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Abstract

Complex and long-lived software need to be upgraded

at runtime. Replacing a software component with a newer

version is the basic evolution operation that has to be sup-

ported. It is error-prone as it is difficult to guarantee the

preservation of functionalities and quality. Few existing

work on ADLs fully support a component replacement pro-

cess from its description to its test and validation. The main

idea of this work is to have software architecture evolution

dynamically driven by connectors (the software glue be-

tween components). It proposes a connector model which

autonomically handle the reconfiguration of connections in

architectures in order to support the versioning of compo-

nents in a gradual, transparent and testable manner. Hence,

the system has the choice to commit the evolution after a

successful test phase of the software or rollback to the pre-

vious state.

1 Introduction

The role of software architectures in software engineer-

ing becomes increasingly important and widespread [4].

Software architectures model the structure and behavior of

systems. Architecture description languages (ADLs) [7] are

not solely used during the design steps of the development

process anymore, but also at runtime after deployment, to

manage the evolution of application architectures. How-

ever, most ADLs do not fully support the evolution pro-

cess of software systems. Software evolution is the pro-

cess to change a software system from some version to a

newer version. It consists in adding, deleting and replac-

ing software components or connectors. Replacing a soft-

ware component with one of its newer versions is the basic

evolution operation that has to be supported. It is also the

simplest and the more frequently used to improve software

functionality, performance or reliability. However, compo-

nent upgrading is an error-prone operation as it is difficult

to guarantee (at least) the preservation of the functionality

and quality. Some validation process should secure com-

ponent upgrading to avoid errors or regressions to be intro-

duced by the new component version new version. Evo-

lution mechanisms are provided in the main representative

ADLs [8, 15, 16] to deal with component replacement in

software architectures. However, existing works only pro-

pose limited support for evolution control that increases the

chances for successful dynamic evolution. This paper con-

siders applying an autonomic approach to manage and con-

trol evolution at runtime. A connector model is proposed

which embeds the intelligence necessary to monitor and

drive architecture modifications: we talk about connector-

driven architecture evolution. Connectors are internally de-

signed as expendable and reconfigurable component assem-

blies, able to manage various evolution concerns, depending

on the requirements. A first application of these connec-

tors is presented here: gradual evolution of assemblies in

which new component versions are transparently tested be-

fore they effectively replace older ones.

The remaining of this paper is organized as follows. Sec-

tion 2 defines the context of this research and spans exist-

ing related work. Section 3 specifies our objectives and de-

scribes the illustrative example we use throughout the pa-

per. Section 4 describes our intelligent connector model and

shows how it is component version evolution. Section 5 de-

tails our connector-driven gradual evolution process. Sec-

tion 6 briefly describes the implementation of our model as

an extension of the Julia implementation of the Fractal com-

ponent model while Sect. 7 concludes with future work di-

rections.

2 Context and related works

To develop a connector-driven gradual and dynamic evo-

lution process requires an understanding of existing ADLs

that support dynamic evolution and connector modelings.

2.1 Software evolution: definitions

Lehman [5] defines software evolution as the collection

of all programming activities intended to generate a new



architecture SimpleExample is

conceptual components

BikeGUI; Session;

connectors

connector login is message filter no filtering;

architectual topology

connector login connections

top ports BikeGUI;

bottom ports Session;

end SimpleExample;

system SimpleExample 1 is

architecture SimpleExample with

BikeGUI instance Basket1;

Session instance Vendor;

end SimpleExample 1;

Figure 1. Sample architecture (left) and a conforming configuration (right) described using C2

version of some software from an older operational version.

If these activities can be performed at runtime without the

need for system recompilation or restart, evolution is called

dynamic software evolution.

An explicit architectural view can enhance flexibility of

software evolution. The software architecture of a program

or computing system defines the structure of the system,

which comprise software component types and connector

types, the externally visible properties of those compo-

nent types and connector types and the relationships among

them [1]. Architectural configurations are connected graphs

of concrete components (instanciated component types) and

concrete connectors (instanciated connector types) that con-

form to the architectural structure [9]. Figure 1 provides an

example of both an architecture and a conforming configu-

ration using the syntax of the C2 ADL [10].

