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Abstract – The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting
sources of information has always been, and still remains today, of primal importance for the development of reliable
modern information systems involving artificial reasoning. In this introduction, we present a survey of our recent the-
ory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT), developed for dealing with
imprecise, uncertain and conflicting sources of information. We focus our presentation on the foundations of DSmT and
on its most important rules of combination, rather than on browsing specific applications of DSmT available in litera-
ture. Several simple examples are given throughout this presentation to show the efficiency and the generality of this new
approach.
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1 Introduction
The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting
sources of information has always been, and still remains today, of primal importance for the development of
reliable modern information systems involving artificial reasoning. The combination (fusion) of information
arises in many fields of applications nowadays (especially in defense, medicine, finance, geo-science, economy,
etc). When several sensors, observers or experts have to be combined together to solve a problem, or if one
wants to update our current estimation of solutions for a given problem with some new information available,
we need powerful and solid mathematical tools for the fusion, specially when the information one has to deal
with is imprecise and uncertain. In this paper, we present a survey of our recent theory of plausible and
paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT) in the literature, developed for dealing
with imprecise, uncertain and conflicting sources of information. Recent publications have shown the interest
and the ability of DSmT to solve problems where other approaches fail, especially when conflict between
sources becomes high. We focus this presentation rather on the foundations of DSmT, and on the main important
rules of combination, than on browsing specific applications of DSmT available in literature. Several simple
examples are given throughout the presentation to show the efficiency and the generality of DSmT.

2 Foundations of DSmT
The development of DSmT (Dezert-Smarandache Theory of plausible and paradoxical reasoning [31,8]) arises
from the necessity to overcome the inherent limitations of DST (Dempster-Shafer Theory [24]) which are
closely related with the acceptance of Shafer’s model for the fusion problem under consideration (i.e. the
frame of discernmentΘ is implicitly defined as a finite set ofexhaustiveand exclusivehypothesesθi, i =
1, . . . , n since the masses of belief are defined only on the power set ofΘ - see section 2.1 for details),
the third middle excluded principle (i.e. the existence of the complement for any elements/propositions be-
longing to the power set ofΘ), and the acceptance of Dempster’s rule of combination (involving normal-
ization) as the framework for the combination of independent sources of evidence. Discussions on limi-
tations of DST and presentation of some alternative rules toDempster’s rule of combination can be found

This paper is based on the first chapter of [36].
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in [53, 54, 55, 49, 56, 11, 50, 21, 38, 46, 15, 19, 17, 23, 18, 31]and therefore they will be not reported in details in
this introduction. We argue that these three fundamental conditions of DST can be removed and another new
mathematical approach for combination of evidence is possible. This is the purpose of DSmT.

The basis of DSmT is the refutation of the principle of the third excluded middle and Shafer’s model, since
for a wide class of fusion problems the intrinsic nature of hypotheses can be only vague and imprecise in such
a way that precise refinement is just impossible to obtain in reality so that the exclusive elementsθi cannot
be properly identified and precisely separated. Many problems involving fuzzy continuous and relative con-
cepts described in natural language and having no absolute interpretation like tallness/smallness, pleasure/pain,
cold/hot, Sorites paradoxes, etc, enter in this category. DSmT starts with the notion offree DSm model, de-
notedMf (Θ), and considersΘ only as a frame of exhaustive elementsθi, i = 1, . . . , n which can potentially
overlap. This model isfreebecause no other assumption is done on the hypotheses, but the weak exhaustivity
constraint which can always be satisfied according the closure principle explained in [31]. No other constraint
is involved in the free DSm model. When the free DSm model holds, the classic commutative and associative
classical DSm rule of combination, denoted DSmC, corresponding to the conjunctive consensus defined on the
free Dedekind’s lattice is performed.

Depending on the intrinsic nature of the elements of the fusion problem under consideration, it can however
happen that the free model does not fit the reality because some subsets ofΘ can contain elements known to
be truly exclusive but also truly non existing at all at a given time (specially when working on dynamic fusion
problem where the frameΘ varies with time with the revision of the knowledge available). These integrity
constraints are then explicitly and formally introduced into the free DSm modelMf (Θ) in order to adapt it
properly to fit as close as possible with the reality and permit to construct ahybrid DSm modelM(Θ) on which
the combination will be efficiently performed. Shafer’s model, denotedM0(Θ), corresponds to a very specific
hybrid DSm model including all possible exclusivity constraints. DST has been developed for working only
with M0(Θ) while DSmT has been developed for working with any kind of hybrid model (including Shafer’s
model and the free DSm model), to manage as efficiently and precisely as possible imprecise, uncertain and
potentially high conflicting sources of evidence while keeping in mind the possible dynamicity of the infor-
mation fusion problematic. The foundations of DSmT are therefore totally different from those of all existing
approaches managing uncertainties, imprecisions and conflicts. DSmT provides a new interesting way to attack
the information fusion problematic with a general framework in order to cover a wide variety of problems.

DSmT refutes also the idea that sources of evidence provide their beliefs with the same absolute interpreta-
tion of elements of the same frameΘ and the conflict between sources arises not only because of the possible
unreliability of sources, but also because of possible different and relative interpretation ofΘ, e.g. what is
considered as good for somebody can be considered as bad for somebody else. There is some unavoidable
subjectivity in the belief assignments provided by the sources of evidence, otherwise it would mean that all
bodies of evidence have a same objective and universal interpretation (or measure) of the phenomena under
consideration, which unfortunately rarely occurs in reality, but when basic belief assignments (bba’s) are based
on someobjective probabilitiestransformations. But in this last case, probability theorycan handle properly
and efficiently the information, and DST, as well as DSmT, becomes useless. If we now get out of the prob-
abilistic background argumentation for the construction of bba, we claim that in most of cases, the sources of
evidence provide their beliefs about elements of the frame of the fusion problem only based on their own limited
knowledge and experience without reference to the (inaccessible) absolute truth of the space of possibilities.
Several successful applications of DSmT (in target tracking, satellite surveillance, situation analysis, robotics,
medicine, etc) can be found in [31,34].

2.1 The power set, hyper-power set and super-power set

In DSmT, we take very care of the model associated with the setΘ of hypotheses where the solution of the
problem is assumed to belong to. In particular, the three main sets (power set, hyper-power set and super-power
set) can be used depending on their ability to fit adequately with the nature of hypotheses. In the following, we
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assume thatΘ = {θ1, . . . , θn} is a finite set (called frame) ofn exhaustive elements1. If Θ = {θ1, . . . , θn}
is a priori not closed (Θ is said to be an open world/frame), one can always include in it a closure element,
sayθn+1 in such away that we can work with a new closed world/frame{θ1, . . . , θn, θn+1}. So without loss
of generality, we will always assume that we work in a closed world by considering the frameΘ as a finite
set of exhaustive elements. Before introducing the power set, the hyper-power set and the super-power set it is
necessary to recall that subsets are regarded as propositions in Dempster-Shafer Theory (see Chapter 2 of [24])
and we adopt the same approach in DSmT.

