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Resume: Composite objects reveal themselves to be very useful in component-based development processes for

the modeling, the management and the reuse of component assemblies. Although the composition relationship

notion has been widely studied, in order to use the composite objects’ structure as a mean to model and manage

complex data, few works have investigated the modeling of composite object behavior. Indeed, as far as

component based development is concerned, the point is not only the building of complex data structures, but

also the combination of the behavior of distinct objects in order to get them work as a coherent entity, which is

embodied by a composite object. Classical object-oriented design methods, such as those based on the UML

modeling language, do not provide adequate means for efficiently capturing the design of the global behavior of

composite objects. As a consequence, they fall short in providing models which possess all the benefits expected

from the use of composite objects, such as their ability to abstract complex assemblies. Thus we developed a

specific design method for composite objects, called COBALT, which adresses the above issues by allowing a

more abstract and declarative design of composite object behaviors. These concepts are provided as an extension

to UML, in order to enhance its modeling capabilities for composite objects.
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1. Introduction

Software engineering is slowly becoming a « real » industry. As in many other technological fields, vendors are

beginning to produce software components which, as chips and integrated circuits for the electronics industry,

may become distributed on a large scale, through catalogues, and will enable lower-cost, better-quality

application development to be achieved from the reuse of ready-to-use, well tested pieces of software. This

(r)evolution, sign of a maturing technology, is probably only at its early stage. Nonetheless, it is attested by the

growing number of application frameworks and CASE tools which provide support for component based

development [2, 15, 20, 25], by integrating component technologies such as the Enterprise Java Beans model

[29]. This technological (r)evolution implies a no less significant (r)evolution for the software engineers’ work.

Indeed, the amount of coding required for the development of an application is reduced, giving an even more

predominant role to analysis and design. New tasks appear during these steps: first, the selection of components

whose specifications match the requirements of the application, then, the adaptation of these components to the

specific context of the application and, finally, the building of a coherent component assembly which

implements the target application. This new paradigm entails new specialties in the software engineering field:

component provider, who designs components for reuse, application architect, who designs applications by reuse

of components, framework or CASE tool provider, who designs technologies and tools providing support for the

building and deployment of applications as component assemblies [4, 5, 29, 17].

In this technological context, reuse is the main topic. Software components, which are reusable elements for the

development of applications, are designed to be reused as components of larger components or as users of finer

grained components — these two faces of the reuse process entails specific constraints on component-based

development. Besides, another current trend in the design of software [8, 9, 10], is to consider as a reusable

matter not only the code of a component but also the more conceptual elements which have preceded its

implementation: the requirements it satisfies and its design. These conceptual elements and their implementation

taken together, form a coherent whole which can be used by component-based development tools to provide

application architects with different views of components along the different steps of the development process.

Such abstract definitions of components enable the tasks mentioned above (component search, selection,

adaptation, and assembly) to be carried out. How to reuse software components is definitely a pertinent problem

not only during the coding phase but also during the requirement analysis and design phases.

Thus, our work on component-based development has mainly focused on the reuse of the specifications of

components in order to make both the building of large and sophisticated component assemblies and the reuse of

these assemblies as new components easier [31, 32]. In this context, we chose to represent component assemblies

as composite objects. We therefore worked on the reuse of the specifications of the component behaviors during

the specification of the behavior of composite objects. Modeling the behavior of composite objects is not

straightforward: it requires solutions adapted to their aggregated and dynamic nature that classical object-

oriented methods do not provide. We therefore propose an extension to the UML modeling language allowing to

efficiently design the behavior of composite objects.

The remainder of this paper presents, on the one hand, how the design of the behavior of a composite object can

be achieved with statecharts in UML and how this falls short in providing all the benefits expected from the use

of composite objects to model component assemblies. On the other hand, it describes how the semantics of

classical statecharts can be refined and extended to provide a dedicated support for the design of composite

object behavior.

2. Reusing behavior designs

2-1. Composite objects: an adapted structure for the modeling of component assemblies

Assembling components consists in tying together a set of isolated components so that they can interact and

constitute, as a whole, a system which implements the required functionalities. Two kinds of approaches exist for

building component assemblies [5]:

- approaches based on connectors [7, 14], which model an assembly of components as simple

interconnections between them, without any representation of the assembly itself as an explicit entity. Each

assembly is unique and entirely built by the architect.

