
HAL Id: hal-00365104
https://hal.science/hal-00365104

Submitted on 2 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connector-driven process for the gradual evolution of
component-based software

Huaxi Yulin Zhang, Christelle Urtado, Sylvain Vauttier

To cite this version:
Huaxi Yulin Zhang, Christelle Urtado, Sylvain Vauttier. Connector-driven process for the gradual evo-
lution of component-based software. 20th Australian Software Engineering Conference (ASWEC2009),
Apr 2009, Gold Coast, Australia. pp.10. �hal-00365104�

https://hal.science/hal-00365104
https://hal.archives-ouvertes.fr


Connector-driven process for the gradual evolution of component-based software

Huaxi (Yulin) Zhang, Christelle Urtado, Sylvain Vauttier

LGI2P / Ecole des Mines d’Alès

Parc scientifique G. Besse - F30035 Nı̂mes cedex - France

{Huaxi.Zhang, Christelle.Urtado, Sylvain.Vauttier}@ema.fr

Abstract

Large, complex and long-lived software need to be up-

graded at runtime. Addition, removal and replacement of a

software component are the elementary evolution operations

that have to be supported. Yet, dynamic changes are error-

prone as it is difficult to guarantee that the new system

will still work and that all functionalities and quality are

preserved. Few existing work on ADLs fully support com-

ponent addition, removal and substitution processes from

their description to their test and validation. The main

idea of this work is to have software architecture evolution

dynamically driven by connectors (the software glue between

components). It proposes a connector model which embeds

the necessary mechanisms to do so. These connectors au-

tonomically handle the reconfiguration of connections in

architectures in order to support the addition, removal and

substitution of components in a gradual, transparent and

testable manner. Hence, the system has the choice to commit

the evolution after a successful test phase of the software or

rollback to the previous state.

1. Introduction

The role of software architectures in software engineer-

ing becomes increasingly important and widespread [1].

Software architectures model the structure and behavior of

systems. Architecture description languages (ADLs) [2] are

not solely used during the design steps of the development

process anymore, but also at runtime after deployment, to

manage the evolution of application architecture. However,

most ADLs do not fully support the evolution process of soft-

ware systems. Software evolution is the process to change a

software system from some version to a newer version to im-

prove its functionality, performance or reliability. It consists

in addition, removal and replacement software components

or connectors. These operations are error-prone. Indeed, it

is difficult to guarantee the preservation of the functionality

and quality of the software. It is also possible that the

new software version be unstable after the introduction of

new components or the removal of existing components.

Some validation process should secure component adding,

removing and replacing to avoid errors or regressions to be

introduced by new component versions or instability due to

component removals. Evolution mechanisms are provided

in the main representative ADLs [3], [4], [5] to deal with

elementary evolution operation in software architectures.

However, existing works only propose limited support for

evolution control that increases the chances for success-

ful dynamic evolution. This paper considers applying an

autonomic approach to manage and control evolution at

runtime. A connector model is proposed which embeds

the necessary mechanisms to monitor and drive architecture

modifications: we talk about connector-driven architecture

evolution. Connectors are internally designed as expendable

and reconfigurable component assemblies, able to manage

various evolution concerns, depending on the requirements.

An application of these connectors is presented here: gradual

evolution of assemblies in which new component versions

are transparently tested before they effectively replace older

ones and in which components connected to those that are

going to be removed are tested without the component to be

removed before it is effectively.

The remaining of this paper is organized as follows.

Section 2 defines the context of this research and spans

existing related work. Section 3 specifies our objectives and

describes the illustrative example we use throughout the

paper. Section 4 describes our autonomic connector model.

Section 5 details our connector-driven gradual evolution

process. Section 6 briefly describes the implementation of

our model as an extension of the Julia implementation of

the Fractal component model while Section 7 concludes with

future work directions.

2. Context and related works

To develop a connector-driven gradual and dynamic evo-

lution process requires an understanding of existing ADLs

that support dynamic evolution.

2.1. Software evolution: definitions and typologies

Lehman [6] defines software evolution as the collection

of all programming activities intended to generate a new

version of some software from an older operational version.