• Subsets as propositions: Glenn Shafer in pages 35–37 of [24] considers the subsets aspropositions in
the case we are concerned with the true value of some quantityθ taking its possible values inΘ. Then
the propositionsPθ(A) of interest are those of the form2:

Pθ(A) , The true value ofθ is in a subsetA of Θ.

Any propositionPθ(A) is thus in one-to-one correspondence with the subsetA of Θ. Such correspon-
dence is very useful since it translates the logical notionsof conjunction∧, disjunction∨, implication⇒
and negation¬ into the set-theoretic notions of intersection∩, union∪, inclusion⊂ and complementa-
tion c(.). Indeed, ifPθ(A) andPθ(B) are two propositions corresponding to subsetsA andB of Θ, then
the conjunctionPθ(A)∧Pθ(B) corresponds to the intersectionA∩B and the disjunctionPθ(A)∨Pθ(B)
corresponds to the unionA ∪ B. A is a subset ofB if and only if Pθ(A) ⇒ Pθ(B) andA is the set-
theoretic complement ofB with respect toΘ (written A = cΘ(B)) if and only if Pθ(A) = ¬Pθ(B). In
other words, the following equivalences are then used between the operations on the subsets and on the
propositions:

Operations Subsets Propositions
Intersection/conjunction A ∩ B Pθ(A) ∧ Pθ(B)
Union/disjunction A ∪ B Pθ(A) ∨ Pθ(B)
Inclusion/implication A ⊂ B Pθ(A) ⇒ Pθ(B)
Complementation/negationA = cΘ(B) Pθ(A) = ¬Pθ(B)

Table 1: Correspondence between operations on subsets and on propositions.

• Canonical form of a proposition: In DSmT we consider all propositions/sets in a canonical form. We
take the disjunctive normal form, which is a disjunction of conjunctions, and it is unique in Boolean
algebra and simplest. For example,X = A ∩ B ∩ (A ∪ B ∪ C) it is not in a canonical form, but we
simplify the formula andX = A ∩ B is in a canonical form.

• The power set: 2Θ , (Θ,∪)

Aside Dempster’s rule of combination, the power set is one ofthe corner stones of Dempster-Shafer Theory
(DST) since the basic belief assignments to combine are defined on the power set of the frameΘ. In mathemat-
ics, given a setΘ, the power set ofΘ, written 2Θ, is the set of all subsets ofΘ. In ZFC axiomatic set theory,
the existence of the power set of any set is postulated by the axiom of power set. In other words,Θ generates
the power set2Θ with the∪ (union) operator only.

1We do not assume here that elementsθi are necessary exclusive, unless specified. There is no restriction onθi but the
exhaustivity.

2We use the symbol, to meanequals by definition; the right-hand side of the equation is the definition of the left-hand
side.
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More precisely, the power set2Θ is defined as the set of all composite propositions/subsets built from
elements ofΘ with ∪ operator such that:

1. ∅, θ1, . . . , θn ∈ 2Θ.

2. If A,B ∈ 2Θ, thenA ∪ B ∈ 2Θ.

3. No other elements belong to2Θ, except those obtained by using rules 1 and 2.

Examples of power sets:

• If Θ = {θ1, θ2}, then2Θ={θ1,θ2} = {{∅}, {θ1}, {θ2}, {θ1, θ2}} which is commonly written as2Θ =
{∅, θ1, θ2, θ1 ∪ θ2}.

• Let’s consider two framesΘ1 = {A,B} and Θ2 = {X,Y }, then their power sets are respectively
2Θ1={A,B} = {∅, A,B,A ∪ B} and2Θ2={X,Y } = {∅,X, Y,X ∪ Y }. Let’s consider a refined frame
Θref = {θ1, θ2, θ3, θ4}. The granulesθi, i = 1, . . . , 4 are not necessarily exhaustive, nor exclusive. If
A andB are expressed more precisely in function of the granulesθi by example asA , {θ1, θ2, θ3} ≡
θ1 ∪ θ2 ∪ θ3 andB , {θ2, θ4} ≡ θ2 ∪ θ4 then the power sets can be expressed from the granulesθi as
follows:

2Θ1={A,B} = {∅, A,B,A ∪ B}

= {∅, {θ1, θ2, θ3}
︸ ︷︷ ︸

A

, {θ2, θ4}
︸ ︷︷ ︸

B

, {{θ1, θ2, θ3}, {θ2, θ4}}
︸ ︷︷ ︸

A∪B

}

= {∅, θ1 ∪ θ2 ∪ θ3, θ2 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}

If X andY are expressed more precisely in function of the finer granules θi by example asX , {θ1} ≡
θ1 andY , {θ2, θ3, θ4} ≡ θ2 ∪ θ3 ∪ θ4 then:

2Θ2={X,Y } = {∅,X, Y,X ∪ Y }

= {∅, {θ1}
︸︷︷︸

X

, {θ2, θ3, θ4}
︸ ︷︷ ︸

Y

, {{θ1}, {θ2, θ3, θ4}}
︸ ︷︷ ︸

X∪Y

}

= {∅, θ1, θ2 ∪ θ3 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}

We see that one has naturally:

2Θ1={A,B} 6= 2Θ2={X,Y } 6= 2Θref ={θ1,θ2,θ3,θ4}

even if working fromθi with A ∪ B = X ∪ Y = {θ1, θ2, θ3, θ4} = Θref .

• The hyper-power set: DΘ , (Θ,∪,∩)

One of the cornerstones of DSmT is the free Dedekind’s lattice [4] denotedhyper-power setin DSmT
framework. LetΘ = {θ1, . . . , θn} be a finite set (called frame) ofn exhaustive elements. The hyper-power set
DΘ is defined as the set of all composite propositions/subsets built from elements ofΘ with ∪ and∩ operators
such that:

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A,B ∈ DΘ, thenA ∩ B ∈ DΘ andA ∪ B ∈ DΘ.

3. No other elements belong toDΘ, except those obtained by using rules 1 or 2.
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Therefore by convention, we writeDΘ = (Θ,∪,∩) which means thatΘ generatesDΘ under operators∪
and∩. The dual (obtained by switching∪ and∩ in expressions) ofDΘ is itself. There are elements inDΘ

which are self-dual (dual to themselves), for exampleα8 for the case whenn = 3 in the following example.
The cardinality ofDΘ is majored by22n

when the cardinality ofΘ equalsn, i.e. |Θ| = n. The generation
of hyper-power setDΘ is closely related with the famous Dedekind’s problem [4, 3]on enumerating the set
of isotone Boolean functions. The generation of the hyper-power set is presented in [31]. Since for any given
finite setΘ, |DΘ| ≥ |2Θ| we callDΘ thehyper-power setof Θ.

Example of the first hyper-power sets:

• For the degenerate case (n = 0) whereΘ = {}, one hasDΘ = {α0 , ∅} and|DΘ| = 1.

• WhenΘ = {θ1}, one hasDΘ = {α0 , ∅, α1 , θ1} and|DΘ| = 2.

• WhenΘ = {θ1, θ2}, one hasDΘ = {α0, α1, . . . , α4} and |DΘ| = 5 with α0 , ∅, α1 , θ1 ∩ θ2,
α2 , θ1, α3 , θ2 andα4 , θ1 ∪ θ2.

