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 to nonfinite range kernels.

Introduction

In this note we consider a general class of (at least potentially) long range one dimensional conservative attractive particle systems (which will be shortly specified). The paper is motivated by the recent series of papers [START_REF] Bahadoran | A constructive approach to Euler hydrodynamics for attractive particle systems. Application to k-step exclusion[END_REF][START_REF] Bahadoran | Euler hydrodynamics of one-dimensional attractive particle systems[END_REF] and [START_REF] Bahadoran | Strong hydrodynamic limit for attractive particle systems on Z[END_REF]. Here the hydrodynamic limits of various systems was established. The needed conditions were extremely general, to the point where it was not necessary to suppose that a full characterization of translation invariant equilibria had been established. Briefly the argument built on the approach of [START_REF] Andjel | Hydrodynamic equations for attractive particle systems on Z[END_REF] which establishes hydrodynamic limits for Riemannian initial profiles. Then a general argument was given to pass from this particular case to general initial profiles. A key part of this passage was the existence of a macroscopic stability criterion for the particle systems whereby the known behaviour of a system corresponding to a step-function profile could yield information about systems corresponding to more general (but close) initial profiles.

We now detail the processes involved. The state space is X = {0, • • • , K} Z . The evolution consists in particles' jumps, according to the generator

Lf (η) = x,y∈Z p(y -x)b(η(x), η(y)) [f (η x,y ) -f (η)] (1) 
for a local function f , where η x,y denotes the new state after a particle has jumped from x to y (that is η x,y (x) = η(x) -1, η x,y (y) = η(y) + 1, η x,y (z) = η(z) otherwise), p is the particles' jump kernel, that is z∈Z p(z) = 1, and b : Z + × Z + → R + is the jump rate. We assume that p and b satisfy :

(A1)
The greatest common divisor of the set {x : p(x) = 0} equals 1 (irreducibility); (A2) p has a finite first moment, that is µ 1 = z∈Z |z| p(z) < +∞, and a positive mean, that is 0 < µ = z∈Z zp(z); (A3) b(0, .) = 0, b(., K) = 0 (no more than K particles per site), and b(1, K -1) > 0; (A4) b is nondecreasing (nonincreasing) in its first (second) argument (attractiveness).

For us the departure from the previous works mentioned is in assumption (A2), which replaces the "finite range" assumption. Let I and S denote respectively the set of invariant probability measures for L, and the set of shift-invariant probability measures on X. It was derived in [START_REF] Bahadoran | Euler hydrodynamics of one-dimensional attractive particle systems[END_REF]Proposition 3.1] that (I ∩ S) e = {ν ρ , ρ ∈ R} [START_REF] Bahadoran | A constructive approach to Euler hydrodynamics for attractive particle systems. Application to k-step exclusion[END_REF] with R a closed subset of [0, K] containing 0 and K, and ν ρ a shift-invariant measure such that ν ρ [η(0)] = ρ. (The index e denotes extremal elements.)

The measures ν ρ are stochastically ordered:

ρ ≤ ρ ′ ⇒ ν ρ ≤ ν ρ ′ .
The result to be announced in the next section considers "naturally" coupled systems. It is time to detail the natural coupling in force throughout this paper. We suppose given on a space Ω a family of independent marked Poisson processes N x,y of rate p(yx)||b|| ∞ where ||b|| ∞ = max 0≤i,j≤K {b(i, j)} and associated to each point t ∈ N x,y are uniform random variables U(x, y, t) on [0, 1] which are independent over all (x, y) ∈ Z 2 and t ≥ 0. We also assume that the Poisson, uniform random variables (mutually independent and independent of the previous processes N x,y and U(x, y, t)) that we will need for the proofs of this note are defined on Ω. We denote by IP the probability measure on Ω. The initial configurations are defined on a probability space (Ω 0 , IP 0 ). Given an initial configuration η 0 (ω 0 ) ∈ {0, • • • , K} Z and a realization ω of the Poisson processes and uniform random variables, we construct a process (η t : t ≥ 0) := (η t (η 0 (ω 0 ), ω) : t ≥ 0) by stipulating that the process η . jumps from η t -to η t = η x,y t -only if t ∈ N x,y and U(x, y, t) ≤ b(η t -(x), η t -(y))/||b|| ∞ . We note that through the above (Harris) graphical construction (see [START_REF] Bahadoran | Strong hydrodynamic limit for attractive particle systems on Z[END_REF] for details), an evolution is constructed given any initial configuration. Thus for any two configurations η 0 and ξ 0 we have two naturally coupled processes, through basic coupling.

We now discuss the macroscopic stability property which was introduced in [START_REF] Bramson | Existence of blocking measures for nonzero mean exclusion processes[END_REF]. For this we introduce some notation. For two bounded measures α(dx), β(dx) on R with compact support, we define

∆(α, β) := sup x∈R |α((-∞, x]) -β((-∞, x])| . (3) 
Let N ∈ N be the scaling parameter for the hydrodynamic limit, that is the inverse of the macroscopic distance between two consecutive sites. Let

α N (η)(dx) = N -1 y∈Z η(y)δ y/N (dx) ∈ M + (R)
denote the empirical measure of a configuration η viewed on scale N, and M + (R) denote the set of positive measures on R equipped with the metrizable topology of vague convergence, defined by convergence on continuous test functions with compact support. By macroscopic stability we mean that ∆ is an "almost" nonincreasing functional for a pair of coupled evolutions (η t , ξ t : t ≥ 0) where η 0 and ξ 0 are any two configurations with a finite number of particles, in the following sense. There exist constants C > 0 and c > 0, depending only on b(., .) and p(.), such that for every γ > 0, the event The strong macroscopic stability property was introduced in [5, Section 3] to determine the existence of stationary blocking measures for one-dimensional exclusion processes with a random walk kernel p(.) having finite range and positive mean. It was then applied to models considered in this note in [START_REF] Bahadoran | A constructive approach to Euler hydrodynamics for attractive particle systems. Application to k-step exclusion[END_REF][START_REF] Bahadoran | Euler hydrodynamics of one-dimensional attractive particle systems[END_REF][START_REF] Bahadoran | Strong hydrodynamic limit for attractive particle systems on Z[END_REF] with the additional assumption that the jumps had a finite range.

∀t > 0 : ∆(α N (η t (η 0 , ω)), α N (η t (ξ 0 , ω))) ≤ ∆(α N (η 0 ), α N (ξ 0 )) + γ (4 
An essential ingredient for this property is the attractiveness of the model.

Remark 1

While in [START_REF] Bramson | Existence of blocking measures for nonzero mean exclusion processes[END_REF] and in the rest of this note a function Φ is used (see (7) below) to measure distance between configurations, we use ∆ in the discussion above since it is more appropriate for hydrodynamics. An elementary computation shows that the statement in (8) remains unchanged whether one uses Φ or ∆.

In Section 2 we state the macroscopic stability result, and its application to strong hydrodynamics. In Section 3 we prove it, through an analysis of the evolution of labelled discrepancies. Section 4 is devoted to two properties needed for hydrodynamics of the particle system.