- approaches based on complex components [12, 24, 27, 28], which model a component assembly as a full

fledged object. An assembly of component is then represented in a generic way by an object class. It can be

thus reproduced many times and automatically built as an instance of this class.
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The concrete representation of a component assembly provide approaches based on complex components with

better qualities, regarding reuse, than its connector-based counterpart.

In our work, the modeling of component assemblies as complex components is based on composite objects. A

composite object is an object which represents the aggregation of a set of objects, called its components, each of

which describes a part of the composite object [3]. A composite object embodies, as an abstract entity (a unique

object), the assembly built with its components. Using composite objects to represent component assemblies

provide incontestable benefits:

- richness and expressivity of the modeling of assemblies. The structure that links a composite object to its

components is explicitly represented by a set of relations, called composition relations [11, 19, 22]. Most of

the existing work on composite objects focuses on the semantics of composition relations in order to use

composite objects as a mean to model and manage complex data structures. The richness of this semantic is

profitable to the management of component assemblies, in that it allows to control the dynamic evolution of

their structure — addition or removal of components — or the access to individual components — by

modeling their visiblility or sharability.

- enhanced reuse thanks to the abstract and hierarchical modeling of assemblies. Composite objects

which model complex entities are designed in a top-down way, by decomposing them, gradually, into a set

of smaller parts. On the one hand, this enables each of these parts to become a potential component which

can itself be reused for the modeling of other composite objects. On the other hand, it allows the reuse of

existing components for the modeling of some parts of the composite object. Moreover, complex

assemblies, once represented as a unique abstract entity by a composite object, can be easily reused as

components for building larger assemblies in a bottom-up way [3, 24, 27, 28].

Figure 1 depicts such a composite object class, HeatingSystem, which models electric heating installations — as

for a building CAD application. A heating system is composed of radiators, of a clock and of two thermostats.

These thermostats, situated in some central place, allow the ambient temperature of the building to be controlled

according to a day / night cycle determined by the clock. A radiator is itself a composite object composed of a

heating element and a switch, allowing the radiator to be turned on and off. A radiator can optionally have a

thermostat which allows the temperature of the room to be individually set.

Heating
System

Radiator

Thermostat HeatingElement

+theThermostats
["Day","N ight"]

1

+theThermostat

0..1

+theRadiators
1..*

- theHeatingElement
1

0..1

0..10..1{or}

Switch

0..1

+theSwitch
1

0..1

Clock

+theClock
1

 Figure 1 :  Example of a composite class modeling heating systems

2-2. Modeling the behavior of composite objects

Whereas a lot of research work studies composite objects from a structural point of view, the behavior of

composite objects gets little attention. Yet, modeling the behavior of composite objects requires adapted means

to achieve contradictory goals: design behavior of the composite object as a whole, by combining the individual

behaviors of its components, while preserving the reusability of each component. Models used to design the

behavior of composite objects should have two fundamental qualities:

- a low coupling of components, in order to be able to reuse them in different contexts. The contextual

information related to the use of a component in a particular composite object must be located in the

composite object itself, as a natural representation of the context. This principle maintains the independence

of components [3, 21] by preventing specific information from polluting their generic definition and

diminish their reuse potential.

- an abstract definition of the behavior of the assembly. From a structural point of view, a composite

object represents a component assembly as a single abstract entity, making its management and reuse

easier. In other words, building a composite object results in creating a higher abstraction level which

enables the complexity of object structures to be reduced. Such an abstraction mechanism must be provided

for behavior as it already is for structures, in order to express the behavior of composite objects as simply
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as possible and make the reuse of composite object behavior designs effective, when using them to build

hierarchically higher composite objects.

With respect to this analysis, the following paragraph studies how classical object-oriented design methods

manage the modeling of composite object behavior.

2-3. Composite object behavior modeling capabilities of classical object-oriented design methods

2-3-1. Low coupling of components

Classical object-oriented design methods, such as those using the UML standard modeling language, do not

provide any specific concept for the design of the behavior of composite objects. The behavior of a composite

object must therefore be designed by the means of a simple set of cooperating objects. In this context, the main

task of the architect is to choose a cooperation pattern that allows composite objects to control the behavior of

their components (execution of functionalities, state changes) in order to define and manage the behavior of the

whole. These cooperation patterns are not specific to composite objects nor to a given design method or

language. All of them — except event notification — can be represented, to some extent, in UML, thanks to

statecharts. The most noteworthy cooperation patterns are:

- delegation. This pattern consists in designing a component in such a way that it invokes determined

functionalities of the composite objet to which it belongs in order to delegate to it the handling of the global

side effects of the execution of its own functionalities. This simple pattern entails that components know

the exact type of composite objects to which they can belong, because of the explicit invocation of some of

their functionalities. Such contextual information pollutes the generic definition of a component and

prevents him from being reused by other unforeseen types of composite objects.

