → βx mod 1.

In particular if β is an integer ≥ 2, the sequence (θ n (x)) n≥0 is uniformly distributed on [0, 1] for a.a. x.

• Rate of convergence of (Π n ϕ) to m(ϕ) h, case of β-transformations

The convergence given by Lemma 2.12 is qualitative. For the β-transformations, the rate of convergence is related to the rate of convergence of (β n ) towards β. To prove it, we need a measure of the regularity of functions.

For a real t > 0 and f a bounded Borel function, we set

w(f, x, t) = sup |y-x|≤t |f (y) -f (x)|, w(f, t) = 1 0 w(f, x, t) dm(x) = 1 0 sup |y-x|≤t |f (y) -f (x)| dm(x).
By Fubini's Theorem, we get:

(3.11) w(f, t) ≤ 2tV (f ).
Lemma 3.9. There exists a constant C such that for any two reals β 1 , β 2 > 1 with P 1 , P 2 the transfer operators corresponding resp. to the transformations x → β 1 x mod 1, x → β 2 x mod 1, we have:

(3.12) d(P 1 , P 2 ) ≤ C|β 1 -β 2 |.
Proof: To simplify we assume that

β 2 > β 1 and [β 2 ] = [β 1 ].
We have:

|P 2 f (x) -P 1 f (x)| = | [β1]-1 k=0 1 β 2 f ( x + k β 2 ) + 1 β 2 f ( x + [β 1 ] β 2 )1 [0,{β2}] (x) - [β1]-1 k=0 1 β 1 f ( x + k β 1 ) - 1 β 1 f ( x + [β 1 ] β 1 )1 [0,{β1}] (x)| ≤ (1 - β 2 β 1 )P 2 |f |(x) + [β1]-1 k=0 1 β 1 |f ( x + k β 2 ) -f ( x + k β 1 )| + 1 β 1 |f ( x + [β 1 ] β 1 )|1 [0,{β1}] (x)| + 1 β 1 |f ( x + [β 1 ] β 2 )|1 [0,{β2}] (x)| ≤ |β 2 -β 1 | β 1 P 2 |f |(x) + P 1 w(f, ., 1 
β 2 - 1 β 1 )(x) + 1 β 1 f ∞ |1 [0,{β1}] (x) -1 [0,{β2}] (x)|.
Since m is P -invariant, we have:

P w(f, ., 1 
β 2 - 1 β 1 )(x) dm(x) = w(f, 1 β 2 - 1 β 1 ).
Integrating in the previous equality and using 3.11, we get for some constant C:

P 2 f -P 1 f 1 ≤ C|f | v |β 2 -β 1 |.
Using this Lemma and Lemma 2.13, we can now give a rate of convergence of the sequence (Π n ϕ) to m(ϕ)h, for a BV function ϕ. Recall that the constant γ 0 as defined in Proposition 2.8, inequality (2.14).

Lemma 3.10. There exists a constant C 1 ≥ 1 such that for all integers p ≤ n

P n • • • P 1 ϕ -P n ϕ 1 ≤ C 1 |ϕ| v n k=1 min{|β n-k+1 -β|, γ k-1 0 } ≤ C 1 |ϕ| v p k=1 |β n-k+1 -β| + (1 -γ 0 ) -1 γ p 0 .
As a corollary of the previous result we get:

Corollary 3.11. If |β n -β| < 1 n θ , with θ > 0, we have, for a constant A independent from n and from ϕ ∈ V:

Π n ϕ -m(ϕ) h 1 ≤ A log n n θ |ϕ| v .

A Borel-Cantelli lemma

A law of large numbers of the type of the Borel-Cantelli Lemma, stronger than Theorem 3.7, can be obtained under a condition of minoration for the sequence (Π n 1), which can be checked for the β-transformations, when the β n 's are in a convenient neighbourhood of a fixed β.

Condition (Min):

There exists δ > 0 such that Π n 1(x) ≥ δ, ∀x ∈ [0, 1], ∀n ≥ 0.