The result

We fix L > 10(µ 1 + 1).

(
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Theorem 2 Let η i . , i = 1, 2 be two processes both generated by the same Harris system with initial configurations

η i 0 , i = 1, 2 such that |x|≥LN (η 1 0 (x) + η 2 0 (x)) = 0. ( 6 
)
We set, for t ≥ 0, x ∈ Z,

Φ t (x) = y≥x (η 1 t (y) -η 2 t (y)). ( 7 
)
Then, for each ǫ > 0,

IP sup x∈Z Φ t (x) -sup x∈Z Φ 0 (x) > ǫN ≤ Ce -cN (8)
for all t ∈ [0, N] and N, and appropriate c > 0 and C, depending on ǫ and L but not on N or η i 0 , i = 1, 2. One can extend this type of result to initial joint configurations which agree outside interval (-LN, LN) but do not necessarily satisfy Condition ( 6) by an approach which relies on Theorem 13, Section 3.

Theorem 2 has practical consequences to hydrodynamics. It enables us to extend the hydrodynamics derived in [START_REF] Bahadoran | A constructive approach to Euler hydrodynamics for attractive particle systems. Application to k-step exclusion[END_REF][START_REF] Bahadoran | Euler hydrodynamics of one-dimensional attractive particle systems[END_REF][START_REF] Bahadoran | Strong hydrodynamic limit for attractive particle systems on Z[END_REF], for which the assumption p(.) finite range (that is there exists M > 0 such that p(x) = 0 for all |x| > M) was needed, to any transition kernel p(.) satisfying (A1), (A2). We now state this hydrodynamic result in a more general form, namely a strong hydrodynamic limit (which was the setup in [START_REF] Bahadoran | Strong hydrodynamic limit for attractive particle systems on Z[END_REF]).

Theorem 3 Assume p(.) has a finite third moment

µ 3 = z∈Z |z| 3 p(z) < +∞. Let (η N 0 , N ∈ N) be a sequence of X-valued random variables on Ω 0 . Assume there exists a measurable [0, K]-valued profile u 0 (.) on R such that lim N →∞ α N (η N 0 )(dx) = u 0 (.)dx, IP 0 -a.s. ( 9 
)
that is,

lim N →∞ R ψ(x)α N (η N 0 )(dx) = ψ(x)u 0 (x)dx, IP 0 -a.s.
for every continuous function ψ on R with compact support. Let (x, t) → u(x, t) denote the unique entropy solution to the scalar conservation law

∂ t u + ∂ x [G(u)] = 0 (10)
with initial condition u 0 , where G is a Lipschitz-continuous flux function (defined in (12) below) determined by p(.) and b(., .). Then, with IP 0 ⊗ IPprobability one, the convergence

lim N →∞ α N (η N t (η N 0 (ω 0 ), ω))(dx) = u(., t)dx ( 11 
)
holds uniformly on all bounded time intervals. That is, for every continuous function ψ on R with compact support, the convergence 

lim N →∞ R ψ(x)α N (η N N t )(dx) = ψ(x)u(x,
G(ρ) = ν ρ z∈Z zp(z)b(η(0), η(z)) ; (12) 
this represents the expectation, under the shift invariant equilibrium measure with density ρ, of the microscopic current through site 0. On the complement of R, which is at most a countable union of disjoint open intervals, G is interpolated linearly. A Lipschitz constant V of G is determined by the rates b(., .), p(.) in (1):

V = 2µ 1 sup 0≤a≤K,0≤k<K {b(a, k) -b(a, k + 1), b(k + 1, a) -b(k, a)}.
To obtain the above theorem by a constructive approach, one proceeds by first proving hydrodynamics for Riemann initial profiles and then by a general argument motivated by Glimm scheme obtain the general hydrodynamics by an approximation scheme. We now explain briefly how this approximation result is proved in the setup of [START_REF] Bahadoran | Strong hydrodynamic limit for attractive particle systems on Z[END_REF], that is IP 0 ⊗ IP-a.s. convergence. Therefore all the involved processes are evolving on a common realization (ω 0 , ω) ∈ Ω 0 × Ω, that we omit from the notation for simplicity. This proof is based on an interplay of macroscopic properties for the conservation law and microscopic properties for the particle system, in particular macroscopic stability and finite propagation property, both valid at microscopic as well as at macroscopic level. The useful properties of the entropy solution u(., t) to the conservation law are summarized in [START_REF] Bahadoran | Strong hydrodynamic limit for attractive particle systems on Z[END_REF]Proposition 4.1].

For T ∈ R + , the time interval [0, T ] is partitioned by {t 1 , t 2 , • • • } into intervals of equal length. At the macroscopic level the general profile at the beginning of each time step t k (that is, the solution u(., t k ) of the conservation law) is approximated by a step function v k (.); the time and space steps are chosen so that the Riemann solutions of different spatial steps ("waves") do not interact during [t k , t k+1 ]. Macroscopic stability for the conservation law implies that ∆(u(.,

t k+1 )dx, v k (., t k+1 -t k )dx) ≤ ∆(u(., t k )dx, v k (.)dx)
where v k (., t-t k ) is the entropy solution of the conservation law at time t with initial condition v k (.) at time t k . We denote by ξ N,k the initial configuration at time Nt k which is a "microscopic version" of v k , and by ξ N,k N (t-t k ) the evolved configuration at time Nt. By this we mean that lim

N →∞ ∆(α N (ξ N,k ), v k (.)dx) = 0;
for k = 0, this follows from an ergodic theorem for the densities (notice that the measures ν ρ are not necessarily product); for k ≥ 1, this follows from Riemann hydrodynamics applied to a profile with constant density. At the microscopic level,

∆(α N (η N N t k+1 ), α N (ξ N,k N (t k+1 -t k ) )) ≤ ∆(α N (η N N t k ), α N (ξ N,k )) + ǫ
with probability greater than 1 -CNe -cN ǫ by macroscopic stability at the particle level (that is, Theorem 2). If we know that lim

N →∞ ∆(α N (ξ N,k N (t k+1 -t k ) ), v k (., t k+1 -t k )dx) = 0
then we would have shown that the error

|(∆(α N (η N N t k+1 ), u(., t k+1 )dx) -∆(α N (η N N t k ), u(., t k )dx))|
is small and the proof can be completed by induction on k. This last step requires patching together Riemann hydrodynamics for which one needs the finite propagation property for the particle system (which requires that p(.) has a finite third moment). The bound CNe -cN ǫ is not necessary for the argument.

Since the ergodic theorem for densities and the finite propagation property were stated in [START_REF] Bahadoran | A constructive approach to Euler hydrodynamics for attractive particle systems. Application to k-step exclusion[END_REF][START_REF] Bahadoran | Euler hydrodynamics of one-dimensional attractive particle systems[END_REF][START_REF] Bahadoran | Strong hydrodynamic limit for attractive particle systems on Z[END_REF] for finite range transition kernels p(.), we state and prove their extension to nonfinite range kernels for the sake of completeness (see Section 4).