- event notification (presented in [10] as the Observer pattern). This popular pattern consists in designing a

component in such a way that it notifies observers — in this case, the composite objects to which it belongs

— of interesting situations — such as state changes — by firing abstract events. Thus, components do not

need to have any knowledge about how composite objects will manage their behavior. This strongly

isolates the design of components from the design of composite objects. However, component designers

must foresee what will be the possible uses of this component in order to design a set of events that will

enable the management of the component. This can result in limitations in the reuse of components if this

set of events is not suitable for a specific, unforeseen role of the component in a potential composite object.

- master-slave model. This pattern consists in encapsulating all the components of a composite objet inside

it. The composite object then has a total control of the behavior of its components (its is the only object

which can send messages to them) and does not need to be warned of what they are doing, to manage the

behavior of the whole, anymore. Thus, components can have context-free designs, like isolated objects'

have. Nonetheless, a master-slave model hampers some qualities of the object structures modeled with

composite objets. As components are no more visible, the double view of a composite object, both as an

abstract entity and as a detailed structure is no more available. The dynamic, hierarchical structure of a

composite object is replaced and poorly reflected by the flat, monolithic and static amount of information

provided by the sole composite object interface [3]. Moreover, component sharing is no more possible.

- - active behaviors. This pattern consist in designing the behavior of a composite object in such a way that

it monitors a set of special situations about its components to which it must react in order to manage its

global behavior. To our opinion, this pattern is the most adapted to the design of the behavior of composite

objects, for it provides a way to specify how the integration of the behavior of a component is managed,

without any requirement in the design of this component, while preserving the component visibility. Such a

design of the behavior of a Radiator composite object is presented on Figure 2. Active behaviors are

expressed thanks to change events on transitions [29] which depicts how a Radiator composite object

monitors certain state changes in its components and reacts to their occurrences by provoking subsequent

state changes to other components in order to combine their behaviors and obtain a global coherent state.

For example, when it is in the state SwitchOff, a Radiator composite object monitors the state of its Switch

component in order to detect when it is switched on — as specified by the change event defined by the

label when theSwitch in On on the outgoing transition. When this state change occurs, the transition fires

and may result in a coordinated state change of the HeatingElement component, depending on the state of

the Thermostat component, thanks to the message sending specified in the actions of the transition.

The above discussion shows that a low level of coupling can be reached in the design of composite object

behaviors, provided an adapted cooperation pattern is chosen to manage the interactions between the composite

object and its components, such as active behaviors.
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2-3-2. Abstracting the behavior of a composite object

Whereas coupling is a general issue in object-oriented design that can be solved by applying existing pattern

with standard notations, abstraction is a specific property of composite objects that distinguish them from flat

object systems. Due to the lack of specific notations or concepts, the behavior of a composite object must be

designed as the behavior of a system of objects. Thus, the statechart of a composite object is described as a mere

juxtaposition of its own statechart to the statecharts of its components (see Figure 2). At each time, the state of

the composite object is defined as the product of the active state in each of these diagrams. Coherent

combinations of states are obtained by specifying how state changes are synchronized by sending messages

between objects. The actual states of a composite object are never explicitly defined: they are calculated by

simulating the running of the statemachines into which the statecharts map (through message sendings and

transition firings). Designing the behavior of a composite object can thus be compared to designing a complex

state, like the Live state in Figure 2, by decomposing it into different concurrent regions. However, unlike the

states of a single statechart, different statecharts, describing the behavior of different objects, cannot be

composed into a single one.

Such behavior specification does not provide any kind of abstraction — i.e. complexity reduction — of the

behavior of a composite object. It cannot be reused to design a more complex object without leading to an

unmanageable explosion in the number of states and coordinated state change predictions. Moreover, there is no

suitable solution to managing the dynamic structure of composite objects (components being added or removed)

and its impact on its behavior. The only practical solution is to provide a separate state diagram for each different

configuration of a composite object. It results in a set of behavior diagrams for which no formal structure or

management concepts are provided.