• WhenΘ = {θ1, θ2, θ3}, one hasDΘ = {α0, α1, . . . , α18} and|DΘ| = 19 with

α0 , ∅

α1 , θ1 ∩ θ2 ∩ θ3 α10 , θ2

α2 , θ1 ∩ θ2 α11 , θ3

α3 , θ1 ∩ θ3 α12 , (θ1 ∩ θ2) ∪ θ3

α4 , θ2 ∩ θ3 α13 , (θ1 ∩ θ3) ∪ θ2

α5 , (θ1 ∪ θ2) ∩ θ3 α14 , (θ2 ∩ θ3) ∪ θ1

α6 , (θ1 ∪ θ3) ∩ θ2 α15 , θ1 ∪ θ2

α7 , (θ2 ∪ θ3) ∩ θ1 α16 , θ1 ∪ θ3

α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) α17 , θ2 ∪ θ3

α9 , θ1 α18 , θ1 ∪ θ2 ∪ θ3

The cardinality of hyper-power setDΘ for n ≥ 1 follows the sequence of Dedekind’s numbers [26], i.e.
1,2,5,19,167, 7580,7828353,... and analytical expression of Dedekind’s numbers has been obtained recently
by Tombak in [45] (see [31] for details on generation and ordering of DΘ). Interesting investigations on the
programming of the generation of hyper-power sets for engineering applications have been done in Chapter 15
of [34] and in [36].

Examples of hyper-power sets:

Let’s consider the framesΘ1 = {A,B} andΘ2 = {X,Y }, then their corresponding hyper-power sets are
DΘ1={A,B} = {∅, A ∩B,A,B,A ∪B} andDΘ2={X,Y } = {∅,X ∩ Y,X, Y,X ∪ Y }. Let’s consider a refined
frameΘref = {θ1, θ2, θ3, θ4} where the granulesθi, i = 1, . . . , 4 are now considered astruly exhaustive and
exclusive. If A andB are expressed more precisely in function of the granulesθi by example asA , {θ1, θ2, θ3}
andB , {θ2, θ4} then

DΘ1={A,B} = {∅, A ∩ B,A,B,A ∪ B}

= {∅, {θ1, θ2, θ3} ∩ {θ2, θ4}
︸ ︷︷ ︸

A∩B={θ2}

, {θ1, θ2, θ3}
︸ ︷︷ ︸

A

, {θ2, θ4}
︸ ︷︷ ︸

B

,

{{θ1, θ2, θ3}, {θ2, θ4}}
︸ ︷︷ ︸

A∪B={θ1,θ2,θ3,θ4}

}

= {∅, θ2, θ1 ∪ θ2 ∪ θ3, θ2 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}

6= 2Θ1={A,B}
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If X andY are expressed more precisely in function of the finer granules θi by example asX , {θ1} and
Y , {θ2, θ3, θ4} then in assuming thatθi, i = 1, . . . , 4 are exhaustive and exclusive, one gets

DΘ2={X,Y } = {∅,X ∩ Y,X, Y,X ∪ Y }

= {∅, {θ1} ∩ {θ2, θ3, θ4}
︸ ︷︷ ︸

X∩Y =∅
︸ ︷︷ ︸

∅

, {θ1}
︸︷︷︸

X

, {θ2, θ3, θ4}
︸ ︷︷ ︸

Y

, {{θ1}, {θ2, θ3, θ4}}
︸ ︷︷ ︸

X∪Y

}

= {∅, {θ1}
︸︷︷︸

X

, {θ2, θ3, θ4}
︸ ︷︷ ︸

Y

, {{θ1}, {θ2, θ3, θ4}}
︸ ︷︷ ︸

X∪Y

}

≡ 2Θ2={X,Y }

Therefore, we see thatDΘ2={X,Y } ≡ 2Θ2={X,Y } because the exclusivity constraintX ∩Y = ∅ holds since one
has assumedX , {θ1} andY , {θ2, θ3, θ4} with exhaustive and exclusive granulesθi, i = 1, . . . , 4.

If the granulesθi, i = 1, . . . , 4 are not assumed exclusive, then of course the expressions ofhyper-power
sets cannot be simplified and one would have:

DΘ1={A,B} = {∅, A ∩ B,A,B,A ∪ B}

= {∅, (θ1 ∪ θ2 ∪ θ3) ∩ (θ2 ∪ θ4), θ1 ∪ θ2 ∪ θ3, θ2 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}

6= 2Θ1={A,B}

DΘ2={X,Y } = {∅,X ∩ Y,X, Y,X ∪ Y }

= {∅, θ1 ∩ (θ2 ∪ θ3 ∪ θ4), θ1, θ2 ∪ θ3 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}

6= 2Θ2={X,Y }

Shafer’s model of a frame: More generally, when all the elements of a given frameΘ are known (or are
assumed to be) truly exclusive, then the hyper-power setDΘ reduces to the classical power set2Θ. Therefore,
working on power set2Θ as Glenn Shafer has proposed in his Mathematical Theory of Evidence [24]) is
equivalent to work on hyper-power setDΘ with the assumption that all elements of the frame are exclusive.
This is what we callShafer’s model of the frameΘ, writtenM0(Θ), even if such model/assumption has not
been clearly stated explicitly by Shafer himself in his milestone book.

• The super-power set: SΘ , (Θ,∪,∩, c(.))

The notion of super-power set has been introduced by Smarandache in the Chapter 8 of [34]. It corresponds
actually to the theoretical construction of the power set ofthe minimal3 refined frameΘref of Θ. Θ generates
SΘ under operators∪, ∩ and complementationc(.). SΘ = (Θ,∪,∩, c(.)) is a Boolean algebra with respect to
the union, intersection and complementation. Therefore working with the super-power set is equivalent to work
with a minimal theoretical refined frameΘref satisfying Shafer’s model. More precisely,SΘ is defined as the
set of all composite propositions/subsets built from elements ofΘ with ∪, ∩ andc(.) operators such that:

1. ∅, θ1, . . . , θn ∈ SΘ.

2. If A,B ∈ SΘ, thenA ∩ B ∈ SΘ, A ∪ B ∈ SΘ.

3. If A ∈ SΘ, thenc(A) ∈ SΘ.

4. No other elements belong toSΘ, except those obtained by using rules 1, 2 and 3.

3The minimality refers here to the cardinality of the refined frames.
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As reported in [32], a similar generalization has been previously used in 1993 by Guan and Bell [14] for the
Dempster-Shafer rule using propositions in sequential logic and reintroduced in 1994 by Paris in his book [20],
page 4.

Example of a super-power set:

Let’s consider the frameΘ = {θ1, θ2} and let’s assumeθ1∩θ2 6= ∅, i.e. θ1 andθ2 are not disjoint according
to Fig. 1 whereA , p1 denotes the part ofθ1 belonging only toθ1 (p stands here forpart), B , p2 denotes the
part ofθ2 belonging only toθ2 andC , p12 denotes the part ofθ1 andθ2 belonging to both. In this example,
SΘ={θ1,θ2} is then given by

SΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2, c(∅), c(θ1 ∩ θ2), c(θ1), c(θ2), c(θ1 ∪ θ2)}

wherec(.) is the complement inΘ. Sincec(∅) = θ1 ∪ θ2 andc(θ1 ∪ θ2) = ∅, the super-power set is actually
given by

SΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2, c(θ1 ∩ θ2), c(θ1), c(θ2)}

Let’s now consider the minimal refinementΘref = {A,B,C} of Θ built by splitting the granulesθ1 and
θ2 depicted on the previous Venn diagram into disjoint parts (i.e.Θref satisfies the Shafer’s model) as follows:

Θ

θ1

A , p1

θ2

B , p2C , p12
...................................................................................................................................................................................................................................................................