Discrepancies

For two processes (η 1 t : t ≥ 0) and (η 2 t : t ≥ 0) we say that there is a discrepancy at

x ∈ Z at time t if η 1 t (x) = η 2 t (x). If η 1 t (x)-η 2 t (x) = h ∈ N\{0}
we say that there are h 1/2 discrepancies at site x ∈ Z at time t ≥ 0. We similarly speak of 2/1 discrepancies. Indeed, we do not permit different types of discrepancies to share the same site. Given condition [START_REF] Rezakhanlou | Continuum limit for some growth models[END_REF], for two processes as in Theorem 2 there are only a finite (and, given the common Harris system, decreasing since the model is attractive) number of discrepancies of either type. It will be of interest to consider the time evolution of discrepancies; to this end we will, as in [START_REF] Bramson | Existence of blocking measures for nonzero mean exclusion processes[END_REF], label them: for, say, 1/2 discrepancies, we will introduce the processes (X x,i t : t ≥ 0) of their positions, for x ∈ (-LN, LN) and 1 ≤ i ≤ K, taking values in Z∪{∆} where ∆ is a graveyard site. For 2/1 discrepancies, we will introduce processes (Y y t : t ≥ 0) for y in some labeling set J, a cemetery state, ∆ ′ , such that at all times t, {z :

η 2 t (z) > η 1 t (z)}∪{∆ ′ } is equal to the union of the positions Y y t with multiplicities respected, that is z∈Z (η 2 t (z) -η 1 t (z)) + δ z = y∈J 1 {Y y t =∆ ′ } δ Y y t
A decrease of discrepancies corresponds to the coalescence of a 1/2 and a 2/1 discrepancies, due to the jump of one of them to the site where the other is; in that case, we will make the label of a 1/2 discrepancy (not necessarily the one involved in the jump, see case [e] below) jump to ∆, and the label of the 2/1 discrepancy jump to ∆ ′ .

Remark 4

The ideas to prove Theorem 2 are similar to those in [START_REF] Bramson | Existence of blocking measures for nonzero mean exclusion processes[END_REF], with a few differences that improve the probability of coalescence of 1/2 and 2/1 discrepancies. First, the labeling procedure in [START_REF] Bramson | Existence of blocking measures for nonzero mean exclusion processes[END_REF] was different: there, all η 1 particles were labelled (but none of the η 2 particles); they were called "uncoupled" when corresponding to 1/2 discrepancies, and "coupled" otherwise. Thus a coalescence of discrepancies was called a "coupling of labels". Secondly, we introduce a notion of "windows" through stopping times slightly different from those in [START_REF] Bramson | Existence of blocking measures for nonzero mean exclusion processes[END_REF].

We want the processes (X x,i t : t ≥ 0) to be such that 1) for all x ∈ (-LN, LN), i ∈ {1, • • • , K}, if there are h 1/2 discrepancies at x at time 0, then X x,i 0 = x for i ≤ h, otherwise X x,i 0 = ∆, 2) if s < t and X x,i s = ∆, then X x,i t = ∆, 3) if there are h 1/2 discrepancies at time t at site z, then there exists precisely h pairs (x j , i j ) so that X x j ,i j t = z, 4) for all (x, i) and t, the (random) space-time point X x,i t is either the position of a 1/2 discrepancy at time t or equal to ∆ and 5) for all

x ∈ Z, i ∈ {1, • • • , K}, X x,i .
cannot jump except (possibly) at t ∈ N z,y for some z, y ∈ Z (neither of which may equal X x,i t -). Equally, we insist that if some t ∈ N z,y for some z, y entails no change in both processes (i.e.

η 1 t -= η 1 t , η 2 t -= η 2 t )
, then there will be no movement of any of the X x,i . processes at t.

Of course for those five conditions to hold there can be many choices of the processes (X x,i t : t ≥ 0) x∈(-LN,LN ),i≤K . We will make a choice that is natural, tractable and serves to prove Theorem 2.

The choice of motions for the X x,i . is "solved" for p(.) a kernel of finite range (see [START_REF] Bramson | Existence of blocking measures for nonzero mean exclusion processes[END_REF]). For a general p(.) we must be able to deal with jumps between sites x and y separated by great distances. Accordingly we distinguish between changes in the X x,i . processes occuring at t ∈ N y,z for |z -y| large and those contained in a Poisson process corresponding to a close pair of sites. We fix now an ǫ > 0 but arbitrarily small. Associated with this ǫ we will choose an integer m = m ǫ which will be large enough to satisfy various (increasing) properties that we will specify as our argument progresses. The rules for the evolution of the X x,i . at a point t ∈ ∪ y,z N z,y will differ according to whether t ∈ N z,y for |z -y| ≥ m ǫ (we call such jumps "big jumps") or not. We note that having finite systems of particles ensures that the rate at which relevant points in ∪ z,y N z,y occur is bounded by K(2LN + 1)||b|| ∞ . Thus the time for jumps in the processes forms a discrete set, having no cluster points. Between these times we specify, by 5) above, that X x,i . must be constant for all x ∈ Z, i ∈ {1, • • • , K}.

We must now detail the motions of the X x,i . at times t ∈ N z,y . As noted in 5) if no particle motion results then there is no motion of the discrepancies. Furthermore if there are no 1/2 discrepancies at sites z and y then again no motion of 1/2 discrepancies results. Equally if at this instant a particle for each process moves from z to y, then there is no motion of discrepancies. This leaves two types of big jumps occuring at t to consider: t ∈ N z,y for |z -y| ≥ m ǫ , with a 1/2 discrepancy located either on z or on y at "time" t -.

[a] A η 1 particle moves from z to y (but not a η 2 particle). If at time t - there were no 1/2 discrepancies at z then necessarily by assumption (A4) we would have 2/1 discrepancies at y, thus 1/2 discrepancies neither on z nor on y, a case we have excluded here. Therefore there are 1/2 discrepancies at z at time t -; we pick one at random, uniformly among pairs (x, i) so that X x,i t -= z and move this discrepancy (and its label).

[a1] If there are no 2/1 discrepancies at y at time t -, then the discrepancy chosen and its label jump to y;

[a2] if there are 2/1 discrepancies at y at time t -then the X x,i . chosen jumps to ∆ and a 2/1 discrepancy is picked at random at y and its label jumps to ∆ ′ (and so each one must remain in these states thereafter: those 1/2 and 2/1 discrepancies have coalesced).

[b] A η 2 particle moves from z to y (but not a η 1 particle).

[b1] If at time t -there are 2/1 discrepancies at z we pick one at random, uniformly among these and move this discrepancy to ∆ ′ . Since at time t - there are no 1/2 discrepancies on z, there must be some on y; then one of these discrepancies is chosen uniformly at random and its label moves to ∆.

[b2] If at time t -there is no 2/1 discrepancy at z, then (cf. [a] above) necessarily by assumption (A4) there must exist 1/2 discrepancies at y. Again we choose one of these discrepancies at random and move it (and its label) to z.

The motion of the X x,i . s for t ∈ N z,y for some |z -y| < m ǫ is more complicated but follows along the lines of the rules introduced in [START_REF] Bramson | Existence of blocking measures for nonzero mean exclusion processes[END_REF].