If these activities can be performed at runtime without the

need for system recompilation or restart, evolution is called

dynamic software evolution.



architecture SimpleExample is

conceptual_components

BikeGUI; Session;

connectors

connector login is message_filter no_filtering;

architectural_topology

connector login connections

top_ports BikeGUI;

bottom_ports Session;

end SimpleExample;

system SimpleExample_1 is

architecture SimpleExample with

BikeGUI instance Basket1;

Session instance Vendor;

end SimpleExample_1;

SimpleExample_1.AddComponent(User)

SimpleExample_1.AddConnector(checkID)

SimpleExample_1.Weld(Basket1, checkID)

SimpleExample_1.Weld(checkID, User)

Figure 1. Sample architecture (left), a conforming configuration (top right) and an evolution description (bottom

right) described using C2 and C2 AML

An explicit architectural view can enhance flexibility of

software evolution. The software architecture of a program

or computing system defines the structure of the system,

which comprise software component types and connector

types, the externally visible properties of those component

types and connector types and the relationships among

them [7]. Architectural configurations are connected graphs

of concrete components (instantiated component types) and

concrete connectors (instantiated connector types) that con-

form to the architectural structure [8]. Figure 1 provides an

example of both an architecture and a conforming configu-

ration using the syntax of the C2 ADL [9].

Existing work propose various typologies for evolution

[10], [11], that we are going to use to precise which

evolution is supported in the system defined in this paper.

Dynamic software evolution might affect component or

connector types at the architecture level or component or

connector instances at the configuration level [8]. Evolu-

tion might concern the software semantics or its structure.

Semantic evolution does not change the structure of the

software system. It simply consists in replacing one or more

components by their newer versions. Structure evolution

changes the structure of the configuration by adding or

removing a component that adds or removes functionalities

to the system. Before evolution, the system needs to check

the consistency of the new configuration by comparing

component behaviors. A component’s behavior protocols

describe the possible orderings of (incoming and outgoing)

method calls on the component’s interfaces [12].

Lientz and Swanson [11] provide an orthogonal classifica-

tion of evolution based on the reason that motivates changes.

They identify three purpose-oriented evolution categories:

• corrective evolution, where the new version corrects

errors / bugs identified in the old one,

• perfective evolution where the code of a component

is evolved to improve non-functional attributes of the

software (such as time performance),

• adaptive evolution where components are adapted (or

extended) to meet changes in their environment or in

requirements on the software.

This paper deals with dynamic software evolution and

covers semantic evolution (through component version sub-

stitution) as well as structure evolution (through component

addition or removal) and both corrective and perfective

evolution.

2.2. Dynamic evolution in existing ADLs

Few ADLs focus on supporting dynamic software evo-

lution. Three representative approaches specify dynamic

evolution in an ADL by providing a dedicated mechanism

together with the original ADL: decomposition and com-

position in ArchWare [13], an Architecture Modification

Language (AML) in C2 [14] or the use of multi-version

connectors in MAE [4]. ArchWare uses hyper code to

examine the coherence of new configuration and implements

evolution by decomposing the targeted configuration and

then composing the new configuration. This approach in-

troduces additional risks during the evolution processes that

makes evolution more complicate to implement. Evolution

in C2 uses AML to manage the configuration evolution with

a consistence examination of new configuration, and for

component substitution, it uses a type theory-PL subtyping

relationship [15] to check the consistency of component

specification. Figure 1 shows an example of how the evolu-

tion can be implemented in the C2 AML syntax. However,

this approach lacks to test the actual implementation of

the new component. Cook and Dage [16] propose to keep

multiple versions of a component running and uses arbiters

to present to the system the image of a single component.

Furthermore, Rakic [4] introduces this approach into an ADL

(MAE) and uses connectors instead of arbiters. This multi-

version approach improves component substitution evolution

by connecting multiple versions of components at the same

time in the system. Both approaches limit the changes on

new component versions: they constrain the outputs — the

values returned by function executions — of new versions to

remain unchanged. In these two latter approaches however,

component versioning aims at keeping old versions along

with newer ones in the system for downward compatibility.

The system thus grows in complexity and size which is not



suitable in our case where newer versions aim at replacing

older ones after an intermediate test period.

The above representative ADLs contain useful insights for

evolution, but they fail to account for several pertinent issues.

There is:

1) no gradual process to ensure safe dynamic evolution,

2) no real test of the actual new configuration to try and

detect functional problems that might be introduced

by a new component or instability that might result

from some component suppression,

3) no use of evolution semantics to drive the evolution

process

4) no mechanism to deal with system recovery when

evolution fails.