This condition and boundedness of the sequence of functions (Π n 1) imply that the integrals T 1 • • • T k f dm and f dm are of the same order, i.e. for f ≥ 0 and all k ≥ 1, 

δm(f ) ≤ m(T 1 • • • T k f ) ≤ sup n Π n 1 ∞ m(f ).
F n (x) = n k=0 f k (τ k • • • τ 1 x) n k=0 m(T 1 • • • T k f k ) , n ≥ 0,
converges m-p.p. to 1.

Proof: 1) We show that there is a constant C such that

E (F n -1) 2 dm ≤ C n k=0 m(T 1 • • • T k f k ) . Write fk = f k -m(f k Π k 1)
, ∀k ≥ 0. We have for some constants C 1 , C 2 , for each n ≥ 1:

n k=0 m(T 1 • • • T k f k ) 2 E (F n -1) 2 dm ≤ 2 0≤k≤ ≤n E T 1 • • • T k fk T 1 • • • T f dm ≤ C 1 0≤ ≤n 0≤k≤ λ -( -k) |f k | v m(f ) ≤ C 2 sup j |f j | v 0≤ ≤n m(f ) ≤ C 2 1 δ sup j |f j | v 0≤ ≤n m(T 1 • • • T f ),
hence the result.

2) As the functions (f n ) are uniformly bounded, we can assume f n ∞ ≤ 1. Let ψ be the sequence defined by

ψ(n) = inf{ : k=0 m(T 1 • • • T k f k ) ≥ n 2 }, n ≥ 1. We have n 2 ≤ ψ(n) k=0 m(T 1 • • • T k f k ) ≤ (n + 1) 2 , n ≥ 1. The subsequence (F ψ(n) ) converges m-a.s. to 1, since n≥1 E |F ψ(n) -1| 2 dm ≤ n≥1 C n 2 < +∞.
For n ∈ IN , let r = r(n) such that ψ(r) ≤ n ≤ ψ(r + 1). The inequalities

( r r + 2 ) 2 F ψ(r) ≤ F n ≤ ψ(r+1) k=0 m(T 1 • • • T k f k ) ψ(r) k=0 m(T 1 • • • T k f k ) F ψ(r+1) ≤ ( r + 2 r ) 2 F ψ(r+1)
imply the convergence of (F n ) n≥0 m-a.s. towards 1.

Remark 4.2. The previous "Borel-Cantelli Lemma" applied to sequences of regular sets gives information on the visits of regular sets of small measure by the sequence (θ n (x)).

Let (B n ) be a sequence of sets such that sup n |1 Bn | v < ∞. Then if (Dec) and (Min) are satisfied, we have either:

k m(B k ) < +∞ or k≥0 1 B k (θ k x) = +∞, for a.a. x.
For example in the case of [0, 1], we can take for (B n ) a sequence of intervals of length 1/n. We get that, infinitely often, θ n x ∈ B n .

For r > 0 and a ∈]0, 1[, let k(x, r) := inf{ : θ (x) ∈ [ar, a + r]}.

Let γ be any real > 1, M = sup n Π n 1 ∞ . Let us take ε > 0 such that δ(γ -1) > 2M γε.

By (4.1) there exists N = N (γ, ε, x) such that, for n ≥ N ,

n γ n 1 B k (θ k x) ≥ (1 -ε)( n γ 1 m(θ -1 k B k )) -(1 + ε)( n 1 m(θ -1 k B k )) ≥ δ n γ n m(B k ) -2M ε( n γ 1 m(B k )) ≥ δ(γ -1)Logn -2M εγLogn.
This implies that k(x, 1/n) ≤ n γ , for n ≥ N (γ, ε, x) and therefore for a.a. x:

lim sup r→0 Logk(x, r) Log1/r ≤ 1.
• Minoration of Π n 1 (case of β-transformations)

In this paragraph, we show that the condition (Min) is satisfied in the class of β-transformations for a neighbourhood of each β-transformation.

We consider reals β n > 1 and the corresponding β-transformations.