We adopt an ordering ≺ of labels of discrepancies X x,i . so that the spatial positioning is respected but which also orders labels of discrepancies on the same site. The ordering among "active" (in a sense made precise below) discrepancies can only be changed by a big jump of size at least m ǫ for a 1/2 discrepancy (thus the jumps described in [a], [b] above), at which point the label of the jumping discrepancy is assigned the lowest order among labels of 1/2 discrepancies currently at the new site (this choice is consistent with the upper bound for ∆ x,i t obtained below equation ( 16) with respect to the motions described in [a], [b], as will be explained later on).

Here a difference with the preceding cases is that at a single time t many (but always a bounded number) X x,i . s may move so that labelled 1/2 discrepancies keep their relative order.

[c] If at time t -neither site z nor y is the location of a 1/2 discrepancy then there is no motion for any X x,i . at time t.

[d] If at time t -exactly one of the sites z, y is the location of 1/2 discrepancies, while the other site is not the current position of 2/1 discrepancies, then we fix the labels at time t according to the following two requirements (we take [z, y] to signify [y, z] in the case where z exceeds y): first X x,i t = X x,i t -for all pairs (x, i) for which X x,i t -is outside [z, y], secondly the X x,i t s are chosen for X x,i t -∈ [z, y] so as to preserve order (as in [5, Section 3]):

X x,i t -≺ X x ′ ,i ′ t -⇒ X x,i t ≺ X x ′ ,i ′ t .
[e] If at t -one of the sites z, y is the location of 1/2 discrepancies and the other of 2/1 discrepancies, then we relabel as follows:

[e1] First we randomly select a random interval, called a "window" (see below) among the "active windows" that contain both z and y. Let this window be denoted [u, v]. Then among all pairs (x, i) with X x,i t -∈ [u, v] we choose (again all candidates being equally likely) one (x, i) and X x,i t is specified to be ∆, for the other pairs (x ′ , i ′ ) we specify the X x ′ ,i ′ t s so that X x ′ ,i ′ . s outside [u, v] remain where they were while the order of

X x ′ ,i ′ . s within [u, v] (apart from X x,i
. ) is preserved. Notice that this may result in many (but a bounded number of) motions of labels: If e.g. the motion is a 2/1 discrepancy at z moving back to a 1/2 discrepancy at y, but x, the location of a 1/2 discrepancy whose label is being chosen to be sent to ∆ is such that x > z, then labels of 1/2 discrepancies in [y, x] are shifted rightward (or stay on the same site if it is the location of many labels).

[e2] It may well be that the points z and y do not belong to a single active window, in which case |z -y| < M 0 or |z -y| > M 0 + m ǫ (according to the definitions of M 0 and of windows given below). In this case the 1/2 discrepancy relevant to the pair z and y at time t has its label assigned to ∆ and all other 1/2 discrepancies have their position (and label) unchanged. (Thus we are back to the behaviour described in [a],[b]).

Remark 5

The relabeling enables us to get rid of the possibility of a 2/1 discrepancy being close to a 1/2 discrepancy but not having a chance of coalescing with it. Indeed, thanks to this manoeuvre, whenever a 2/1 discrepancy comes close to a 1/2 discrepancy then there is a nontrivial chance the label of the 1/2 discrepancy will be sent to ∆, while if we would have simply said that the directly affected discrepancy has its label which goes to ∆, there might exist joint configurations where a 2/1 discrepancy is close to a 1/2 discrepancy but the chance of it coalescing with that particular discrepancy is essentially zero.

It remains to describe the random intervals we call "windows". We follow closely the slightly different definition given in [START_REF] Bramson | Existence of blocking measures for nonzero mean exclusion processes[END_REF].

In the following result a process on an interval I will be a process on state space {0, • • • , K} I which obeys the same evolution rules as before, given the Poisson processes N z,y (and the uniform random variables U(z, y, t) associated to t ∈ N z,y ) for z, y ∈ I. We first observe that since by assumption (A1) kernel p(.) is irreducible, then for n large enough greatest common divisor {x :

p n (x) = 0} = 1, ( 13 
)
where the (typically sub Markov) kernel p n satisfies p n (x) = p(x)1 {|x|≤n} . The kernel p n (x) is finite range and we have as in [5, Lemma 3.1],

Lemma 6 Let n be sufficiently large that (13) holds. For all m sufficiently large and all Harris coupled pairs of processes on [0, m] evolving according to kernel p n (.) and b(., .), η 1 . and η 2 . with initial configurations η 1 0 , η 2 0 satisfying

η 1 0 (0) > η 2 0 (0), η 2 0 (m) > η 1 0 (m),
there is a strictly positive chance c m that there is a coalescence for the joint processes in time interval [0, 1], that is that

x∈[0,m] |η 1 1 (x) -η 2 1 (x)| < x∈[0,m] |η 1 0 (x) -η 2 0 (x)|.

This immediately yields

Corollary 7 There exists M 0 so that for all M ≥ M 0 if for Harris coupled processes η 1 . , η 2 . , for 0

≤ x ≤ x + M 0 ≤ y ≤ M, η 1 0 (x) > η 2 0 (x), η 2 0 (y) > η 1
0 (y), then there is a strictly positive constant C M so that with probability at least C M during time interval [0, 1] (uniformly over all relevant joint initial configurations)

(i) there is no t ∈ N u,v for u ∈ [0, M], v / ∈ [0, M] or vice versa, (ii) z∈[0,M ] |η 1 1 (z) -η 2 1 (z)| < z∈[0,M ] |η 1 0 (z) -η 2 0 (z)|.
Proof. Let M 0 be a sufficiently large m in the sense of Lemma 6 and n be sufficiently large in the sense of (13). Let A be the event that in time interval [0, 1] there are no t ∈ N u,v with either u ∈

[0, M], v / ∈ [0, M] or u ∈ [x, y], v / ∈ [x, y], or vice versa. Then IP(A) ≥ e -4||b||∞µ 1
where recall We now fix an M 0 (increasing m ǫ if necessary), so that M 0 < m ǫ /10 and M 0 > 10n where n is sufficiently large in the sense of Lemma 6. According to Corollary 7, the choice of M 0 is such that if a 1/2 discrepancy and a 2/1 discrepancy are separated by at least M 0 (and less than M 0 + m ǫ ) then there is a definite chance that there will be a coalescence. If the separation is less than M 0 , then, in principle, we can say nothing about coalescence probabilities.

µ 1 = w |w|p(w) < ∞. Furthermore event A is independent of event B = (there is no t ∈ [0, 1] ∩ N u,v with u, v ∈ [x, y] and |u -v| ≥ n),
We are therefore ready to define "windows", which will be space intervals of length m ǫ + M 0 , on which coalescence will be favored. A window will be associated to a label of 1/2 discrepancy X x,i . . Given X x,i .