2.3. Connector semantics

Connectors bind components together and act as media-

tors between them [17]. They clearly separate concerns of

component computation and inter-component communica-

tion. Connector ends are typed by a set of interfaces (a set

of connection points) that define the signatures of function-

alities that the connector passes through. Each interface has

a direction, either provided or required. A provided (resp.

required) interface of a connector can connect to a required

(resp. provided) interface of a component, if their types are

identical (or, in a wider sense, compatible [18]). If the set

of interfaces at one end of the connector is the same but

has opposite directions as the set of interfaces at its other

end, then the connector just lets functionality calls pass

through. If not, the connector is said to do some functional

adaptation. For simplicity’s sake, in this paper, connectors

are pass through connectors; they don’t adapt function calls

(yet).

Representative connectors models are UniCon [17],

SOFA [19], Wright [20] and COSA [21]. Beyond the basic

binding function of connectors, each of these models has

its specificity. UniCon has a predefined taxonomy of con-

nectors, either simple or complex (pipes, remote calls, etc.).

SOFA has a composite connector model that allow connec-

tors to be described by an inner component architecture.

Wright models connector glue and event trace specification

with CSP. COSA eases the building of numerous connec-

tor types by composing simple connectors. None of these

models, however, provide system life-cycle related services.

As connectors clearly separate concerns of component

computation and inter-component communication, we claim

they can be designed to meet non-functional requirements of

systems, such as adding security (encrypting messages) or

life-cycle related services. Our work proposes a connector

model which embeds a system evolution support service.

It reconfigures the connections between components to add

new component versions, remove components or replace

components by one of their (newer) versions. This is why

our evolution process is said to be connector-driven.

3. Goals and illustrative example

Dynamic software evolution requires that evolution be

performed at runtime. This operation is risky as the new

version might introduce errors. These errors might come

from the functional problem of new configuration introduced

by new components or new component versions, or from the

inconsistency of new configuration caused by the removal of

components. Despite this, most research on dynamic evolu-

tion mainly focuses on configuration consistency test at the

architecture level, before the implementation of evolution.

To our knowledge, no approach proposes a gradual pro-

cess based on the configuration level that supports dynamic

evolution and include correction tests of both the new

configuration and the newly introduced components; no ADL

uses the semantics of evolution operations to describe, test

and measure the quality of the evolved software; and no

connector model embeds mechanisms to monitor and drive

evolution.

The work presented in this paper aims at developing a

connector driven gradual and dynamic evolution process

which fully covers evolution, from its description to its test

and validation. It focuses on three elementary change oper-

ations — component addition, removal and replacement —

and tests to the validity of changes before committing them.

As an initial application of our work, each evolution consists

in a single change operation. When component replacement

is concerned, the evolution semantics proposed by Lientz

and Swanson [11] is used to measure the adequateness of the

new component. Our system covers two of their evolution

purposes: perfective evolution and corrective evolution. It

uses this information on evolution semantics to test the

resulting configuration.

Furthermore, our evolution process is required to have the

following characteristics:

1) gradual: have the architecture evolve smoothly through

a transitional phase,

2) testable: be able to test desired changes (component

evolution) and validate them before they become ef-

fective,

3) transparent: have changes (introduce new component

and remove existing component) during the transi-

tional phase and test phase remain transparent to the

software system,

4) self-repairable: prevent fatal failures using a system

recovery mechanism. This implies that components

have the capability of recording their internal states

and recovering from this recorded state when needed.

In order to support such evolution process, connectors need

to supply following functionalities:



1) connect and disconnect multiple component versions

at runtime,

2) test new configuration and collect observation data,

3) control the dataflow to make component test transpar-

ent to the system.

The example of a bike rental system illustrates the con-

cepts of our evolution process throughout the paper (cf.

Fig. 2). In this example, the Vendor component manages

the user interface. It cooperates with the Basket component

which handles user commands. The Basket component co-

operates with the User, BikeTrip and Account components

respectively to identify the user, check the balance of its

account, assign an available bike and finally calculate the

price of the course when the bike is returned. Component

BikeTrip manages the courses for each bike and each user

and is designed to retrieve location and calculate the distance

between departure and arrival addresses.