These important limitations of the modeling languages of classical object-oriented methods, regarding composite

object behavior abstraction, motivate the proposition for better adapted solutions. In the following section, we

present COBALT, which is our solution to this problem.

 Figure 2 :  Statechart diagram of the composite class Radiator
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3. Another approach for modeling the behavior of component assemblies with

statecharts.

As in CATALYSIS [7], we worked on a specific component-based development process, called COBALT [31, 32],

which introduces modifications and extensions to the UML notation in order to provide an efficient support for

designing and reusing components. But, whereas CATALYSIS promotes a connector-based approach, in which

inter-object collaborations are modeled as first-class, reusable design elements, COBALT promotes a complex-

component-based approach in which component assemblies are explicitly modeled by composite objects. For

this purpose, COBALT uses a variant of statechart diagrams whose semantics is adapted to the modeling of

composite object behavior.

3-1. Statechart semantics and notation in COBALT

UML, as a generic modeling language, proposes a rich notation for describing statecharts, which provides them

with a versatile semantics that can be adapted to many kinds of behavior designs [31]. On the contrary,

COBALT’s statecharts have a precise semantics and a single purpose: designing the dynamic behavior of objects

— i.e. the set of states in which an object can be and the set of transitions that are possible between these states,

defining the different possible life-cycles of this object. Figure 3 presents the statechart diagram of the composite

class Radiator, as defined in COBALT with respect to the principles defined afterwards.

 Figure 3 :  Statechart diagram of the composite class Radiator in COBALT

In COBALT, as in some other work [6, 1, 26], states represent the different behavior modes of an object. Each

state models a set of concrete values of the object for which it has some specific behavior. The set of the states of

an object is therefore partitioning its different values with regards to the different distinct behaviors they

condition. A set is thus only representing an abstract set of concrete values of an object and not the execution of

any activities or actions (no use of activities or actions in the description of states). In the same way, a transition

only represents the evolution of the state of an object as a result of the execution of a functionality. Transitions

do not carry any functional information describing how functionalities are executed (no more actions are

associated with transitions). Only the functionalities that really modify the state of the object are relevant for the

definition of the statechart (no more internal transitions). Therefore, a statechart does not specify the protocol of

an object any more (the sequences of function calls which are valid for the object). In COBALT, the protocol is

defined on the functional view of the behavior of an object [31, 32] — on which the detailed execution of each

functionality is specified — in order to make statechart specification simpler and to keep dynamic and functional

behavior specifications separated. Transitions are triggered by a unique kind of events that signals the end of the

execution of functionalities. These events are defined by the keyword after (initially used in UML to signal

temporal events) followed by the signature of the functionality. The guard which is associated with the transition
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is used to measure the effects of the execution of the functionality on the concrete state of the object (the values

of its attributes) in order to determine if a transition was crossed and a new abstract state reached.

The statechart diagram of a composite object models the global behavior of the component assembly that it

represents. Each state of this diagram is an abstraction of a set of values of the composite object and its

components that identifies a specific way the composite object behaves as a whole. Thus, the state of a

composite object evolves as defined by its statechart diagram, not only when the own value of the composite

object is modified, but also when the value of one of its components is modified. In this letter case, the state

change of the composite object is modeled by a transition triggered by the end of the execution of a functionality

of a component. This event is specified by prefixing the signature of the executed functionality with a

composition path that uniquely identifies the concerned component [3].

3-2. Hierarchical statecharts of composite objects.

As in UML, COBALT’s statecharts are hierarchic : they allow statecharts to be constructed by refining states into

sets of nested sub-states. When designing the behavior of a composite object, this feature is used in a specific

way in order to express the special kind of state changes that come from the dynamic structure evolution of a

composite object, in order to specify how the behavior of a composite object is modified when a component is

added or removed. To this matter, states at the highest nesting level are given a special role : they model the

different kind of configurations of the composite object, meaning the different sets of components for which the

composite object has notably different behaviors. For instance, the statechart diagram of the composite class

Radiator is defined at its highest level by the WithoutThermostat and WithThermostat states (cf. Figure 3).

Such states are called the configuration-states of the composite object. They are linked by transitions triggered

by the execution of the functionalities which carry out structural manipulations (addition or removal of  a

component) to get from a remarkable configuration to another remarkable configuration. The configuration

which is associated with a configuration-state can be explicitly defined in a configuration diagram. A

configuration diagram is drawn as a zoomed state which contains an object diagram depicting the configuration

of the composite object in this state. For instance, the configuration diagram on Figure 4 describes the

configuration of a Radiator composite object when it is in the WithoutThermostat configuration-state.