(with X x,i 0 = ∆) we define the following stopping times: T x,i 0 = 0,

σ x,i = inf{t ≥ 0 : X x,i t = ∆}, (14) 
and for j ≥ 0 (with the convention inf ∅ = +∞)

S x,i j = inf{t ∈ [T x,i j , σ x,i ) : ∃ a 2/1 discrepancy in [X x,i t + M 0 , X x,i t + M 0 + m ǫ ]}, a x,i j = X x,i S x,i j , T x,i j+1 = (S x,i j + 1)∧ inf{t ≥ S x,i j : t ∈ N u,v for u ∈ [a x,i j , a x,i j + M 0 + m ǫ ], v ∈ [a x,i j , a x,i j + M 0 + m ǫ ] c or vice versa }∧ inf{t ≥ S x,i j : u∈[a x,i j ,a x,i j +M 0 +mǫ] |η 1 t (u) -η 2 t (u)| < u∈[a x,i j ,a x,i j +M 0 +mǫ] |η 1 S x,i j (u) -η 2 S x,i j (u)|}∧ inf{t ≥ S x,i j : ∃u, v ∈ [a x,i j , a x,i j + M 0 + m ǫ ], t ∈ N u,v , |u -v| ≥ m ǫ }. (15) 
Times T x,i j+1 and S x,i j are defined in such a way that one can use Corollary 7 to conclude that there is a positive chance of coalescence between times S x,i j and T x,i j+1 : If the first or third event defining T x,i j+1 does not occur then Corollary 7 can be applied. Since these two events occur with finite rates we can expect coalescence with positive probability between times S x,i j and T x,i j+1 . For some (x, i) and j with S x,i j finite, an ((x, i), j) space window is a space interval [a x,i j , a x,i j + M 0 + m ǫ ]. It is taken to be active during the time interval [S x,i j , T x,i j+1 ], called an ((x, i), j) time window. Indeed, the presence of a 2/1 discrepancy in [a x,i j + M 0 , a x,i j + M 0 + m ǫ ] should favor a coalescence with a 1/2 discrepancy (cf. Remark 5). We remark that a space window is only relevant while it is active, that a point u at a time t may belong to several distinct space windows but that this number is bounded by M 0 + m ǫ + 1, the size of a space window.

We now define the evolution of the labels (Y y t : t ≥ 0) of 2/1 discrepancies (which will be more natural and intuitive than the processes of labels for 1/2 discrepancies). Once a process Y y

. hits ∆ ′ it must remain at this "position" ever after. We stipulate that the Y y . be a cadlag process which jumps at time t only if for some z ∈ Z, t ∈ N z,Y y t -or t ∈ N Y y t -,z . Furthermore nothing happens if at this time t both a η 1 and a η 2 particle move.

[f] If for t ∈ N z,Y y t -solely a η 1 particle moves from z to Y y t -, one of the 2/1 discrepancies at Y y t -is randomly selected; then if there were 1/2 discrepancies at z at time t -, its label moves to ∆ ′ (this is case [a2] above when |z -Y y t -| ≥ m ǫ ); if there are no 1/2 discrepancies at z at time t -, it moves to z as well as its label. If for t ∈ N z,Y y t -solely a η 2 particle moves from z nothing can happen to Y y . . [g] If for t ∈ N Y y t -,z only a η 1 particle moves, then there is no motion for Y y . ; if the motion involves uniquely a η 2 particle, then one of the 2/1 discrepancies currently at site Y y t -is moved. If at t -there is a 1/2 discrepancy at site z then the label of the 2/1 discrepancy chosen moves to ∆ ′ (this is case [b1] above when |z -Y y t -| ≥ m ǫ ), if not the 2/1 discrepancy (and its label) move to z.

Notice therefore that there is no relabeling scheme to preserve order for the processes (Y y t : t ≥ 0).

To deal with Theorem 2, we now consider the quantity (7). Since by ( 6) the total number of particles is finite, sup x∈Z Φ t (x) is equal to the maximum of 0 and the maximum over x ∈ Z, i ∈ {1, • • • , K} of Φ t (X x,i t ). We define for (x, i), t such that X x,i t = ∆, so that σ x,i > t,

∆ x,i t = Φ t (X x,i t ) -Φ 0 (X x,i 0 ) with Φ t (X x,i t ) = (y,j)∈Z×{1,••• ,K} 1 {X x,i t ≺X y,j t } - y∈Z:y>X x,i t (η 1 t (y) -η 2 t (y)) -. ( 16 
)
The quantity Φ t (X x,i t ) counts (the number of 1/2 discrepancies to the right of X x,i t at time t minus the number of such 2/1 discrepancies) minus (the same quantity at time 0). Thus ∆ x,i t is equal to the number of labels of 1/2 discrepancies X u,k . for which X u,k 0 ≺ X x,i 0 but X x,i s ≺ X u,k s for some s ≤ t and up to time t (that is, the labels of 1/2 discrepancies that appear in Φ t (X x,i t ) but were not in Φ 0 (X x,i 0 )), plus the number of labels of 2/1 discrepancies Y y . that were "in" Φ 0 (X x,i 0 ) but "disappear" from Φ t (X x,i t ), that is, those for which Y y 0 > X x,i 0 but Y y s < X x,i s for some s ≤ t (and up to time t) plus the number of Y y . (with Y y 0 > X x,i 0 ) which jumped to ∆ ′ at a time s ≤ t so that X x,i s -< Y y s -and the label X u,k .

of the 1/2 discrepancy which jumps to ∆ at time s is such that

X u,k s -≺ X x,i s -(notice that since X x,i t = ∆, we have (u, k) = (x, i)).
Indeed, the ordering of labels of 1/2 discrepancies for long jumps introduced earlier ensures that the upper bound for ∆ x,i t described above remains valid during such jumps.

We now consider three classes of discrepancies contributing to the above bound. The first and second classes are not exclusive but this does not concern us as we are interested in an upper bound for ∆ x,i t .

(a) ∆ x,i t (a) counts the number of 2/1 discrepancies that jump from (X

x,i s , ∞) to (-∞, X x,i s ) ∪ {∆ ′ } for s ≤ t in some N u,v with |u -v| ≥ m ǫ plus the number of labels of 1/2 discrepancies X w,k .
for which there exists s ≤ t so that X w,k s

-≺ X x,i s -= X x,i s ≺ X w,k s .
It should be noted that necessarily, given the relabeling scheme in force, such a crossing must result from a jump of size greater than or equal to m ǫ from (-∞, X x,i s ) to [X x,i s , ∞) by X w,k .

. Thus ∆ x,i t (a) has only to do with big jumps.

(b) ∆ x,i t (b) counts the number of labels of 2/1 discrepancies, Y y . , for which for some s

∈ N X x,i s -,u , s ≤ t, for u ≥ X x,i s -+ m ǫ we have X x,i s -< Y y s -= Y y s < X x,i
s plus the number of labels of 1/2 discrepancies X u,k . so that for some

s ≤ t, X x,i s ≺ X u,k s -= X u,k s ≺ X x,i s -.
Again in the second case, given the relabeling scheme, it must hold at such an

s that |X x,i t -X x,i t -| ≥ m ǫ (note in this case ∂∆ x,i t := ∆ x,i t -∆ x,i t -≤ K | X x,i t -X x,i t -|). Again, ∆ x,i
t (b) has only to do with big jumps.