................
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........
........

.........
...........

.............
..................

...........................................................................................................................................................................................................................................................

Fig. 1: Venn diagram of a free DSm model for a 2D frame.

θ1 = A ∪ C, θ2 = B ∪ C, θ1 ∩ θ2 = C

Then the classical power set ofΘref is given by

2Θref

= {∅, A,B,C,A ∪ B,A ∪ C,B ∪ C,A ∪ B ∪ C}

We see that we can define easily a one-to-one correspondence,written ∼, between all the elements of the
super-power setSΘ and the elements of the power set2Θref

as follows:

∅ ∼ ∅, (θ1 ∩ θ2) ∼ C, θ1 ∼ (A ∪ C), θ2 ∼ (B ∪ C), (θ1 ∪ θ2) ∼ (A ∪ B ∪ C)

c(θ1 ∩ θ2) ∼ (A ∪ B), c(θ1) ∼ B, c(θ2) ∼ A

Such one-to-one correspondence between the elements ofSΘ and2Θref
can be defined for any cardinality

|Θ| ≥ 2 of the frameΘ and thus one can considerSΘ as the mathematical construction of the power set2Θref

of the minimal refinement of the frameΘ. Of course, whenΘ already satisfies Shafer’s model, the hyper-power
set and the super-power set coincide with the classical power set ofΘ. It is worth to note that even if we have
a mathematical tool to built the minimal refined frame satisfying Shafer’s model, it doesn’t mean necessary
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that one must work with this super-power set in general in real applications because most of the times the
elements/granules ofSΘ have no clear physical meaning, not to mention the drastic increase of the complexity
since one has2Θ ⊆ DΘ ⊆ SΘ and

|2Θ| = 2|Θ| < |DΘ| < |SΘ| = 2
|Θref |

= 22|Θ|−1 (1)

Typically,

|Θ| = n |2Θ| = 2n |DΘ| |SΘ| = |2Θref | = 22n−1

2 4 5 23 = 8
3 8 19 27 = 128
4 16 167 215 = 32768
5 32 7580 231 = 2147483648

Table 2: Cardinalities of2Θ, DΘ andSΘ.

In summary, DSmT offers truly the possibility to build and towork on refined frames and to deal with
the complement whenever necessary, but in most of applications either the frameΘ is already built/chosen
to satisfy Shafer’s model or the refined granules have no clear physical meaning which finally prevent to be
considered/assessed individually so that working on the hyper-power set is usually sufficient for dealing with
uncertain imprecise (quantitative or qualitative) and highly conflicting sources of evidences. Working withSΘ

is actually very similar to working with2Θ in the sense that in both cases we work with classical power sets;
the only difference is that when working withSΘ we have implicitly switched from the original frameΘ repre-
sentation to a minimal refinementΘref representation. Therefore, in the sequel we focus our discussions based
mainly on hyper-power set rather than (super-) power set which has already been the basis for the development
of DST. But as already mentioned, DSmT can easily deal with belief functions defined on2Θ or SΘ similarly
as those defined onDΘ.

Generic notation: In the sequel, we use the generic notationGΘ for denoting the sets (power set, hyper-power
set and super-power set) on which the belief functions are defined.

Remark on the logical refinement: The refinement in logic theory presented recently by Cholvyin [2] was
actually proposed in nineties by a Guan and Bell [14] and by Paris [20]. This refinement is isomorphic to the
refinement in set theory done by many researchers. IfΘ = {θ1, θ2, θ3} is a language where the propositional
variables areθ1, θ2, θ3, Cholvy considers all 8 possible logical combinations of propositionsθi’s or negations
of θi’s (called interpretations), and defines the8 = 23 disjoint parts/propositions of the Venn diagram in Fig. 2
[one also considers as a part the negation of the total ignorance] in the set theory, so that:

i1 = θ1 ∧ θ2 ∧ θ3

i2 = θ1 ∧ θ2 ∧ ¬θ3

i3 = θ1 ∧ ¬θ2 ∧ θ3

i4 = θ1 ∧ ¬θ2 ∧ ¬θ3

i5 = ¬θ1 ∧ θ2 ∧ ∧θ3

i6 = ¬θ1 ∧ θ2 ∧ ¬θ3

i7 = ¬θ1 ∧ ¬θ2 ∧ θ3

i8 = ¬θ1 ∧ ¬θ2 ∧ ¬θ3

where¬θi means the negation ofθi.
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Fig. 2: Venn diagram of the free DSm model for a 3D frame.

Because of Shafer’s equivalence of subsets and propositions, Cholvy’s logical refinement is strictly equiv-
alent to the refinement we did already in 2006 in definingSΘ - see Chap. 8 of [34] - but in the set theory
framework. We did it using Smarandache’s codification (easyto understand and read) in the following way:

- each Venn diagram disjoint partpij , or pijk represents respectively the intersection ofpi andpj only, or
pi andpj andpk only, etc; while the complement of the total ignorance is consideredp0 [p stands for
part].

Thus, we have an easier and clearer representation in DSmT than in Cholvy’s logical representation. While
the refinement in DST using logical approach forn very large is very hard, we can simply consider in the DSmT
the super-power setSΘ = (Θ,∪,∩, c(.)). So, in DSmT representation the disjoint parts are noted as follows:

p123 = θ1 ∧ θ2 ∧ θ3 = i1

p12 = θ1 ∧ θ2 ∧ ¬θ3 = i2

p13 = θ1 ∧ ¬θ2 ∧ θ3 = i3

p23 = ¬θ1 ∧ θ2 ∧ θ3 = i5

p1 = θ1 ∧ ¬θ2 ∧ ¬θ3 = i4

p2 = ¬θ1 ∧ θ2 ∧ ¬θ3 = i6

p3 = ¬θ1 ∧ ¬θ2 ∧ θ3 = i7

p0 = ¬θ1 ∧ ¬θ2 ∧ ¬θ3 = i8

As seeing, in Smarandache’s codification a disjoint Venn diagram part is equal to the intersection of single-
tons whose indexes show up as indexes of the Venn part; for example inp12 case indexes 1 and 2, intersected
with the complement of the missing indexes, in this case index 3 is missing.

Smarandache’s codification can easily transform any set from SΘ into its canonical disjunctive normal form.
For example,θ1 = p1 ∪ p12 ∪ p13 ∪ p123 (i.e. all Venn diagram disjoint parts that contain the index“1” in their
indexes ; such indexes fromSΘ are 1, 12, 13, 123) can be expressed as

θ1 = (θ1 ∩ c(θ2) ∩ c(θ3)) ∪ (θ1 ∩ θ2 ∩ c(θ3))(θ1 ∩ c(θ2) ∩ θ3) ∪ (θ1 ∩ θ2 ∩ θ3)

where the set values of each part was taken from the above table.
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θ1∧θ2 = p12∪p123 (i.e. all Venn diagram disjoint parts that contain the index“12” in their indexes) equals
to (θ1 ∧ θ2 ∧ ¬θ3) ∨ (θ1 ∧ θ2 ∧ θ3).