Let χ 0 (x) = 1 and, for n ≥ 1

(4.2) χ n (x) = 1 + n j=1 β -1 n β -1 n-1 ...β -1 n-j+1 1 {x<τnτn-1...τn-j+11} .
We have:

∀n ≥ 0, P n+1 χ n (x) = k≥0 β -1 n+1 χ n ( x + k β n+1 )1 I ( x + k β n+1 ) = χ n+1 (x) + c n ,
where c n is a constant. By integration with respect to the Lebesgue measure, we get that c n = m(χ n )m(χ n+1 ).

On the other hand, if β n is such that |β n -β| ≤ a, for some a > 0 such that βa > 1, then the functions χ n satisfy:

1 ≤ χ n (x) ≤ β -a β -a -1 := M, ∀x ∈ [0, 1].
When β k = β > 1, for each k, we get:

0 ≤ χ n+1 -χ n ≤ β -(n+1) and lim n c n = 0.
In that case, the sequence (χ n ) converges to the sum

χ = 1 + ∞ j=1 β -j 1 {x<τ j 1}
which is P -invariant and gives, up to a factor, the density of the ACIM for the β-transformation. This shows also that the density is bounded from below by the constant β-1 β > 0 (cf. Renyi [START_REF] Renyi | Representations for real numbers and their ergodic properties[END_REF], Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF]). In the general case, if the β n 's are close to a fixed β, as in the estimation of the rate of convergence of (Π n ϕ), one can show that χ n+1χ n 1 is small and therefore also the constant c n , for a small enough.

Iterating, we get:

P n P n-1 ...P n-k χ n-k-1 = χ n + c n-1 + c n-2 P n 1 + c n-3 P n P n-1 1 + ... + c n-k-1 P n P n-1 ...P n-k+1 1, hence (4.3) |P n P n-1 ...P n-k χ n-k-1 -χ n | ≤ C k+1 j=1 |c n-j |.
Proposition 4.3. For everyβ > 1, there exists a > 0, δ > 0 such that, if

β n ∈ [β -a, β + a], then Π n 1(x) ≥ δ.
Proof: Recall that we have |P n ...P n-k 1 ∞ ≤ C, independently of n and k, |m(χ j )m(χ j+1 )| < ε for j big enough. On an other hand we have (cf. (2.14)):

|Π n 1 -P n ...P n-r 1| v ≤ Cγ r 0 . We fix r such that M Cγ r 0 ≤ 1/4. For n big enough it follows from (4.3):

P n P n-1 ...P n-r χ n-r-1 ≥ χ n -rε ≥ 1 -rε,
hence:

P n P n-1 ...P n-r 1 ≥ M -1 P n P n-1 ...P n-r χ n-r-1 ≥ M -1 (1 -rε)
and finally, taking δ = 1 2M and ε ≤ 1 4r , we obtain the inequality:

Π n 1 ≥ M -1 (1 -rε) -Cγ r 0 ≥ δ.

Central limit theorems

In the following, we assume that the transformations τ n belong to a family of transformations C 0 such that the conditions (Dec) and (Min) are satisfied.

As we have seen, this is the case for any β 0 > 1, when C 0 is the set of βtransformations for β in a suitable neighbourhood of β 0 > 1.

We will show the convergence towards the normal law for the sums

n-1 k=0 f (τ k • • • τ 1 x)
after centering and normalisation. (We have to center at each step of the iteration since there is no joint invariant measure for the transformations τ n .) We consider also the more general case of a sequence of functions f n .

We define the operators Q n , for n ≥ 1, by

g → Q n g = P n (gΠ n-1 1) Π n 1 . Let (f n ) be a sequence in V such that sup n≥0 |f n | v < +∞. Write fn = f n -m(T 1 • • • T n f n ).
Let h n be defined by the relations h n+1 = Q n+1 fn + Q n+1 h n , with h 0 = 0. We get:

h n = Q n fn-1 + Q n Q n-1 fn-2 + ... + Q n Q n-1 ...Q 1 f0 = 1 Π n 1 [P n ( fn-1 Π n-1 1) + P n P n-1 ( fn-2 Π n-2 1) + ... + P n P n-1 ...P 1 ( f0 Π 0 1)].
The functions fn-k Π n-k 1 belong to V 0 . Therefore, under condition (Dec), we have an exponential decay for the norm | | v of the general term of the previous sums and the sequence (h n ) is bounded for the norm | | v . In particular it is bounded for the uniform norm. We write