(c) ∆ x,i t (c) deals with times s ≤ t, s ∈ N u,v with |u -v| < m ǫ , for motions described in case [e] above, with (in [e1]) or without (in [e2]) relabeling of some 1/2 discrepancies. The quantity ∆ x,i t (c) counts the number of labels of 2/1 discrepancies Y y . which have not contributed to the two preceding random variables, so that Y y 0 > X x,i 0 and at some time s ≤ t, s ∈ N u,v with |u -v| < m ǫ , X x,i s -< Y y s -and either (i) there exists (w, k) so that X w,k s -≺ X x,i s -and at time s, X 

< X x,i s (if X x,i
. jumps, we are in case [d] above, hence there cannot be any 1/2 discrepancy between X x,i s -and Y y s -). (iii) there exists (w, k) so that X x,i s -< Y y s -< X w,k s -, and at time s, X w,k .

jumps to ∆ and X x,i . is shifted rightward.

So we have

∆ x,i t ≤ ∆ x,i t (a) + ∆ x,i t (b) + ∆ x,i t (

c). We treat each term separately

Lemma 8 There exists c(ǫ) > 0 so that for all t sufficiently large

IP(∆ x,i t (a) > ǫt/5; σ x,i > t) ≤ e -c(ǫ)t .
Proof. We can and will suppose that m ǫ has been fixed sufficiently large to ensure that

w≥mǫ w(p(w) + p(-w)) < ǫ 20||b|| ∞ . (17) 
The rate at which there is a jump of a 2/1 discrepancy from (X x,i s , ∞) to (-∞, X x,i s ) ∪ {∆ ′ } for s ≤ t in some N u,y with |u -y| ≥ m ǫ is bounded by (because either solely a η 2 particle jumps, or solely a η 1 particle jumps that makes the 2/1 discrepancy move)

||b|| ∞ y>X x,i s u<X x,i s ,u≤y-mǫ (p(y -u) + p(u -y)) ≤ ||b|| ∞ w≥mǫ w(p(w) + p(-w)) < ǫ 20 (18) 
and similarly for the rate for appropriate jumps of 1/2 discrepancies. Thus these jumps are stochastically bounded by a rate ǫ/10 Poisson process. So IP(∆ x,i t (a) > ǫt/5; σ x,i > t) ≤ e -c(ǫ)t for some c > 0 not depending on N.

Lemma 9 There exists c = c(ǫ) > 0 so that for all N sufficiently large and t ∈ [0, N]

IP |{(x, i) : ∆ x,i t (b) ≥ ǫN 10 }| ≥ ǫ 2 50 N; σ x,i > N < e -cN
where |A| denotes the cardinality of set A.

Proof. Since ∆ x,i t (b) is increasing in t it is sufficient to obtain the bound for t = N. We use, for the moment, the fact that

∀t ∂∆ x,i t (b) ≤ K|X x,i t -X x,i t -|1 {|X x,i t -X x,i t -|≥mǫ} (19) 
though it should be noted that this gives a poor bound if the configurations η 1 t and η 2 t are "close". Observe that for (x, i) and (u, k) distinct, jumps of size larger than m ǫ for X x,i . and jumps for X u,k . can be derived from independent Poisson processes of random but bounded rates. Since the discrepancies are chosen uniformly randomly when a Poisson clock rings at a site this claim is true for two distinct discrepancies at the same site. Thus we can bound stochastically the number of (x, i) such that (recall (17)

) s≤N |X x,i s -X x,i s -|1 {|X x,i s -X x,i s -|≥mǫ} ≥ ǫN 10K
by the number of Z x,i .

with Z x,i N ≥ (ǫN)/(10K) where Z x,i . are i.i.d. random walks all starting at zero which jump only in the positive direction by w ≥ m ǫ at rate ||b|| ∞ (p(w) + p(-w)).

If we chose m ǫ sufficiently large then for all (x, i)

IP Z x,i N ≥ ǫN 10K ≤ ǫ 2 100(2L + 1)K
for N large by the law of large numbers and so we obtain

IP |{(x, i) : ∆ x,i N (b) ≥ ǫN 10 }| ≥ Nǫ 2 50 ; σ x,i > N ≤ IP Binom ((2L + 1)NK, ǫ 2 /100(2L + 1)K) ≥ Nǫ 2 50 ≤ Ce -cN .
It remains to treat ∆ x,i t (c). As we have just seen, the variables ∆ x,i t (a) and ∆ x,i t (b) can be controlled by laws of large numbers applied to big jumps. ∆ x,i t (c) however is associated with the jumps of reasonable magnitude. The 2/1 discrepancies contributing to ∆ x,i t (c) should be split in two. For a given pair (v, k), we say a time window [S v,k j , T v,k j+1 ] (or a ((v, k), j) space window) is "relevant" to X x,i .

if the spatial interval [a v,k j , a v,k j + m ǫ + M 0 ] contains X x,i S v,k j .
We say Y y . is "associated" to a ((v, k), j) space window [a v,k j , a v,k j + m ǫ + M 0 ] relevant to X x,i .

if either of the following are true:

1) Y y S v,k j ∈ [a v,k j , a v,k j + m ǫ + M 0 ]; 2) Y y T v,k j+1 ∈ [a v,k j , a v,k j + m ǫ + M 0 ] (notice that if 2) occurs but not 1) then the ((v, k), j) space window [a v,k j , a v,k j + m ǫ + M 0 ] is desactivated by the entry of Y y . ); 3) Y y T v,k j+1 ∈ [X x,i T v,k j+1 + M 0 , X x,i T v,k j+1 + m ǫ ].
We say Y y . is "associated" if it is associated to one or more space windows. Otherwise Y y

. is not associated. The sum over labels of 2/1 discrepancies which are associated and contribute to ∆ x,i t (c) is written ∆ x,i t (c, ass) the contribution of nonassociated is ∆ x,i t (c, non).

We note that no particle can leave or enter [a v,k j , a v,k j + m ǫ + M 0 ] during the time interval [S v,k j , T v,k j+1 ). Therefore the 2/1 discrepancies which can contribute to ∆ x,i t (c) during the time interval [S v,k j , T v,k j+1 ) belong to [a v,k j , a v,k j + m ǫ + M 0 ] and are located at sites to the right of X x,i S v,k j which implies that ∆ x,i t (c) can increase at most by (M 0 + m ǫ )K during this time interval. Those 2/1 discrepancies which are in [X x,i

(T v,k j+1 ) -, X x,i (T v,k j+1 ) -+ m ǫ ] at time (T v,k j+1 )
-may lead to an increase of at most m ǫ K at time

T v,k j+1 . If Y y T v,k j+1 ∈ [X x,i T v,k j+1 , X x,i T v,k j+1 + M 0 ), then Y y s ∈ [X x,i s + M 0 , X x,i s + M 0 + m ǫ ] for some s < T v,k j+1 , unless it entered [X x,i T v,k j+1 , X x,i T v,k j+1 + M 0 )
by a long jump of either Y y . or X x,i . . As we can see from case 3) above, any 2/1 discrepancy which enters [X x,i

T v,k j+1 , X x,i T v,k j+1 + M 0 )
by a long jump will not be associated.