The refinement based on Venn Diagram, becomes very hard and almost impossible when the cardinal ofΘ,
n, is large and all intersections are non-empty (the free model). Supposen = 20, or even bigger, and we have
the free model. How can we construct a Venn Diagram where to show all possible intersections of 20 sets? Its
geometrical figure would be very hard to design and very hard to read (you don’t identify well each disjoint
part of a such Venn Diagram to what intersection of sets it belongs to). The larger isn, the more difficult is
the refinement. Fortunately, based on Smarandache’s codification, we can algebraically design in an easy way
for all such intersections (for example, ifn is very big, we can use computer programs to make combinations
of indexes{1, 2, ..., n} taken in groups or 1, of 2, ..., or ofn elements each), so the refinement should not
be a big problem from the programming point of view, but we must always keep in mind if such refinement
is really necessary and if it has (or not) a deep physical interpretation and justification for the problem under
consideration.

The assertion in [2], upon Milan Daniel’s, that hybrid DSm rule is equivalent to Dubois-Prade rule is untrue,
since in dynamic fusion they give different results. Such example has been already given in [7] and is reported
in section 2.6.3 for the sake of clarification for the readers. The assertion in [2] that “from an expressivity point
of view DSmT is equivalent to DST” is partially true since this idea is true when the refinement is possible (not
always it is practically/physically possible), and even when the spaces we work on,SΘ = 2Θref

, where the
hypotheses are exclusive, DSmT offers the advantage that the refinement is already done (it is not necessary
for the user to do (or implicitly presuppose) it as in DST). Also, DSmT accepts from the very beginning the
possibility to deal with non-exclusive hypotheses and of course it can a fortiori deal with sets of exclusive hy-
pothesis and work either on2Θ or 2Θref

whenever necessary, while DST first requires implicitly to work with
exclusive hypotheses only.

The main distinctions between DSmT and DST are summarized bythe following points:

1. The refinement is not always (physically) possible, especially for elements from the frame of discernment
whose frontiers are not clear, such as: colors, vague sets, unclear hypotheses, etc. in the frame of
discernment; DST does not fit well for working in such cases, while DSmT does;

2. Even in the case when the frame of discernment can be refined(i.e. theatomicelements of the frame
have all a distinct physical meaning), it is still easier to use DSmT than DST since in DSmT framework
the refinement is done automatically by the mathematical construction of the super-power set;

3. DSmT offers better fusion rules, for example Proportional Conflict redistribution Rule # 5 (PCR5) -
presented in the sequel - is better than Dempster’s rule; hybrid DSm rule (DSmH) works for the dynamic
fusion, while Dubois-Prade fusion rule does not (DSmH is an extension of Dubois-Prade rule);

4. DSmT offers the best qualitative operators (when workingwith labels) giving the most accurate and
coherent results;

5. DSmT offers new interesting quantitative conditioning rules (BCRs) and qualitative conditioning rules
(QBCRs), different from Shafer’s conditioning rule (SCR).SCR can be seen simply as a combination of
a prior mass of belief with the massm(A) = 1 wheneverA is the conditioning event;

6. DSmT proposes a new approach for working with imprecise quantitative or qualitative information and
not limited to interval-valued belief structures as proposed generally in the literature [5,6,47].

2.2 Notion of free and hybrid DSm models

Free DSm model: The elementsθi, i = 1, . . . , n of Θ constitute the finite set of hypotheses/concepts charac-
terizing the fusion problem under consideration. When there is no constraint on the elements of the frame, we
call this model thefree DSm model, writtenMf (Θ). This free DSm model allows to deal directly with fuzzy
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concepts which depict a continuous and relative intrinsic nature and which cannot be precisely refined into finer
disjoint information granules having an absolute interpretation because of the unreachable universal truth. In
such case, the use of the hyper-power setDΘ (without integrity constraints) is particularly well adapted for
defining the belief functions one wants to combine.

Shafer’s model: In some fusion problems involving discrete concepts, all the elementsθi, i = 1, . . . , n of Θ
can be truly exclusive. In such case, all the exclusivity constraints onθi, i = 1, . . . , n have to be included in the
previous model to characterize properly the true nature of the fusion problem and to fit it with the reality. By
doing this, the hyper-power setDΘ as well as the super-power setSΘ reduce naturally to the classical power
set2Θ and this constitutes what we have calledShafer’s model, denotedM0(Θ). Shafer’s model corresponds
actually to the most restricted hybrid DSm model.

Hybrid DSm models: Between the class of fusion problems corresponding to the free DSm modelMf (Θ)
and the class of fusion problems corresponding to Shafer’s model M0(Θ), there exists another wide class
of hybrid fusion problems involving inΘ both fuzzy continuous concepts and discrete hypotheses. Insuch
(hybrid) class, some exclusivity constraints and possiblysome non-existential constraints (especially when
working on dynamic4 fusion) have to be taken into account. Each hybrid fusion problem of this class will then
be characterized by a proper hybrid DSm model denotedM(Θ) with M(Θ) 6= Mf (Θ) andM(Θ) 6= M0(Θ).

In any fusion problems, we consider as primordial at the verybeginning and before combining information
expressed as belief functions to define clearly the proper frameΘ of the given problem and to choose explicitly
its corresponding model one wants to work with. Once this is done, the second important point is to select
the proper set2Θ, DΘ or SΘ on which the belief functions will be defined. The third important point will be
the choice of an efficient rule of combination of belief functions and finally the criteria adopted for decision-
making.

In the sequel, we focus our presentation mainly on hyper-power setDΘ (unless specified) since it the most
interesting new aspect of DSmT for readers already familiarwith DST framework, but a fortiori we can work
similarly on classical power set2Θ if Shafer’s model holds, and even on2Θref

(the power set of the minimal
refined frame) whenever one wants to use it and if possible.

Examples of models for a frameΘ:

• Let’s consider the 2D problem whereΘ = {θ1, θ2} with DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2} and assume

now thatθ1 andθ2 are truly exclusive (i.e. Shafer’s modelM0 holds), then becauseθ1 ∩ θ2
M0

= ∅, one gets

DΘ = {∅, θ1 ∩ θ2
M0

= ∅, θ1, θ2, θ1 ∪ θ2} = {∅, θ1, θ2, θ1 ∪ θ2} ≡ 2Θ.

• As another simple example of hybrid DSm model, let’s consider the 3D case with the frameΘ = {θ1, θ2, θ3}
with the modelM 6= Mf in which we force all possible conjunctions to be empty, butθ1 ∩ θ2. This hybrid
DSm model is then represented with the Venn diagram on Fig. 3 (where boundaries of intersection ofθ1 andθ2

are not precisely defined ifθ1 andθ2 represent only fuzzy concepts likesmallnessandtallnessby example).