Figure 2. Example of a bike rental system configuration

4. Connectors that drive the evolution process

In this section, our definition of the conceptual model of

component architectures and connectors is presented. In our

model, a software configuration is defined as a collection

of components and connectors which are contained in and

managed by a container. These architectural entities are com-

posed of core and extension elements. Core elements consist

of classes which describe the basic, invariable part of the

different kinds of architectural entities, i.e. their functional

concerns. Extension elements are added to architectural

entities in order to support the non-functional concerns

which apply specifically, depending on the management

policies defined by ADL descriptors, regarding for instance

the dynamic evolution of components. Extension elements

consist of meta-objects, Controllers and Control interfaces,

that are added to the definition of components to modify

and control their behavior. Figure 3 shows the class model

of architectural elements.

A container can be seen as the component at the top of

the composition hierarchy. It contains the description of the

entire software system and thus contains a set of connectors

and components which describe a system as a configuration.

It is extended by an evolution manager which manages the

evolution of its inner components and evaluates the feedback

from its inner connectors.

A component has a name and a set of interface elements.

There are two kinds of components: primitive and composite.

A primitive component is a leaf component that is directly

implemented. A composite component is built from the in-

terconnecting o more primitive components and connectors

as a substructure. Primitive components are extended by

StateTrace controllers. StateTrace controllers keep track of

the successive states of primitive components each time they

are modified. They allow to recover from a failure and put

back the components into a sound state to prevent system

breakdown.

Connectors govern communication between components.

A connection is the binding between provided and required

interfaces of components and connectors. Indeed, compo-

nents should not communicate directly by referencing each

other. Instead, they should use connectors which minimize

coupling between components and enable binding decisions

to change without requiring component modification. The

interfaces of two component which are connected by a

connector need to be compatible: the names of methods

should be the same. The connection should be chained as is:

a component’s required interface connects to a connector’s

provided interface and the required interface of the connector

connects with another component’s provided interface.

Connectors are extended to manage and control the evo-

lution of each connected component, control the dataflow

between components and collect test samples of component

inputs and outputs. The extension of connectors consists

of three controllers: the connector controller, the dataflow

controller and the time controller. The connector controller

controls evolution procedures of the connected components.

The dataflow controller controls the dataflow that traverses

the connector and records messages from each connected

component to compare them in case evolution is declared to

be corrective. The time controller records input and output

time of each message that traverses the connector to compare

them in case evolution is declared to be its perfective.

These controllers are structured into three levels. Evo-

lution manager is a top-level controller that controls the

entire configuration evolution process by managing con-

nectors and components. Connector controllers and state-

Trace controllers separately control local evolution actions

of respectively connectors and components. Dataflow and

time controllers are third level controllers that are used

by Connector controllers to control and collect data on



Figure 3. Class model of connectors

connectors.

5. Protocols of the evolution operations

One of the main ideas exposed in this paper is to have the

original configuration evolved into an objective configuration

through a transition step. The transition configuration aims

to test new component versions and either validate the

evolution (commit changes) or invalidate it to rollback to

the original state.

To achieve this, we propose a four step evolution process

controlled by an evolution manager, depicted in Fig. 4.

The preparation stage collects evolution description and

builds the transition configuration. The test stage collects

observations from newly introduced components and com-

ponents affected by changes (those connected to changing

components) to determine if new components work correctly

(in case of component addition), new component versions

meet the requirements induced by the declared evolution

Figure 4. Life cycle of evolution actions

purpose (in case of component substitution) or the new

configuration is stable (in case of component removal). The

observation stage maintains original component versions as

a backup in case new versions cause failure. The commit

stage enacts changes (disconnect the now useless original

versions).

Each stage obeys two phases: evolution and validation.

The evolution phase defines how connectors drive the

evolution process during each stage. The validation phase

determines if the activities performed during each stage are

valid or not.

5.1. Component substitution

Component version substitution potentially affects four

elements of components: their name, interface, behavior

protocols or implementation (as described by Palsberg and

Schwartzbach [15]). In our system, component substitution

amounts to replace an old version of a component by one

of its newer versions in order to meet the declared evolution

requirements (corrective evolution or perfective evolution).

Thus, the test focuses on the two evolution motivations

which affect the measures our evolution manager can per-

form to guarantee the feasibility of the thought evolution.

Example. The objective of this evolution is to replace

version 1 of the Basket component by its version 2. It implies

changing the architecture from the original architecture rep-

resented on Fig. 2 to the objective architecture represented

on Fig. 5b. Evolution concerns the return provided interface

and its purpose is corrective. Contrary to most evolution

approaches, we propose to deploy a transition architecture

(cf. Fig. 5b) to smoothly switch from an architecture to

another through a test period.