ϕ n = fn + h n -T n+1 h n+1 , (5.1) U n = T 1 ...T n ϕ n .
(5.2) ¿From (1.10), the sequence (U n ) is a sequence of reversed martingale for the filtration (A n ) and we have

n-1 0 T 1 ...T k fk = n-1 0 U k + T 1 • • • T n h n .
Therefore we can replace n-1 0 T 1 ...T k fk by a reversed martingale, the error term being bounded. We can now apply a theorem of B.M. Brown ([Br71]) (see 5.8 below) on martingales to get the CLT.

We write S

n = n-1 k=0 T 1 • • • T k fk . Theorem 5.1. Let (f n ) be a sequence in V such that sup n≥0 |f n | v < +∞.
Assuming (Dec) and (Min), we have: -either the norms S n 2 are bounded and in that case, for a.e. x, the sequence

n-1 k=0 fk (τ k • • • τ 1 x), n ≥ 1 is bounded, -or the sequence ( f 0 -m(f 0 ) + T 1 f 1 -m(T 1 f 1 ) + . . . + T 1 • • • T n-1 f n-1 -m(T 1 • • • T n-1 f n-1 ) S n 2 ) n≥1
converges in law to N (0, 1).

Proof: Let:

σ 2 n = n-1 k=0 IE[U 2 k ], V n = n-1 k=0 IE[U 2 k |A k+1 ].
We have to check conditions i) and ii) of Theorem 5.8 :

i) the sequence of v.a.r. (σ -2 n V n ) n≥1 converges in probability to 1 ; ii) for every ε > 0, lim n→+∞ σ -2 n n-1 k=0 IE[U 2 k 1 {|U k |>εσn} ] = 0. The difference | S n 2 - n-1 k=0 U k 2 | = | S n 2 -( n-1 k=0 IE[U 2 k ]) 1 2 | ≤ S n - n-1 k=0 U k 2 is bounded. We have IE[U 2 k |A k+1 ] = T 1 • • • T k T k+1 P k+1 (ϕ 2 k Π k 1) Π k+1 1 .
If the sequence (σ n ) tends to +∞, ii) is satisfied since the functions U k are uniformly bounded. For the first condition, we apply the law of large numbers (Theorem 4.1) to the sequence

( P k+1 (ϕ 2 k Π k 1) Π k+1 1 = ( P k+1 [( fk + h k -T k+1 h k+1 ) 2 Π k 1] Π k+1 1 ).
Using the fact that the functions Π n 1 are bounded from below from 0, we get

sup k | P k+1 (ϕ 2 k Π k 1) Π k+1 1 | v < ∞
and we can apply 4.1, under the assumption

∞ 0 (T k • • • T 1 fk + T k • • • T 1 h k -T k+1 • • • T 1 h k+1 ) 2 dm = +∞.
In that case, we have lim n σ n = +∞ and lim n S n 2 = +∞.

On the contrary if this series converges, we have by a martingale theorem that the series

n-1 k=0 [T k • • • T 1 fk + T k • • • T 1 h k -T k+1 • • • T 1 h k+1 ]
converges for a.a. x and the sum

n-1 k=0 f k (τ k • • • τ 1 x) -(m(f 0 ) + m(T 1 f 1 ) + . . . + m(T 1 • • • T n-1 f n-1
)) can be written as the sum of a (for a.a. x) bounded sequence and of

T k • • • T 1 h k -T k+1 • • • T 1 h k+1 which is uniformly bounded in k.
Remark 5.2. The previous statement can be made more precise (locally) in the class of β-transformations and for a fixed function f . Denote by h P the relativised transfer operator corresponding to x → βx mod 1 for a given β > 1 and by h G its potential (cf. below).