2.3 Generalized belief functions

From a general frameΘ, we define a mapm(.) : GΘ → [0, 1] associated to a given body of evidenceB as

m(∅) = 0 and
∑

A∈GΘ

m(A) = 1 (2)

The quantitym(A) is called thegeneralized basic belief assignment/mass(gbba) ofA.

4i.e. when the frameΘ and/or the modelM is changing with time.
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Fig. 3: Venn diagram of a DSm hybrid model for a 3D frame.

Thegeneralized belief and plausibility functionsare defined in almost the same manner as within DST, i.e.

Bel(A) =
∑

B⊆A
B∈GΘ

m(B) Pl(A) =
∑

B∩A 6=∅
B∈GΘ

m(B) (3)

We recall thatGΘ is the generic notation for the set on which the gbba is defined(GΘ can be2Θ, DΘ

or evenSΘ depending on the model chosen forΘ). These definitions are compatible with the definitions of
the classical belief functions in DST framework whenGΘ = 2Θ for fusion problems where Shafer’s model
M0(Θ) holds. We still have∀A ∈ GΘ, Bel(A) ≤ Pl(A). Note that when working with the free DSm model
Mf (Θ), one has always Pl(A) = 1 ∀A 6= ∅ ∈ (GΘ = DΘ) which is normal.

Example: Let’s consider the simple frameΘ = {A,B}, then depending on the model we choose forGΘ, one
will consider either:

• GΘ as the power set2Θ and therefore:

m(A) + m(B) + m(A ∪ B) = 1

• GΘ as the hyper-power setDΘ and therefore:

m(A) + m(B) + m(A ∪ B) + m(A ∩ B) = 1

• GΘ as the super-power setSΘ and therefore:

m(A) + m(B) + m(A ∪ B) + m(A ∩ B) + m(c(A)) + m(c(B)) + m(c(A) ∪ c(B)) = 1

2.4 The classic DSm rule of combination

When the free DSm modelMf (Θ) holds for the fusion problem under consideration, the classic DSm rule of
combinationmMf (Θ) ≡ m(.) , [m1 ⊕ m2](.) of two independent5 sources of evidencesB1 andB2 over the
same frameΘ with belief functions Bel1(.) and Bel2(.) associated with gbbam1(.) andm2(.) corresponds to
the conjunctive consensus of the sources. It is given by [31]:

∀C ∈ DΘ, mMf (Θ)(C) ≡ m(C) =
∑

A,B∈DΘ

A∩B=C

m1(A)m2(B) (4)

SinceDΘ is closed under∪ and∩ set operators, this new rule of combination guarantees thatm(.) is a
proper generalized belief assignment, i.e.m(.) : DΘ → [0, 1]. This rule of combination is commutative and
associative and can always be used for the fusion of sources involving fuzzy concepts when free DSm model
holds for the problem under consideration. This rule has been extended fors > 2 sources in [31].

5While independence is a difficult concept to define in all theories managing epistemic uncertainty, we follow here the
interpretation of Smets in [37] and [38], p. 285 and considerthat two sources of evidence are independent (i.e distinct and
noninteracting) if each leaves one totally ignorant about the particular value the other will take.
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According to Table 2, this classic DSm rule of combination looks very expensive in terms of computations
and memory size due to the huge number of elements inDΘ when the cardinality ofΘ increases. This remark
is however valid only if the cores (the set of focal elements of gbba)K1(m1) andK2(m2) coincide withDΘ,
i.e. whenm1(A) > 0 andm2(A) > 0 for all A 6= ∅ ∈ DΘ. Fortunately, it is important to note here that in
most of the practical applications the sizes ofK1(m1) andK2(m2) are much smaller than|DΘ| because bodies
of evidence generally allocate their basic belief assignments only over a subset of the hyper-power set. This
makes things easier for the implementation of the classic DSm rule (4). The DSm rule is actually very easy
to implement. It suffices for each focal element ofK1(m1) to multiply it with the focal elements ofK2(m2)
and then to pool all combinations which are equivalent underthe algebra of sets. While very costly in term on
memory storage in the worst case (i.e. when allm(A) > 0, A ∈ DΘ or A ∈ 2Θref

), the DSm rule however
requires much smaller memory storage than when working withSΘ, i.e. working with a minimal refined frame
satisfying Shafer’s model.

In most fusion applications only a small subset of elements of DΘ have a non null basic belief mass be-
cause all the commitments are just usually impossible to obtain precisely when the dimension of the problem
increases. Thus, it is not necessary to generate and keep in memory all elements ofDΘ (or eventuallySΘ) but
only those which have a positive belief mass. However there is a real technical challenge on how to manage
efficiently all elements of the hyper-power set. This problem is obviously much more difficult when trying to
work on a refined frame of discernmentΘref if one really prefers to use Dempster-Shafer theory and apply
Dempster’s rule of combination. It is important to keep in mind that the ultimate and minimal refined frame
consisting in exhaustive and exclusive finite set of refined exclusive hypotheses is just impossible to justify and
to define precisely for all problems dealing with fuzzy and ill-defined continuous concepts. A discussion on
refinement with an example has be included in [31].

2.5 The hybrid DSm rule of combination

When the free DSm modelMf (Θ) does not hold due to the true nature of the fusion problem under consid-
eration which requires to take into account some known integrity constraints, one has to work with a proper
hybrid DSm modelM(Θ) 6= Mf (Θ). In such case, the hybrid DSm rule (DSmH) of combination based on
the chosen hybrid DSm modelM(Θ) for k ≥ 2 independent sources of information is defined for allA ∈ DΘ

as [31]:

mDSmH(A) = mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(5)

where all sets involved in formulas are in the canonical formandφ(A) is thecharacteristic non-emptiness
functionof a setA, i.e. φ(A) = 1 if A /∈ ∅ andφ(A) = 0 otherwise, where∅ , {∅M, ∅}. ∅M is the set of
all elements ofDΘ which have been forced to be empty through the constraints ofthe modelM and∅ is the
classical/universal empty set.S1(A) ≡ mMf (θ)(A), S2(A), S3(A) are defined by

S1(A) ,
∑

X1,X2,...,Xk∈DΘ

X1∩X2∩...∩Xk=A

k∏

i=1

mi(Xi) (6)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏

i=1

mi(Xi) (7)

S3(A) ,
∑

X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xk=A
X1∩X2∩...∩Xk∈∅

k∏

i=1

mi(Xi) (8)

with U , u(X1)∪u(X2)∪. . .∪u(Xk) whereu(X) is the union of allθi that composeX, It , θ1∪θ2∪. . .∪θn

is the total ignorance.S1(A) corresponds to the classic DSm rule fork independent sources based on the free
DSm modelMf (Θ); S2(A) represents the mass of all relatively and absolutely empty sets which is transferred

13



to the total or relative ignorances associated with non existential constraints (if any, like in some dynamic
problems);S3(A) transfers the sum of relatively empty sets directly onto thecanonical disjunctive form of
non-empty sets.