Figure 5. Example of component substitution evolution

Preparation stage. Preparation is a vital aspect of the

evolution process. Its objective is to change the original

configuration into the transition configuration by collecting

and deploying evolution description.

The first step is to collect evolution description. Evolution

description must define what to evolve and how. What to

evolve refers to (1) references of old and new component

versions, (2) interfaces changed and their change purpose

(corrective or perfective), and (3) change test condition

for corrective evolution. How to evolve refers the number

of collected samples that are to be used during tests. In

the example of Fig. 2, the return interface of Basket is

changed to correct (corrective evolution) its protocol for

Basket version 2 with the following condition: if type of

bike is tandem then price is twice the normal price. The

collected evolution description is shown in Table 1.

Secondly, the evolution manager deploys evolution de-

scriptions according two connector groups: changed group

and unchanged group. Changed group contains connectors

which connect to changed interfaces like rent, return and

selectBike. These connectors drive the evolution process.

Unchanged group contains all other connectors like login,

pay, etc.

At the validation step, the evolution manager collects

feedback from all connectors. If all connectors connect

successfully with new component version, the evolution

process passes to next stage.

Test stage. Test stage aims to examine the behavior of

new component version according to its evolution purpose.

Test stage thus involves collecting observations on new

component versions in connectors and evaluating this ob-

servation in the evolution manager. The measurement of

new component versions focuses on functioning and are

decomposed into to two sub-stages: offline and online test.

Offline test is focused on the functioning of the new

version, keeping it transparent to the system. Old version is

dominant, which means that connectors just propagate old

version’s results to the rest of system, while new version is

insulated from the system.

Online test aims at adapting the system to new version:

new version becomes dominant. As this entails risks of sys-

tem failure, a state-trace mode is activated. All components’

StateTrace controllers record the state modification of each

component during online test. When critical errors happen,

the whole system rolls back to its previous safe state, as

every component rolls back to its previous safe state.

Each test of a changed interface is controlled by the

connector which connects with this interface. This includes

dataflow control and data collection. Thus, according to

the direction of interface (provided or required), test and

Table 1. Evolution description of example

Components Old Basket version 1

New Basket version 2

Change inter-

face

Purpose Condition

selectBike

rent perfective

return corrective if bike∈Tandem then
Basket2.return(bike)=
2*Basket1.return(bike)



evaluation behave differently. We use a part of the example

to explain how dataflow is controlled by connectors (Fig. 6).

The Basket rent (P1) interface illustrates provided interface

evolution, and its returnBike (R1) interface illustrates re-

quired interface evolution.

Figure 6. Net response time

Provided interface evolution means that a component’s

provided interface is evolved with either a corrective or a

perfective purpose. The return connector (cf. Fig. 6) collects

test data and controls the evolution of the return interface

of the Basket component.

During offline test, component Basket1 is dominant. The

dataflow controller of the return connector distributes in-

coming calls to two versions, while all connectors block

outgoing calls from Basket2 to keep it transparent to system.

For example, the return connector blocks the response of

Basket2 and the returnBike connector blocks the incoming

calls of Basket2. During online test, the situation is reversed:

Basket2 becomes dominant. The collected data elements are

listed in Table 2.

Required interface evolution means that a component’s

provided interface is evolved with a corrective purpose.

The returnBike connector in Fig. 6 collects test data and

controls the evolution of thereturnBike interface of the

Basket component.

During offline test, the dataflow controller of the return-

Bike connector blocks Basket2 incomings and let pass Bas-

ket1 incomings. The outgoings of the BikeTrip component

are sent to the two versions of Basket. During online test, the

dataflow controller reverses the situation to make the new

version (Basket2) become dominant.

To evaluate a new version, observations encompasses

various data, ranging from dataflow (test for corrective

evolution) to execution times (test for perfective evolution)

as listed in Table 2. The dataflow controller is in charge

of collecting data from incoming calls which comprises

the calling method and inputs and outputs of old and new

versions for this calls. The time controller is responsible for

collecting time for each input and output. Furthermore, in

order to obtain the needed number of observations, each data

collection by connectors will continue until all connectors

in the changed group have enough observation samples (as

defined in the preparation stage).