Let [S j , T j ] j ∈ N denote the active windows relevant to (x, i) for all possible (v, k) with reordered opening times (S j ≤ S j+1 but not necessarily T j ≤ T j+1 ). We are interested in finding an increasing subsequence of active windows [S j k , T j k ) which are disjoint since we want to use the strong Markov property to claim the independence of coalescence events in such intervals to obtain our probability estimate.

Let j 1 = 1. Define for all k ≥ 1,

j k+1 = inf{ℓ > j k : S ℓ ≥ T j k }.
Now we observe that j k+1 ≤ j k + 2(M 0 + m ǫ ) + 1 since while the window [S j k , T j k ) is relevant to X x,i . , then X x,i .

can belong to at most 2(M 0 + m ǫ ) other active windows. During the time interval [S j k , T j k ), X x,i . remains in the corresponding space window. Therefore during this time interval ∆ x,i . (c) increases by at most K(M 0 + m ǫ ). At time T j k and time S j k , ∆ x,i . (c) increases by at most m ǫ K. No 2/1 discrepancy enters [X x,i t , X x,i t + M 0 ) for t ∈ [T j k , S j k+1 ), unless it entered by a long jump (and therefore is not associated). Also, no 2/1 discrepancy enters [X x,i t + M 0 , X x,i t + M 0 + m ǫ ] (by a short or long jump) during the same time interval. Thus we can conclude that during the time interval [S j k , S j k+1 ), the total number of associated 2/1 discrepancies which contribute to ∆ x,i . (c) is bounded above by K (M 0 + 3m ǫ ).

Treating ∆ x,i t (c, ass) follows naturally along the same lines as with [5, Proposition 3.2]: during each relevant time window interval for label X x,i . , there is a reasonable probability that X x,i . jumps to ∆ and during such an interval [S j k , S j k+1 ) the number of Y y . which are associated is bounded by K(3m ǫ + M 0 ). Therefore if the event (∆ x,i t (c, ass) ≥ γN; σ x,i > t) occurs for some t, then X x,i . goes through at least [γN]/(K(3m ǫ + M 0 )) successive disjoint time windows [S j k , S j k+1 ) without jumping to ∆ in the time interval [0, t]. Since the probability of jumping to ∆ during a given time window is equal to some c ′ > 0, and jumps in successive time windows are independent, the event (∆ x,i t (c, ass) ≥ γN; σ x,i > t) has a probability bounded above by

(1 -c ′ ) [γN ]/(K(3mǫ+M 0 )) .

Thus we have in place of [5, Proposition 3.2]

Lemma 10 There exists c, C ∈ (0, ∞) so that for all t ≥ 0

IP(∆ x,i t (c, ass) ≥ γN; σ x,i > t) ≤ Ce -cγN . (20) 
It remains to assess ∆ x,i t (c, non) for t ∈ [0, N]. Any Y y . particle which is initially in (X x,i 0 , X x,i 0 + M 0 ) may increase ∆ x,i t (c) without making a long jump, if this occurs before the first time X x,i . enters an active window. This increase is bounded above by KM 0 . Suppose that Y y . makes a contribution to this random variable. Then, by definition, Y y . is never associated with a space window relevant to X x,i . . Since Y y . does not contribute to ∆ x,i t (a) or ∆ x,i t (b), it cannot traverse X x,i . via a jump of size greater than m ǫ , be it of an η 1 or of an η 2 particle.

Thus the first time s that Y y s ∈ [X x,i s , X x,i s + m ǫ ] must be less than t. Given that Y y . is not associated with a space window relevant to X x,i . , it must be the case that in fact at this point s, Y y s ∈ [X x,i s , X x,i s + M 0 ] and that s is the moment of a jump of size at least m ǫ either by X x,i . or by Y y . . From this one sees that for all t ∈ [0, N] the contribution ∆ x,i t (c, non) is stochastically bounded by a random variable that is in distribution the sum bounded by independent r.w.s. Z N which jump over in positive direction and jump to w > 0 at rate ||b|| ∞ (p(w) + p(-w)).

Thus IP(|{second class particles in

[-N, N] at time t which entered via [-LN, LN] \ [-(L -1)N, (L -1)N]|)}| ≥ ǫN 4 ) ≤ IP( Binom (4µ 1 N, p) > ǫN/4) + H 1 e -h 1 N where p = IP(Z N ≥ (L -2)N) → 0 as N → ∞
for L -2 > µ 1 (which is the case by ( 5)).

Thus we obtain the defined bound for N large, for all t ∈ [0, N],

IP N y=-N η 2.2 t (y) ≥ ǫN ≤ He -hN + ε ′ e -h1N + ε ′′ e -h ′′ N ≤ Re -rN
and we are done.

Remaining lemmas

We need an extension of [6, Lemma 4.5] to nonfinite range kernels:

Lemma 14 Under the assumption µ 1 = z∈Z |z|p(z) < ∞, the measure ν ρ has a.s. density ρ, that is

lim l→∞ 1 2l + 1 l x=-l η(x) = ρ, ν ρ -a.s. ( 26 
)
Proof. Let η be a random configuration with a distribution ν ρ . We want to show (26). We consider the stationary process η . with initial distribution ν ρ . Since ν ρ is translation invariant we have

lim l→∞ l x=-l 1 2l + 1 η 0 (x) = f (η 0 )
for ν ρ almost every η 0 ∈ X, where f is a translation invariant function. We will show that f (η 0 ) = f (η 1 ), ν ρ ⊗ IP-a.s., thus showing that f is also a time invariant function. Let n ∈ N and define the event -l (ω 0 , ω) + J + l (ω 0 , ω)) -(J - -l (ω 0 , ω) + J - l (ω 0 , ω))

where J + -l (ω 0 , ω) is the total number of particles which jump from Z ∩ (-∞, -l -1] into Z ∩ [-l, l] during time interval [0, 1] and J - -l (ω 0 , ω) is the total number of particles which jump from Z ∩ [-l, l] into Z ∩ (-∞, -l -1] during time interval [0, 1]. We have that J ± l (ω 0 , ω) are defined similarly. The sum (J + -l (ω 0 , ω) + J + l (ω 0 , ω)) is bounded above by a Poisson process with rate ||b|| ∞ µ 1 . The same is true for (J - -l (ω 0 , ω) + J - l (ω 0 , ω)). Therefore | l x=-l η 0 (ω 0 )(x) -l x=-l η 1 (η 0 (ω 0 ), ω)(x)| is bounded above by a Poisson random variable with parameter 2||b|| ∞ µ 1 . This implies that ∞ l=1 (ν ρ ⊗ IP)(A l n ) < ∞. Since this is true for all n ∈ N we have shown by Borel-Cantelli lemma that f (η 0 ) = f (η 1 ), ν ρ ⊗ IP-a.s. Since ν ρ ∈ (I ∩ S) e this implies that f is a constant, proving the result.