The hybrid DSm rule of combination generalizes the classic DSm rule of combination and is not equivalent
to Dempter’s rule. It works for any models (the free DSm model, Shafer’s model or any other hybrid models)
when manipulatingprecisegeneralized (or eventually classical) basic belief functions. An extension of this
rule for the combination ofimprecisegeneralized (or eventually classical) basic belief functions is presented
in next section. As already stated, in DSmT framework it is also possible to deal directly with complements
if necessary depending on the problem under consideration and the information provided by the sources of
evidence themselves.

The first and simplest way is to work withSΘ on Shafer’s model when a minimal refinement is possible and
makes sense. The second way is to deal with partially known frame and introduce directly the complementary
hypotheses into the frame itself. By example, if one knows only two hypothesesθ1, θ2 and their complements
θ̄1, θ̄2, then we can choose switch from original frameΘ = {θ1, θ2} to the new frameΘ = {θ1, θ2, θ̄1, θ̄2}. In
such case, we don’t necessarily assume thatθ̄1 = θ2 andθ̄2 = θ1 becausēθ1 andθ̄2 may include other unknown
hypotheses we have no information about (case of partial known frame). More generally, in DSmT framework,
it is not necessary that the frame is built on pure/simple (possibly vague) hypothesesθi as usually done in
all theories managing uncertainty. The frameΘ can also contain directly as elements conjunctions and/or
disjunctions (or mixed propositions) and negations/complements of pure hypotheses as well. The DSm rules
also work in such non-classic frames because DSmT works on any distributive lattice built fromΘ anywhere
Θ is defined.

2.6 Examples of combination rules

Here are some numerical examples on results obtained by DSm rules of combination. More examples can be
found in [31].

2.6.1 Example withΘ = {θ1, θ2, θ3, θ4}

Let’s consider the frame of discernmentΘ = {θ1, θ2, θ3, θ4}, two independent experts, and the two following
bbas

m1(θ1) = 0.6 m1(θ3) = 0.4 m2(θ2) = 0.2 m2(θ4) = 0.8

represented in terms of mass matrix

M =

[
0.6 0 0.4 0
0 0.2 0 0.8

]

• Dempster’s rule cannot be applied because:∀1 ≤ j ≤ 4, one getsm(θj) = 0/0 (undefined!).

• But the classic DSm rule works because one obtains:m(θ1) = m(θ2) = m(θ3) = m(θ4) = 0, and
m(θ1 ∩ θ2) = 0.12, m(θ1 ∩ θ4) = 0.48, m(θ2 ∩ θ3) = 0.08, m(θ3 ∩ θ4) = 0.32 (partial para-
doxes/conflicts).

• Suppose now one finds out that all intersections are empty (Shafer’s model), then one applies the hybrid
DSm rule and one gets (indexh stands here forhybrid rule): mh(θ1 ∪ θ2) = 0.12, mh(θ1 ∪ θ4) = 0.48,
mh(θ2 ∪ θ3) = 0.08 andmh(θ3 ∪ θ4) = 0.32.

2.6.2 Generalization of Zadeh’s example withΘ = {θ1, θ2, θ3}

Let’s consider0 < ǫ1, ǫ2 < 1 be two very tiny positive numbers (close to zero), the frame of discernment be
Θ = {θ1, θ2, θ3}, have two experts (independent sources of evidences1 ands2) giving the belief masses

m1(θ1) = 1 − ǫ1 m1(θ2) = 0 m1(θ3) = ǫ1

m2(θ1) = 0 m2(θ2) = 1 − ǫ2 m2(θ3) = ǫ2
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From now on, we prefer to use matrices to describe the masses,i.e.

[
1 − ǫ1 0 ǫ1

0 1 − ǫ2 ǫ2

]

• Using Dempster’s rule of combination, one gets

m(θ3) =
(ǫ1ǫ2)

(1 − ǫ1) · 0 + 0 · (1 − ǫ2) + ǫ1ǫ2
= 1

which is absurd (or at least counter-intuitive). Note that whatever positive values forǫ1, ǫ2 are, Demp-
ster’s rule of combination provides always the same result (one) which is abnormal. The only acceptable
and correct result obtained by Dempster’s rule is really obtained only in the trivial case whenǫ1 = ǫ2 = 1,
i.e. when both sources agree inθ3 with certainty which is obvious.

• Using the DSm rule of combination based on free-DSm model, one getsm(θ3) = ǫ1ǫ2, m(θ1 ∩ θ2) =
(1− ǫ1)(1− ǫ2), m(θ1∩θ3) = (1− ǫ1)ǫ2, m(θ2∩θ3) = (1− ǫ2)ǫ1 and the others are zero which appears
more reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combination, one getsm(θ3) = ǫ1ǫ2,
m(θ1 ∪ θ2) = (1 − ǫ1)(1 − ǫ2), m(θ1 ∪ θ3) = (1 − ǫ1)ǫ2, m(θ2 ∪ θ3) = (1 − ǫ2)ǫ1 and the others are
zero.

Note that in the special case whenǫ1 = ǫ2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2

m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yieldsm(θ3) = 1 while the hybrid DSm rule based on the same Shafer’s
model yields nowm(θ3) = 1/4, m(θ1 ∪ θ2) = 1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is normal.

2.6.3 Comparison with Smets, Yager and Dubois & Prade rules

We compare the results provided by DSmT rules and the main common rules of combination on the follow-
ing very simple numerical example where only 2 independent sources (a priori assumed equally reliable) are
involved and providing their belief initially on the 3D frame Θ = {θ1, θ2, θ3}. It is assumed in this example
that Shafer’s model holds and thus the belief assignmentsm1(.) andm2(.) do not commit belief to internal
conflicting information.m1(.) andm2(.) are chosen as follows:

m1(θ1) = 0.1 m1(θ2) = 0.4 m1(θ3) = 0.2 m1(θ1 ∪ θ2) = 0.3

m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.3 m2(θ1 ∪ θ2) = 0.1

These belief masses are usually represented in the form of a belief mass matrixM given by

M =

[
0.1 0.4 0.2 0.3
0.5 0.1 0.3 0.1

]

(9)

where indexi for the rows corresponds to the index of the source no.i and the indexesj for columns ofM
correspond to a given choice for enumerating the focal elements of all sources. In this particular example, in-
dexj = 1 corresponds toθ1, j = 2 corresponds toθ2, j = 3 corresponds toθ3 andj = 4 corresponds toθ1∪θ2.

Now let’s imagine that one finds out thatθ3 is actually truly empty because some extra and certain knowl-
edge onθ3 is received by the fusion center. As example,θ1, θ2 and θ3 may correspond to three suspects
(potential murders) in a police investigation,m1(.) andm2(.) corresponds to two reports of independent wit-
nesses, but it turns out that finallyθ3 has provided a strong alibi to the criminal police investigator once arrested
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by the policemen. This situation corresponds to set up a hybrid modelM with the constraintθ3
M
= ∅.

Let’s examine the result of the fusion in such situation obtained by the Smets’, Yager’s, Dubois & Prade’s
and hybrid DSm rules of combinations. First note that, basedon the free DSm model, one would get by
applying the classic DSm rule (denoted here by indexDSmC) the following fusion result

mDSmC(θ1) = 0.21 mDSmC(θ2) = 0.11

mDSmC(θ3) = 0.06 mDSmC(θ1 ∪ θ2) = 0.03

mDSmC(θ1 ∩ θ2) = 0.21 mDSmC(θ1 ∩ θ3) = 0.13

mDSmC(θ2 ∩ θ3) = 0.14 mDSmC(θ3 ∩ (θ1 ∪ θ2)) = 0.11

But because of the exclusivity constraints (imposed here bythe use of Shafer’s model and by the non-

existential constraintθ3
M
= ∅), the total conflicting mass is actually given byk12 = 0.06+0.21+0.13+0.14+

0.11 = 0.65.