The evaluation of observations is handled by the evolution

manager which collects all observations from connectors

and thus have a global view to precisely calculate the time

spent in each function in order to test the behavior of

the new version. For corrective evolution, the new version

must meets its predefined evolution condition. For perfective

evolution, the new version must execute faster than the old

version. But the time of response measured is not really

the response time of the evolved interface. For example,

when the return interface of component Basket1 is called

by component Vendor, it will call the interface returnBike

before it returns an answer to the Vendor component. Thus,

the response time of the return interface includes the re-

sponse time of the interface returnBike. In order to get net

response times for the component, the formula to calculate

the response time is Tresponse = Tgo+Tback in Fig. 6. After

the new version passes the offline and online evaluation, the

evolution process proceeds to next stage.

Observation and commit stage. Observation stage is

another feature used to further secure evolution. In this stage,

the old version still remains in the system, but only as a

backup (it is not active anymore). The system is still in

state-trace mode. If a critical error of new version arises

and makes the system fail, the old version will be activated

to replace the new version and the whole system will roll

back to the previous sound state. Finally, the evolution

manager either commits evolution after the above stages (if

the new versions passes all stages) or abandons evolution and

disconnects the new version (rollback). The unused version

is disconnected and uninstalled.

5.2. Component addition

Component addition aims to add some functionality to

the system. This change may cause system failure if there

are errors in the new component functionality or if the new

component is not compatible with its connected components.

The evolution process mainly tests the two aspects: the

functionality of the new component and the compatibility

of the new component to its connected components.

Example. The evolution objective is to add the Station

Data to the system. It implies changing the configuration

from the original architecture represented on Fig.7a to the

objective configuration Fig.7b.

Preparation stage. The preparation stage aims to both

introduce a new component into the system and connect it.

The addition of a component must be accompanied by the

addition of new connectors which connect the new com-

ponent with existing components. At first, the preparation

actions for component addition are the same as in other

ADLs :

1) Add the component to the system,

2) According to the connected interfaces, generate con-

nectors,

3) Connect the new component and connectors and the

existing components.



Table 2. Offline and online data collected by controllers.

Controllers Provided interface evolution Required interface evolution

Dataflow Controller (DC) (method, input, outputOld, outputNew) (method, inputOld, inputNew, output)

Time Controller (TC) (method, inputTimeOld, outputTimeOld, inputTimeNew, outputTimeNew)

Then, in order to test the new component, we need to find its

connected components and the affected interfaces from its

connected components, the interfaces of the connected com-

ponents that are indirectly involved in the behavior of the

interfaces of the changed component. We uses the affected

connectors which connect with affected interfaces to test

new version’s adaptiveness. The new generated connectors

which connect new component with other components called

connected connectors. Table 3 summarizes this data for the

addition of the Station Data component of our example.

Table 3. Affected connectors and components when

adding the Station Data component.

Connected connectors findLocation, calcDistance

Connected components BikeTrip

Affected connectors selectBike, returnBike

Test stage. The test stage focuses examine the functional-

ity (offline) and adaptiveness (online) of the new component.

• Offline test: test its functionality. Connected connectors

authorize the input of new component but do not return

the response to test whether the responses are produced

correctly.

• Online test: test its adaptiveness with connected com-

ponent. During this test stage, each affected connector

sends twice the input to the connected component. At

first, the controlling connectors block the connections

between the new component and connected compo-

nents. The affected connectors collect responses and

send them to the system. In a second phase, control-

ling connectors authorize the connection between the

new component and existing components. The affected

connectors collect the response but do not send it to the

system. Between these two phases, components record

their states and after the first phase, return to their

original states to pretend that the first phase did not

exist. After test, affected connectors send all this data

collection to the evolution manager which compares the

two sets of responses and decides whether to effectively

add the component or not.

Observation and commit stage. During this stage, the

system remains in recovery alert state. All state controllers

record the states of components to prevent errors from the

new component. If the new component works well during the

observation stage, the system will enter its actual working

state.

5.3. Component removal

Component removal aims to suppress an unused compo-

nent from the system. This change may leave the system

incomplete and even prevent it from continuing to work.

The evolution test evaluates if the new configuration works

correctly without the component to remove.

Example. We reverse the example of the component

addition. The evolution objective is to remove the Station

Data from the system. It implies changing the configuration

from the original architecture represented on Fig. 7b to the

objective configuration Fig. 7a.