In a neighbourhood of a β-transformation, if f is not a coboundary for the transformation x → βx mod 1, the functions fh k -T k+1 h k+1 , which are close (in L 2 norm) to f -h P h Gf + T h P h Gf, have norms bounded from below. This shows that the variance in the previous theorem is of order √ n. As a particular case of the previous theorem we have, in the case of the iterates of a single transformation of the interval which belongs to the class C and whose ACIM has a strictly positive density, the following result: if (f n ) is a sequence of BV functions such that sup n≥0 |f n | v < +∞, then the sums n-1 0 T k f k after centering and normalisation satisfy a CLT.

• CLT when lim n τ n = τ We can give a more precise formulation of the CLT for a fixed BV function f , when lim n τ n = τ .

We suppose from now on that the P τ -invariant normalised function h is m-a.e. strictly positive. This is the case for the β-transformations as we have shown, but not always true for transformations of the form x → βx + α mod 1, as in the following example: We consider the "relativised" operator h P f = P (h f ) h and its "potential" defined, for f in V such that m(hf ) = 0 by:

β = 1+
h Gf = k ≥ 0 ( h P ) k f = k≥0 P k (h f ) h .
The probability h m is h P -invariant.

We set ξ = h Gf , so that f can be written f = ξ -h P ξ. The function ξ has still a bounded variation.

Theorem 5.3. Let f ∈ V be such that m(h f ) = 0. Let

σ 2 = m h ( h Gf ) 2 -m h h P h Gf 2 (5.3) = 1 0 h P h Gf (•) -h P h Gf (x) 2 (x) h(x) dx.
(5.4) If f is not a coboundary for x → βx mod 1, we have: σ 2 > 0 and for every density ϕ ∈ V such that m(ϕ) = 1, under the probability ϕ m, the sequence

1 √ n (f -m(ϕf ) + T 1 f -m(ϕT 1 f ) + . . . + T 1 • • • T n-1 f -m(ϕ T 1 • • • T n-1 f )) n≥1
converges in distribution to N (0, σ 2 ).

For example for the β-transformations, taking into account Corollary 3.11, we have:

Corollary 5.4. Suppose that |β n -β| < 1 n θ , with θ > 1 2 . Let f ∈ V such that m(h f ) = 0. Suppose σ 2 = 0. Then for every ϕ ∈ V such that m(ϕ) = 1, under the probability ϕ m, the sequence of real random variables

1 √ n (f + T 1 f + . . . + T 1 • • • T n-1 f ) n≥1
converges in distribution to N (0, σ 2 ).

The proof of Theorem 5.3 will be given in several lemmas. We begin with some notations:

For η ∈ V and k ∈ IN , let

η k = η -IE ϕm [T 1 • • • T k η] = η -m(η Π k ϕ).
We set:

U k = T 1 • • • T k (ξ k ) -IE ϕm [T 1 • • • T k (ξ k ) | A k+1 ], W k = IE ϕm [T 1 • • • T k (ξ k ) | A k+1 ] -T 1 • • • T k+1 h P ξ k+1 .
With these notations, we have:

n-1 k=0 T 1 • • • T k f k -(U k + W k ) = T 1 • • • T n h P ξ n -h P ξ 0 .
Lemma 5.5. Let ψ be an integrable function, (g n ) and (ϕ n ) two sequences of functions such that: sup n g n ∞ = M < ∞, g n ϕ n 1 → 0, ϕ nψ 1 → 0. We have then: g n 1 {ψ>0} 1 → 0. Proof: For f ∈ V, we have ϕ m-a.e.