Existing work propose various typologies for evolution

[2, 6], some of which we are going to use to precise which

evolution is supportedin this paper . Dynamic software evo-

lution may affect component or connector types at the ar-

chitecture level or component or connector instances at the

configuration level [9]. More precisely, component instance

evolution potentially affects four elements of components:

their name, interface, behavior protocols or implementation

(as described by Palsberg and Schwartzbach [13]). Some-

times several of these elements can be simultaneously af-

fected during evolution. Thus, rules that constrain valid

evolution transitions migth concern several elements. For

example, behavioral conformance allows any class to be a

subtype of another if it preserves the interface and behavior

protocol of all methods defined in the supertype. Lientz and

Swanson [6] provide an orthogonal classification of evolu-

tion based on the reason that motivates the evolution. They

identify three purpose-oriented evolution categories:

• corrective evolution, where the new version corrects

errors / bugs identified in the old one,

• perfective evolution where the code of a component

is evolved to improve non-functional attributes of the

software (such as time performance),

• adaptive evolution where components are adapted (or

extended) to meet changes in their environment or in

requirements on the software.

2.2 Dynamic evolution in existing ADLs

Few ADLs focus on supporting dynamic software evo-

lution. Three representative approaches specify dynamic

evolution in an ADL by providing a dedicated mechanism:

decomposition and composition in ArchWare [11], an Ar-

chitecture Modification Language (AML) in C2 [12] or the

use of multi-version connectors in MAE [15]. ArchWare

uses hyper code to examine the coherence of new config-

uration and implements evolution by decomposing the tar-

geted configuration and then composing the new configura-

tion. However, it focuses on configuration evolution and do

not provide support for component substitution. In C2, an

AML is proposed to manage configuration evolutions and to

check their consistence. Component substitutions are con-

trolled thanks to a subtype relationship [13] based on com-

ponent specifications. However, it lacks to test the actual

implementation of the new component. Cook and Dage [3]

propose arbiters to run conjointly multiple versions of com-

ponents that are transparently perceived by the rest of the

system as single components. This approach is also pro-

posed by MAE but uses connectors instead of arbiters. How-

ever, these two latter approaches aims at keeping old ver-

sions along with newer ones in the system for downward

compatibility. The system thus grows in complexity and

size. This is not suitable for a long-term, scalable solution,

in which newer versions aim at replacing older ones after an

interim test period.

The above representative ADLs contain useful insights for

evolution, but they fail to account for several pertinent is-

sues. There is: (1) no gradual process to ensure safe dy-

namic evolution, (2) no test of the actual implementation of

the new component (functions might not be able to execute

properly), (3) no mechanism to deal with system recovery

when evolution fails.

Connectors bind components together and act as media-



Figure 2. Example of basket evolution configuration comparison

tors [17]. As they clearly separate concerns of component

computation and inter-component communication, they can

be designed to meet non-functional requirement of system,

such as evolution by reconfiguring the connection between

components to realize their adding, deleting and replacing.

3 Goals and illustrative example

The example of a bike rental system illustrates the con-

cepts of our evolution process throughout the paper (cf.

Fig. 2). In this example, the Vendor component manages

the user interface. It cooperates with the Basket component

which handles user commands. The Basket component co-

operates with the User, BikeTrip and Account components

respectively to identify the user, check the balance of its ac-

count, assign an available bike and finally calculate the price

of the trip when the bike is returned. Component BikeTrip

manages the courses for each bike and each user and is de-

signed to retrieve the location and calculate the distance be-

tween departure and arrival point.

The evolution objective is to replace the version 1 of the

Basket component by its version 2. It implies chang-

ing the architecture from the original architecture repre-

sented on Fig. 2(a) to the target architecture represented on

Fig. 2(c). Evolution concerns the return provided interface

and its purpose is corrective. Contrary to most evolution

approaches, we propose to deploy a transition architecture

(cf. Fig. 2(b)) to smoothly switch from an architecture to an-

other through a test period.

4 Intelligent connector model

In this section, our definition of the conceptual models

of component architectures and connectors are presented.

In our models, a software configuration is defined as a col-

lection of components and connectors which are contained

in and managed by a container. These architectural enti-

ties are composed of core and extension elements. Core

elements consist of classes which describe the basic, invari-

able part of the different kinds of architectural entities, i.e.

their functional concerns. Extension elements are added to

architectural entities in order to support the non-functional

concerns which apply specifically, depending on the man-

agement policies defined by ADL descriptors, regarding for

instance the dynamic evolution of components. Extension

elements consist of meta-objects, Controllers and Control

interfaces, that are added to the definition of components to

modify and control their behavior. Figure 3 shows the class

model of architectural elements.

Figure 3. Class model of intelligent connector

A container is a core architectural element that encapsu-

lates a set of connectors and components which describe a

system as an assembly. It is extended by an evolution man-

ager which manages the evolution of the its inner compo-

nents and evaluates the feedback from its inner connectors.