Preparation stage. The preparation stage is similar to

component addition’s. We need to find the connected con-

nectors, connected components, and affected connectors.

Test stage. This test mainly focuses on the connected

components to evaluate whether they can work correctly

without the removed component. All affected connectors

send twice the same input to connected components. At first,

connected connectors authorize input calls from connected

components. Affected connectors record this response and

send it back to the system. In a second phase, connected

connectors block the input calls from connected compo-

nents. Affected connectors record the responses of connected

components which do not successfully call the removed

component. After test, affected connectors send all this data

collection to the evolution manager which compares the two

sets of responses and decides whether to effectively remove

the component or not.

Observation and commit stage. The removed component

will remain in the system but isolated by connected con-

nectors, to prevent connected components from generating

instability errors. If the system has no problem during the

observation stage, the removed component and connected

connectors will be effectively be removed from the system.

6. Implementation as a Fractal extension

Our model is implemented as an extension of Julia, an

open-source java implementation of the Fractal component

model1. In the Fractal component model, everything has

to be a component. Fractal components are managed by

controllers contained in the membrane of components. It

thus was straightforward to adapt our model to the imple-

mentation. First, we kept all existing Fractal controllers.

1. http://www.objectweb.org



Figure 7. Example of component addition

Then, we added an element-type controller to specialize

Fractal components into three sub-types — components,

connectors and container — by storing the type information

in this element type controller. Then, we added specific

controllers (as described in Sect. 4) to the adequate sub-

type.

public interface EvolutionControlInterface

{
void cmpEvol (Component oldC, String itfNames,

Component newC, String ePurposes,

String correctiveDescription);

void add (Component a, String [][] connections);

void remove (Component a);

}

Figure 8. Interface of the evolution manager

The evolution manager implements the EvolutionCon-

trolInterface to control evolution through two mains func-

tions as presented in Fig. 8. The cmpEvol function triggers

component version evolution: it is given as parameters the

old and new component versions, the set of interfaces that

are impacted by the change and the purpose of the evolution

(corrective, perfective or both). The add function triggers

component addition evolution: firstly, the new component

will be added to system, secondly, it automatically generates

a suitable connector and uses it to connect given compo-

nents (connections presents which component’s interface it

should be connect). The remove function triggers component

removal evolution.

Figure 9 shows a code sample that uses these functions.

7. Conclusion and perspectives

This paper presents and illustrates our connector-driven

gradual and dynamic software assembly evolution process.

Few existing ADLs fully support component replacement

evolution process from its description to its test and valida-

tion. These ADLs do not support either component substitu-

tion, or any test phase, or the complexity induced by multi-

version components. Our contribution is twofold. Firstly,

we propose a gradual, testable, transparent and repairable

evolution process which fully supports evolution operations

from the specification of evolution semantics to the test and

validation of changes. Secondly, we introduce a connector

model which embeds the necessary mechanisms to monitor

and drive architectural configuration modifications. We use

evolution semantics to automatically build a connector that

measures, in situ, the safety of the desired changes and either

commits or rollbacks them.

Perspectives for this work are numerous. We plan to

use the same process to support complex evolution oper-

ations [22] that are composed of several successive ele-

// connect aComp to cComp1

Fractal.getEvolutionManager(container).

connect (aComp, "r", cComp1, "f");

// evolve component cComp1 to cComp2

// (corrective evolution)

Fractal.getEvolutionManager(container).

cmpEvol (cComp1, "f",

cComp2, "corrective",

"if(m.equal("bike")) rent(m)=1;");

Figure 9. Use of the evolution manager



mentary operations that are all semantically related. The

semantics of these changes might also be exploited to drive

the change process. We also plan to tackle the “architecture

drift” [23] problem which is a crucial coherence problem

after architectural configuration evolution. It will consist in

synchronizing the architectural view of the software system

to the actual evolved implementation, thus allowing to enrich

the architectural description of the software from the changes

that succeeded.

References

[1] D. Garlan, “Software architecture: a roadmap,” in The Future
of Software Engineering, A. Finkelstein, Ed. ACM, 2000.

[2] N. Medvidovic, E. M. Dashofy, and R. N. Taylor, “Moving ar-
chitectural description from under the technology lamppost,”
Information and Software Technology, 49(1):12–31, 2007.

[3] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A
language and environment for architecture-based software
development and evolution,” in Proc. of the 21st Int’l Conf. on
Software Engineering, LA, CA, USA, May 1999, pp. 44–53.