IE ϕm [T 1 • • • T k f | A k+1 ] = T 1 • • • T k+1 P k+1 f Π k ϕ Π k+1 ϕ 1 {Π k+1 ϕ>0} ; ϕ m({T 1 • • • T k+1 Π k+1 ϕ = 0}) = IE m [1 {Π k+1 ϕ=0} Π k+1 ϕ] = 0. Hence W k = T 1 • • • T k+1 g k+1 with g k = P k ξ k-1 Π k ϕ Π k ϕ 1 {Π k ϕ>0} -h P ξ k .
We have: m(g k Π k ϕ) = 0, ∀k ≥ 1 and sup k≥1 g k Π k ϕ v = L < +∞. Moreover the inequalities:

IE m |g n | Π n ϕ = IE m P n ξ n-1 Π n-1 ϕ -h P ξ n Π n ϕ ≤ IE m P n ξ Π n-1 ϕ -h P ξ Π n ϕ + m ξ Π n-1 ϕ -m h P ξ Π n ϕ ≤ IE m P n ξ Π n-1 ϕ -P ξ Π n-1 ϕ +IE m P ξ Π n-1 ϕ -P h ξ +IE h P ξ h -Π n ϕ + m ξ Π n-1 ϕ -m h P ξ Π n ϕ
show that lim n→+∞ g n Π n ϕ I L 1 (m) = 0. [Remark that h P ξ is bounded by ξ ∞ ].

As sup k≥0 g k ∞ < +∞, using Lemma 5.5, this implies: lim n→+∞ h g n I L 1 (m) = 0 and lim n→+∞ g n I L 1 (m) = 0.

For 1 ≤ < k, we have then:

IE ϕm [W k W ] = IE m [g k+1 P k+1 • • • P +2 g +1 Π +1 ϕ ] ≤ sup j≥ +1 g j+1 I L 1 (m) P k+1 • • • P +2 g +1 Π +1 ϕ v ≤ D λ k-g +1 Π +1 ϕ V sup j≥ +1 g j+1 I L 1 (m) ≤ D Lλ k-sup j≥ +1
g j+1 I L 1 (m) , Theorem 5.8. Let U n , G n n≥0 be a sequence of differences of square integrable reversed martingales, defined on a probability space (Ω, F , IP ). For n ≥ 0, let

S n = U 0 + . . . + U n-1 , σ 2 n = n-1 k=0 IE[U 2 k ] and V n = n-1 k=0 IE[U 2 k |A k+1 ].
Let us assume the following two conditions: i) the sequence of r.r.v. (σ -2 n V n ) n≥1 converges in probability to 1.

ii)For each ε > 0, lim 

Theorem 4. 1 .

 1 Assuming the conditions (Dec) and (Min), if (f n ) n≥0 is a sequence of positive BV functions such that n≥0 m(f n ) = +∞ and sup n≥0 |f n | v < +∞, then the sequence (F n ) n≥0 defined by (4.1)

√ 5 2

 5 , α = 3-β 2 , where the density h is zero on interval ]

Proof:

  We apply the inequalityg n 1 {ψ>0} 1 ≤ M m {0 < ψ < } + 1 ε |g n ||ψ| dm ≤ M m({ψ < } ∩ {ψ > 0}) + 1 ε |g n ||ψϕ n | dm + 1 ε |g n ||ϕ n | dm.Lemma 5.6. The sequence ( 1√ n n-1 k=0 W k ) n≥1 converges in IL 2 (ϕ m)-norm to 0.

and IE ϕm [W 2 k ] ≤ L g k+1 I L 1 (m) . This implies the result.

Lemma 5.7. The sequence ( 1

norm to σ 2 given by (5.4).

Proof: We have:

By the martingale property, we have convergence to zero in IL 2 (ϕ m)-norm and ϕ m-a.e. of the sequence

so that the sequence

has, for the IL 1 (ϕ, m)-norm and ϕ m-a.e., the same limit as

Therefore it converges (Theorem 3.8) to m(h ξ 2 )m(h ξ) 2 .

On the other hand the convergence of g n Π n ϕ I L 1 (m) to zero (cf. proof of Lemma 5.6) implies that the sequence of r.r.v.

converges in IL 1 (ϕ m)-norm to zero. As these r.r.v. are uniformly bounded, this implies that

We deduce from it that the sequence

2 . This implies the result.

To conclude the proof of Theorem 5.3 we apply the following result, whose proof is analogous to that of the theorem of B.M. Brown [START_REF] Brown | Martingale central limit theorems[END_REF] for direct martingales.