A Component has a name, a set of interface elements, an

associated behavior protocol and an implementation as its

minimal core requirements. Components should not com-

municate directly by referencing each other. Instead, they

should use connectors. This minimizes coupling between



components and enables binding decisions to change with-

out requiring component modification. Components are ex-

tended by StateTrace controllers. A StateTrace controller

keeps track of the component states each time the compo-

nent is modified. Its purpose is to recover from a failure and

put back the component into a sound state to prevent system

breakdown.

Connectors govern communication between components.

Its core is composed by interfaces, glues and properties.

Interfaces can be of two types: required or provided. Glues

define the protocols of connection and interaction between

connectors and components. Properties are non-functional

attributes of connectors: they record version and type infor-

mation. Connectors are extended in order to manage and

control the evolution of each connected component, control

the dataflow between components and collect test samples

of component inputs and outputs. The extension of connec-

tors consists of three controllers: the connector controller,

the dataflow controller and the time controller. The con-

nector controller controls evolution procedures for the con-

nected components. The dataflow controller controls the

dataflow that traverses the connector and records messages

from each connected component to compare them in case

evolution is declared to be corrective. The time controller

records input and output time of each message that traverses

the connector to compare them in case evolution is declared

to be perfective.

These controllers are structured into three levels. Evolu-

tion manager is a top-level controller that controls the en-

tire configuration evolution process by managing connec-

tors and components. Connector controllers and stateTrace

controllers separately control local evolution actions of re-

spectively on connectors and components. Dataflow and

time controllers are third level controllers that are used by

Connector controllers to control and collect data on connec-

tors.

5 Protocols of evolution

The main idea exposed in this paper is to get the orig-

inal configuration evolve to a target configuration through

a transition step. The transition configuration aims to test

new component versions and either validate the evolution

or invalidate it to return to the original state. To achieve

this, we propose a four step evolution process controlled by

an evolution manager:

1. Preparation stage to collect evolution description and

deploy new component versions (connecting new com-

ponent versions).

2. Test stage to collect observations from original and

new component versions and determine if the new ver-

sions meet the requirements induced by the declared

purpose of evolution.

3. Observation stage to maintain original component ver-

sions as backup in case new versions cause failures.

4. Abandonment stage to enact changes (disconnect the

now useless original versions).

Each stage obeys two protocols: evolution and validation

protocols. Evolution protocols define how connectors real-

ize each evolution stage. Validation protocols are designed

to examine the validation of activities in each stage.

5.1 Preparation Stage

Preparation is a vital aspect of the evolution process. Its

objective is to change the original configuration into the

transition configuration by collecting and deploying evolu-

tion descriptions.

Evolution description must define what to evolve and how.

What to evolve refers to (1) references of old and new com-

ponent versions, (2) interfaces changed and their change

purpose (corrective or perfective), and (3) change test con-

dition for corrective evolution. How to evolve refers the

number of collected samples that are to be used during tests.

In the example of Fig. 2, the return interface of Basket is

modified in the new version for corrective evolution pur-

poses: if type of bike is tandem then price is twice the nor-

mal price.

Secondly, the evolution manager deploys evolution descrip-

tions according two connector groups: changed group and

unchanged group. Changed group contains connectors

which connect to changed interfaces like rent, return and

selectBike. These connectors drive the evolution process.

Unchanged group contains all other connectors like login,

pay, etc.

At the validation step, the evolution manager collects feed-

back from all connectors. If all connectors connect success-

fully with new component version, the evolution process

passes to next stage.

5.2 Test Stage

The test stage aims at examining the behavior of com-

ponent new versions according to their evolution purposes.

Test stage thus involves collecting observations on compo-

nent new versions in connectors and evaluating these obser-

vation in the evolution manager. Measurements are decom-

posed into to two sub-stages: offline and online test.

Offline test is focused on the functioning of the new ver-

sion, keeping it transparent to the rest of the system. Old

version is dominant, which means that connectors just prop-

agate old version’s results to the rest of system, while new



Table 1. Offline and online data collected by controllers.

Controllers Provided interface evolution Required interface evolution

Dataflow Controller (DC) (method, input, outputOld, outputNew) (method, inputOld, inputNew, output)

Time Controller (TC) (method, inputTimeOld, outputTimeOld, inputTimeNew, outputTimeNew)

version is insulated from the system. Online test aims at

adapting the system to new versions. As this entails risks of

system failures, a state-trace mode is activated. All compo-

nents’ StateTrace controllers record the state modification

of each component. When critical errors happen, the sys-

tem rolls back to its previous safe state, as every component

rolls back to its previous safe state.