[4] M. Rakic and N. Medvidovic, “Increasing the confidence
in off-the-shelf components: A software connector-based
approach,” in Proc. of the 2001 symposium on Software
reusability, Toronto, Canada, 2001, pp. 11–18.

[5] R. Roshandel, A. V. D. Hoek, M. Mikic-Rakic, and N. Med-
vidovic, “MAE–a system model and environment for manag-
ing architectural evolution,” ACM Transactions on Software
Engineering and Methodology, 13(2): 240–276, 2004.

[6] M. M. Lehman and J. C. Fernandez-Ramil, “Towards a theory
of software evolution - and its practical impact,” in Proc. Int’l
Symposium on Principles of Software Evolution, Kanazawa,
Japan, November 2000, pp. 2–11.

[7] L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice. Addison Wesley, 1998.

[8] N. Medvidovic and R. N. Taylor, “A classification and
comparison framework for software architecture description
languages,” IEEE TSE, 26(1):70–93, 2000.

[9] N. Medvidovic, R. N. Taylor, and E. J. Whitehead, “Formal
modeling of software architectures at multiple levels of ab-
straction,” in Proc. of the California Software Symposium,
april 1996, pp. 28–40.

[10] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel,
“Towards a taxonomy of software change,” Journal of Soft-
ware Maintenance and Evolution, 17(5):309–332, September
2005. Wiley & Sons.

[11] B. P. Lientz and E. B. Swanson, Software Maintenance
Management. Addison-Wesley, 1980.

[12] F. Plasil and S. Visnovsky, “Behavior protocols for software
components,” IEEE TSE, 28(11):1056–1076, 2002.

[13] R. Morrison, G. Kirby, D. Balasubramaniam, K. Mickan,
F. Oquendo, S. Cimpan, B. Warboys, and R. M. G. Bob Snow-
don, “Support for evolving software architectures in the
ArchWare ADL,” in Proc. of the 4th Working Conf. on
Software Architecture, Oslo, Norway, June 2004, pp. 69–78.

[14] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-
based runtime software evolution,” in Proc. of the 20th Int’l
Conf. on Software Engineering, Kyoto, Japan, 1998, pp. 177–
186.

[15] J. Palsberg and M. I. Schwartzbach, “Three discussions on
object-oriented typing,” ACM SIGPLAN OOPS Messenger,
3(2):31–38, 1992.

[16] J. E. Cook and J. A. Dage, “Highly reliable upgrading of
components,” in Proc. of the 21st Int’l Conf. on Software
Engineering, Los Angeles, CA, May 1999, pp. 203–212.

[17] M. Shaw, R. DeLine, and G. Zelesnik, “Abstractions and
implementations for architectural connections,” in Proc. of
the 3rd Int’l Conf. on Configurable Distributed Systems,
Annapolis, MD, 1996, pp. 2–10.

[18] G. Arévalo, N. Desnos, M. Huchard, C. Urtado, and S. Vaut-
tier, “Precalculating component interface compatibility using
FCA,” in Proc. of the 5th int’l conf. on Concept Lattices and
their Applications. CEUR Workshop Proc. Vol. 331, J. Diatta,
P. Eklund, and M. Liquière, Eds., Montpellier, France. 2007,
October 2007, pp. 241–252.

[19] D. Bálek and F. Plášil, “Software connectors and their role
in component deployment,” in Proc. of DAIS’01. Krakow,
Poland: Kluwer, September 2001, pp. 69–84.

[20] R. Allen and D. Garlan, “A formal basis for architectural con-
nection,” ACM Trans. on Software Engineering and Method-
ology, 6(3):213–249, 1997.

[21] M. Oussalah, A. Smeda, and T. Khammaci, “An explicit
definition of connectors for component-based software archi-
tecture,” in Proc. of the 11th IEEE Int’l Conf. and Workshop
on the Engineering of Computer-Based Systems. Brno, Czech
Republic: IEEE, May 2004, pp. 44–51.

[22] C. Urtado and C. Oussalah, “Complex entity versioning at
two granularity levels,” Information Systems, 23(2/3):197–
216, 1998.

[23] D. E. Perry and A. L. Wolf, “Foundations for the study of
software architecture,” ACM SIGSOFT Software Engineering
Notes, 17(4):40–52, 1992.