We finally state an extension to nonfinite range kernels of the finite propagation property at particle level (see [START_REF] Bahadoran | Euler hydrodynamics of one-dimensional attractive particle systems[END_REF]Lemma 5.2

]).

Lemma 15 There exist constant v, and function A(.) (satisfying n A(n) < ∞), depending only on b(., .) and p(.), such that the following holds. For any x, y ∈ Z, any (η 0 , ξ 0 ) ∈ X 2 , and any 0 < t < (yx)/(2v): if η 0 and ξ 0 coincide on the site interval [x, y], then with IP-probability at least 1 -A(t), η s (η 0 , ω) and η s (ξ 0 , ω) coincide on the site interval [x + vt, yvt] ∩ Z for every s ∈ [0, t].

Proof. Let η 0 and ξ 0 be configurations in X which agree on all sites x such that m ≤ x ≤ n. We couple the processes starting from η 0 and ξ 0 by basic coupling so that they move together whenever they can. We define random walks L t (η t , ξ t ) and R t (η t , ξ t ) as follows. Initially L 0 = m and R 0 = n. If t ∈ N z,w for some sites z < L t -≤ w, then L t = L t -+(w -L t -+1). Similarly if t ∈ N z ′ ,w ′ for some sites w ′ < L t -≤ z ′ , then L t = L t -+(z ′ -L t -+1). Thus L t is a random walk moving to the right. We define R t similarly moving to the left. From the definition of L t and R t it follows that if, at some time t, a = L t < R t = b, then during the time interval [0, t] no particles entered or left [a, b]. Since η 0 (x) = ξ 0 (x) for all a ≤ x ≤ b it follows that η t (x) = ξ t (x) for all L t ≤ x ≤ R t . Now the drift of L t can be written as

v L = ||b|| ∞   z<L t -w≥L t - (w -L t -+ 1)p(w -z) + w ′ <L t -z ′ ≥L t - (z ′ -L t -+ 1)p(w ′ -z ′ )   .
Using translation invariance of p(.), then summation by parts, the first term of v L can be written as Both terms are finite because of the moment assumptions on p(.), and

v L = ||b|| ∞ µ 1 + µ 2 2
where µ 2 = z∈Z z 2 p(z). We can proceed similarly with R t (η t , ξ t ) to show that the drift v R of R t is v R = -v L . From the argument above it follows that if z∈Z |z| k p(z) < ∞ for k > 1 then both L t and R t have finite (k -1)th moment. Since we have assumed that p(.) has finite third moment, we can conclude that R t and L t have finite second moment. Therefore if we take v bigger than v L = -v R , then for all t ≥ 0, IP{L t ≥ v L t} ≤ A([t]), for some function A satisfying the announced finiteness condition which depends only on p(.), b(., .) and vv L .

  ) has IP-probability at least 1 -C(|η 0 | + |ξ 0 |)e -cN γ , where |η| := x∈Z η(x).

  which has probability IP(B) ≥ e -||b||∞(M +1) P |w|≥n p(w) ≥ e -||b||∞(M +1) . Conditional on A ∩ B, an event of probability IP(A ∩ B) ≥ e -||b||∞(4µ 1 +M +1) the joint processes ((η 1 s , η 2 s ) : 0 ≤ s ≤ 1) restricted to interval [x, y] are just spatial translations of finite processes on [0, yx]. The result now follows from Lemma 6.

  A l n = {(ω 0 , ω) ∈ (Ω 0 × Ω) : | l x=-l η 0 (ω 0 )(x) -l x=-l η 1 (η 0 (ω 0 ), ω)(x)| > 2l + 1 n }. Now | l x=-l η 0 (ω 0 )(x) -l x=-l η 1 (η 0 (ω 0 ), ω)(x)| is the change in the net number of particles in [-l, l] during the time interval [0, 1]. This can be written as (J +

  j + 1)p(i) = ||b|| ∞Similarly for the second term of v L we write ||b|| ∞
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of KM 0 times a Poisson random variable of parameter ||b|| ∞ t z≥mǫ p(z) and an independent Poisson random variable of parameter M 0 ||b|| ∞ t z≥mǫ p(z).

Thus for all t ∈ [0, N], IP(∆ x,i t (c) ≥ ǫ 4 N; σ x,i > N) ≤ Ce -cN for some c depending on ǫ but not on η 1 0 , η 2 0 or N. So we have (recall x∈Z (η 1 0 (x) + η 2 0 (x)) ≤ 2K(2LN + 1)), by Lemmas 8, 9 and 10 Theorem 11 For all t ∈ [0, N],

This result is close to the announced Theorem 2. The difference being that the latter deals with the supremum over all pairs (x, i) of ∆ x,i t , whereas Theorem 11 asserts that the number of (x, i) for which ∆ x,i t is "too large" is small.

Proof. (of Theorem 2)

We prove the result by contradiction. By the conditions on the initial configurations we necessarily have that sup x∈Z Φ 0 (x) is greater than or equal to zero. So, for some t ∈ [0, N], sup x∈Z Φ t (x) to exceed sup x∈Z Φ 0 (x) by some ǫN, we must have that for some pair (x, i) for a 1/2 discrepancy of label

We have by Theorem 11 that outside probability Ce -cN ,

Suppose for some (x, i) with X x,i t = ∆,

This must mean that for at least (ǫN)/K sites y ∈ [X x,i t , +∞), η 1 t (y) > η 2 N (y). Let these points be enumerated, in order, as

But i 1 ≤ ǫ 2 N + 1 so

Thus

The above argument yields

Corollary 12 For η 1 0 and η 2 0 vacant on [-LN, LN] c and satisfying for all

we have outside probability 2Ce -cN (for C, c as in Theorem 11)

From our conclusions on finite configurations, one can compare infinite configurations through the following result for two initial configurations close on a (large) finite interval, one being finite (vacant outside that interval) and the other one infinite. We wish to show that Theorem 13 For ǫ > 0, there exists L 0 so that for

then for C 1 , c 1 depending on L, but not N, outside probability C 1 e -c 1 N for all interval I ⊆ [-N, N] and for all t ∈ [0, N],

Proof. We split the process η 2 . in two classes of particles: first class particles η 2.1 . which at time 0 were in the interval [-LN, LN] and second class particles which are in [-LN, LN] c initially. From Corollary 12 we have that outside probability Ce

This implies that for all I ⊂ [-N, N], for all t ∈ [0, N],

Thus to prove Theorem 13 it will be enough to effectively bound So the probability that the number of such entries over the time interval [0, t] exceeds ǫ/5N is less than He -hN for H, h in (0, ∞) not depending on N.

For the remainder we note that the rate of the entrants to [-LN, LN] must be bounded by 2µ 1 and so outside probability H 1 e -h 1 N at most 4µ 1 N particles enter during time interval [0, t].

If a second class particle enters during time interval [0, t] at [-LN, LN] \ [-(L -1)N, (L -1)N] then for it to be in [-N, N] at time t, the sum of its absolute displacements over this time interval must exceed (L -2)N, but for each such particle, the absolute values of the jumps are stochastically