WithoutThermostat

:Radiator

:HeatingElement

-theHeatingElement

:Switch

+theSwitch

 Figure 4 :  Configuration diagram associated with the WithoutThermostat configuration-state

Each configuration-state is further decomposed in a classical way, by nesting statecharts which describe the

behavior of the composite object in each configuration (cf. Figure 3).

The configuration-state concept allows statecharts of composite objects to be rationally constructed. The

dynamic behavior of a composite object can be expressed as a unique statechart which integrates in a uniform

way every kind of state changes that a composite object may experience. Configuration changes are stable

elements in the evolution of the state of a composite object, in comparison with evolutions entailed by value

changes of a composite object and its components. Moreover, a configuration change generally entails a more

global and drastic variation in the behavior of a composite object than a simple value change. Thus,

configuration-states are ideally positioned at the highest abstraction level of a statechart. They improve the

hierarchical organization of the statechart of a composite object by partitioning its behavior in a priori radically

distinct categories.

3-3. Composition of a composite object state diagram with those of its components

The notations we have introduced so far do not allow to specify which component state combination is

represented by each state from the composite object statechart. For this purpose, COBALT introduces a new type

of diagram, named state hierarchization diagram, which complements the statechart. A state hierarchization

diagram shows a zoomed-in representation of a state of the composite object which describes, in nested boxes,

the combination of component states defining a given state of the composite object.
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WithThermostat::Live::TurnedOn::Hot

Radiator

theSwitch

On Triggered

theThermostat

theHeatingElement

Hot

 Figure 5 :  Specification of the state WithThermostat::Live::TurnedOn::Hot of a Radiator composite object

For example, the state hierarchization diagram showed on Figure 5 specifies that the state

WithThermostat::Live::TurnedOn::Hot of an instance of the composite class Radiator is obtained by the

combination of states On, Triggered and Hot of its Switch, Thermostat and HeatingElement components. This

form of nesting is different from the state nesting that can be obtained with the classical statechart

hierarchization. Our state hierarchization diagrams do not decompose a given object's state (in this case a given

composite object's state) into sub-diagrams containing sub-states of this given object. On the contrary, they

express a combination between a state of a composite object and states of other objects (namely, its

components).

The most classical combination of component states described by state hierarchization diagrams is the one

represented on Figure 5. It consists of the conjunction of a set of states of the composite object's components

(AND logical operator). It is represented by the simple juxtaposition of the concerned states. The composite

object’s components, the state of which does not appear on the state hierarchization diagram, can be in any

possible state. We also propose notations allowing to express on state hirarchization diagrams whatever logical

combination that can be made with states linked with OR, AND or NOT operators [31, 32]. The main advantage of

state hierarchization diagrams is to define the desired state combinations between the composite object and its

components :

- explicitely. The combinations can directly be read from the diagrams.

- declaratively. Neither the statechart diagram nor its associated state hierarchization diagrams concretely

define how the combination of states is obtained. It is the responsibility of the functional view of behavior

to define the successions of executions of functionalities of the composite object and of its components

which cause the desired combinations.

Consequently, state hierarchization diagrams resembles other notions presented in research work that

declaratively define state synchronization constraints between a composite object and its components [18, 24].

The set of state hierarchization diagrams associated with the specification of the dynamic behavior of a

composite class can be analyzed as a set of state synchronization constraints that must be satisfied during the

whole lifecycles of these objects. Despite this similarity, the state hierarchization diagram concept is much more

adapted to the semantic specificity of composite objects than its generic counterpart. Unlike a simple constraint

between the states of a set of related objects, a state hierarchization diagram defines how a composite object's

state is decomposed into a combination of its components' states. State hierarchization diagrams therefore

establish a composition hierarchy among states parallel to the composition hierarchy among objects. It provides

designers with an abstraction mechanism that is adapted for modeling the behavior of composite objects.