Each test of a changed interface is controlled by the con-

nector which connects with this interface. This includes

dataflow control and data collection. Thus, according to

the direction of interface (provided or required), test and

evaluation behave differently. For instance (see Fig. 4), the

Basket rent (P1) interface illustrates provided interface evo-

lution, and its returnBike (R1) interface illustrates required

interface evolution.

Provided interface evolution has either a corrective or per-

Figure 4. Net response time

fective purpose. The return connector (cf. Fig. 4) collects

test data and controls the evolution of the return interface

of the Basket component. During offline test, component

Basket1 is dominant. The dataflow controller of the return

connector distributes incoming calls to two versions, while

all connectors block outgoing calls from Basket2 to keep it

transparent to system. During online test, the situation is

reversed: Basket2 becomes dominant. The collected data

elements are listed in Table 1.

Required interface evolution has a corrective purpose. The

returnBike connector in Fig. 4 collects test data and controls

the evolution of thereturnBike interface of the Basket com-

ponent. During offline test, the dataflow controller of the

returnBike connector blocks Basket2 incomings and let pass

Basket1 incomings. The outgoings of the BikeTrip compo-

nent are sent to the two versions of Basket. During online

test, the dataflow controller reverses the situation to make

the new version (Basket2) become the dominant.

To evaluate a new version, observations encompasses var-

ious data, ranging from dataflow (corrective evolution) to

execution times (perfective evolution) as listed in Table 1.

The dataflow controller is in charge of collecting input and

output data. The time controller is responsible for collect-

ing time for each input and output.

The evaluation of observations is handled by the evolution

manager which collects all the observations from connec-

tors. For corrective evolution, the new version must meets

its predefined evolution condition. For perfective evolution,

the new version must execute faster than the old version.

Performance is calculated upon the net response times of

components, Tresponse = Tgo + Tback (see Fig. 4). This

means that the execution times of the functions called on

other components is deducted from the observable response

time of the component. After the new version passes the of-

fline and online evaluation, the evolution process proceeds

to the next stage.

5.3 Observation Stage

Observation stage is another feature used to further se-

cure evolution. In this stage, the old version remains in the

system, but only as a backup (it is not active anymore). The

system is still in a state-trace mode. If a failure arises, the

old version will be activated to replace the new version to

roll back to the system to its previous sound state.

5.4 Abandonment Stage

Finally, the evolution manager either commits or aban-

dons evolution. The unused version is disconnected and

uninstalled.

6 Implementation in the Fractal component

model

Our model is implemented as an extension of Julia, an

open-source java implementation of the Fractal component

model1. Fractal components are managed by controllers

contained in the membrane of components. It thus was

straightforward to adapt our model to this implementation.

First, we added an element-type controller to specialize

Fractal components into three sub-types — components,

connectors and container. Then, we added specific con-

trollers (as described in Sect. 4) to the adequate sub-type.

The evolution manager implements controls evolution

1http://www.objectweb.org



through two mains functions. The connect function au-

tomatically generates a suitable connector and uses it to

connect given components. The cmpEvol function triggers

component version evolution: its parameters define the old

and new component versions, the set of interfaces that are

impacted by the change and the purpose of the evolution.

Figure 5 shows a code sample that uses these functions.

// connect aComp to cComp1

Fractal.getEvolutionManager(container).

connect (aComp, "r", cComp1, "f");

// evolve component cComp1 to cComp2

// (corrective evolution)

Fractal.getEvolutionManager(container).

cmpEvol (cComp1, "f",

cComp2, "corrective",

"if(m.equal("bike")) rent(m)=1;");

Figure 5. Using the evolution manager

7 Conclusion and Perspectives

This paper presents and illustrates our connector-driven

gradual and dynamic software assembly evolution process.

Few existing ADLs fully support component replacement

evolution process from its description to its test and vali-

dation. These ADLs do not support either component sub-

stitution, or any test phase, or the complexity induced by

multi-version components. The evolution process proposed

in this paper is a gradual, testable, transparent, repairable

and spans the whole evolution process. It relies on a connec-

tor model that embeds the necessary intelligence to monitor

and drive architectural configuration modifications.

Perspectives for this work are numerous. First, we plan

to use the same evolution process to fully manage con-

figuration evolution: component addition or suppression

could benefit from an interim configuration as we propose.

We also plan to tackle the “architecture drift” [14] prob-

lem which is a crucial coherence problem after architectural

configuration evolution.
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