3-4. Usage and benefits of COBALT’s statecharts

One of the main goals of COBALT is to allow the specifications of the behavior of a composite object to be

constructed by composing the specifications of its components, as structural notations allow a composite object

to be described as being composed of other objects. The specific semantics and notations that were introduced

above for statecharts achieve this goal for specifying the dynamic behavior of composite objects
1
. The dynamic

behavior of a composite object can be expressed on a unique statechart diagram partly composed of elements

from the statecharts of its components. Indeed, the states of a composite object are defined as composed of states

of its components. In the same way, the set of transitions between these states is partly composed of transitions

triggered by the execution of functionalities of components which mirrors actual transitions in the statecharts of

these components. The abstraction capabilities of composite objects are thus preserved on the behavioral view of

their specifications. The behavior specification of composite objects can therefore be profitably used to manage

the reuse process of composite objects. The increasing complexity of the objects that are built through successive

1
 Besides, we also provide in COBALT such extensions for specifying the functional behavior of composite objects, in order to

allow the functionalities of a composite object to be defined as a dynamic and declarative composition of the functionalities

of its components [31, 32].
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compositions is then balanced by an increased abstraction level, which keeps the specifications of composite

objects simple and usable.

Besides, in classical object-oriented design methods, statecharts are mainly constructed bottom-up, to sum up the

scattered functional behaviors contained in the interaction diagrams resulting from the refinement of use cases.

To our opinion, the design process of a component should be inversely carried out — i.e. mainly in a top-down

way — because a component is not designed to satisfy the specific requirements of an application but to

generically model a concept. This reflection about the intrinsic nature of a component need to be captured on a

global and abstract view of its behavior which provide a starting point to be refined into complete detailed

behavior specifications. The modal and declarative semantics of our statecharts are suitable for this use. They

provide simple, yet comprehensive and formal view of the behavior evolution of an object over its different life-

cycles. Once established, a statechart is used as a basis to design the detailed execution of its functionnalities.

Indeed, the set of states on a statechart draws a synthetic view of the different situations to be handled by

distinctive behaviors of the functionalities (modal behaviors). In the same way, the transitions of a statechart

establish a cause-to-effect link between the execution of given functionalities and state changes which provide

designers with pre-conditions (source states) and post-conditions (target states) that can help the design of

functionalities and allow their specifications to be checked.

The precise semantics of our statecharts allows their interpretation to be fully automated [31]. Beyond their

prevalent role in the conceptual steps of component development, statecharts can thus also be used in a concrete

way by CASE tools to simulate the behaviors of object assemblies upon their specification, in order to verify their

consistency. In the same way, statecharts can be used during the coding phase to automatically generate the code

that manages the state changes of objects and the different modes of their functionalities (thanks to a metaobject

protocol implementing an extension of the STATE pattern [10,31]).

Once a component is designed and implemented, its statecharts plays a preponderant role in its selection for

reuse. The role of a statechart for the dynamic behavior of an object can be compared to the role of the interface

for the functional behavior of this object. It provides designers with an abstract view of the dynamic behavior of

an object that enables its conformance to requirements to be finely analyzed [13]. Indeed, pure syntactic

conformance — i.e. the matching of the signatures of functionalities — cannot ensure more than a “mechanical”

compatibility. Statecharts convey enough semantics to check if a component provides a really conformant

behavior — i.e. if a given sequence of function calls entails a given sequence of states so that the component can

meet the state combinations required to be coherently used in the assembly. After the component is selected, its

statechart is used to compose the statechart of the composite object that models the assembly. Then, the

statechart of the composite object will be used as a basis for the design of the detailed behavior of the assembly

and finally for the automatic code generation the code that implements the management of its behavior.

4. Conclusion and perspectives

This paper presents some of the main features of the COBALT component-based development method. This

method lies on the representation of component assemblies as composite objects. In COBALT, we proposes a

solution to overcome the lack of abstraction of UML statechart diagrams in order to be able to veritably compose

the statechart diagram of a composite object from those of its components. The dynamic behavior definition of a

component assembly can therefore benefit from the composite object concept in terms of modeling, management

and reuse, in the same way as its structure does. We therefore believe that statechart diagrams, as they are

specified in COBALT, can play a central role, not only in the design but also in the coding of a component

assembly. For this purpose, we also have proposed an implementation model that enables a direct mapping of a

graphic behavior specification into a coding structure that can be implemented into whatever classical object-

oriented language. As a perspective and inspired by the JAVABEANS component model [30], we plan to further

explore these concepts in order to provide designers with a conceptual view of component behaviors from which

he/she can intuitively and declaratively build most of the behavior of an assembly. This conceptual view,

described in the JAVABEANS model by the set of events components can emit, would be, in our case, described

by the component statechart diagrams.
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