• If one appliesDempster’s rule [24] (denoted here by indexDS), one gets:

mDS(∅) = 0

mDS(θ1) = 0.21/[1 − k12] = 0.21/[1 − 0.65] = 0.21/0.35 = 0.600000

mDS(θ2) = 0.11/[1 − k12] = 0.11/[1 − 0.65] = 0.11/0.35 = 0.314286

mDS(θ1 ∪ θ2) = 0.03/[1 − k12] = 0.03/[1 − 0.65] = 0.03/0.35 = 0.085714

• If one appliesSmets’ rule[39,40] (i.e. the non normalized version of Dempster’s rulewith the conflicting
mass transferred onto the empty set), one gets:

mS(∅) = m(∅) = 0.65 (conflicting mass)

mS(θ1) = 0.21

mS(θ2) = 0.11

mS(θ1 ∪ θ2) = 0.03

• If one appliesYager’s rule [48,49,50], one gets:

mY (∅) = 0

mY (θ1) = 0.21

mY (θ2) = 0.11

mY (θ1 ∪ θ2) = 0.03 + k12 = 0.03 + 0.65 = 0.68

• If one appliesDubois & Prade’s rule [12], one gets becauseθ3
M
= ∅ :

mDP (∅) = 0 (by definition of Dubois & Prade’s rule)

mDP (θ1) = [m1(θ1)m2(θ1) + m1(θ1)m2(θ1 ∪ θ2)

+ m2(θ1)m1(θ1 ∪ θ2)]

+ [m1(θ1)m2(θ3) + m2(θ1)m1(θ3)]

= [0.1 · 0.5 + 0.1 · 0.1 + 0.5 · 0.3] + [0.1 · 0.3 + 0.5 · 0.2]

= 0.21 + 0.13 = 0.34

mDP (θ2) = [0.4 · 0.1 + 0.4 · 0.1 + 0.1 · 0.3] + [0.4 · 0.3 + 0.1 · 0.2]

= 0.11 + 0.14 = 0.25
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mDP (θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)]

+ [m1(θ1 ∪ θ2)m2(θ3) + m2(θ1 ∪ θ2)m1(θ3)]

+ [m1(θ1)m2(θ2) + m2(θ1)m1(θ2)]

= [0.30.1] + [0.3 · 0.3 + 0.1 · 0.2] + [0.1 · 0.1 + 0.5 · 0.4]

= [0.03] + [0.09 + 0.02] + [0.01 + 0.20]

= 0.03 + 0.11 + 0.21 = 0.35

Now if one adds up the masses, one gets0 + 0.34 + 0.25 + 0.35 = 0.94 which is less than 1. Therefore
Dubois & Prade’s rule of combination does not work when a singleton, or an union of singletons, becomes
empty (in a dynamic fusion problem). The products of such empty-element columns of the mass matrix
M are lost; this problem is fixed in DSmT by the sumS2(.) in (5) which transfers these products to the
total or partial ignorances.

• Finally, if one appliesDSmH rule, one gets becauseθ3
M
= ∅ :

mDSmH(∅) = 0 (by definition of DSmH)

mDSmH(θ1) = 0.34 (same asmDP (θ1))

mDSmH(θ2) = 0.25 (same asmDP (θ2))

mDSmH(θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)]

+ [m1(θ1 ∪ θ2)m2(θ3) + m2(θ1 ∪ θ2)m1(θ3)]

+ [m1(θ1)m2(θ2) + m2(θ1)m1(θ2)] + [m1(θ3)m2(θ3)]

= 0.03 + 0.11 + 0.21 + 0.06 = 0.35 + 0.06 = 0.41

6= mDP (θ1 ∪ θ2)

We can easily verify thatmDSmH(θ1) + mDSmH(θ2) + mDSmH(θ1 ∪ θ2) = 1. In this example, using
the hybrid DSm rule, one transfers the product of the empty-elementθ3 column,m1(θ3)m2(θ3) = 0.2 ·
0.3 = 0.06, to mDSmH(θ1 ∪ θ2), which becomes equal to0.35 + 0.06 = 0.41. Clearly, DSmH rule
doesn’t provide the same result as Dubois and Prade’s rule, but only when working on static frames of
discernment (restricted cases).

2.7 Fusion of imprecise beliefs

In many fusion problems, it seems very difficult (if not impossible) to have precise sources of evidence gener-
ating precise basic belief assignments (especially when belief functions are provided by human experts), and
a more flexible plausible and paradoxical theory supportingimprecise information becomes necessary. In the
previous sections, we presented the fusion ofpreciseuncertain and conflicting/paradoxical generalized basic
belief assignments (gbba) in DSmT framework. We mean here byprecise gbba, basic belief functions/masses
m(.) defined precisely on the hyper-power setDΘ where each massm(X), whereX belongs toDΘ, is repre-
sented by only one real number belonging to[0, 1] such that

∑

X∈DΘ m(X) = 1. In this section, we present
the DSm fusion rule for dealing withadmissible imprecise generalized basic belief assignments mI(.) defined
as real subunitary intervals of[0, 1], or even more general as real subunitary sets [i.e. sets, notnecessarily
intervals].

An imprecise belief assignmentmI(.) over DΘ is saidadmissibleif and only if there exists for every
X ∈ DΘ at least one real numberm(X) ∈ mI(X) such that

∑

X∈DΘ m(X) = 1. The idea to work with
imprecise belief structures represented by real subset intervals of[0, 1] is not new and has been investigated
in [16, 5, 6] and references therein. The proposed works available in the literature, upon our knowledge were
limited only to sub-unitary interval combination in the framework of Transferable Belief Model (TBM) de-
veloped by Smets [39, 40]. We extend the approach of Lamata & Moral and Denœux based on subunitary
interval-valued masses to subunitary set-valued masses; therefore the closed intervals used by Denœux to de-
note imprecise masses are generalized to any sets included in [0,1], i.e. in our case these sets can be unions
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of (closed, open, or half-open/half-closed) intervals and/or scalars all in[0, 1]. Here, the proposed extension
is done in the context of DSmT framework, although it can alsoapply directly to fusion of imprecise belief
structures within TBM as well if the user prefers to adopt TBMrather than DSmT.

Before presenting the general formula for the combination of generalized imprecise belief structures, we
remind the following set operators involved in the DSm fusion formulas. Several numerical examples are given
in the chapter 6 of [31].

• Addition of sets
S1 ⊞ S2 = S2 ⊞ S1 , {x | x = s1 + s2, s1 ∈ S1, s2 ∈ S2}

• Subtraction of sets
S1 ⊟ S2 , {x | x = s1 − s2, s1 ∈ S1, s2 ∈ S2}

• Multiplication of sets
S1 � S2 , {x | x = s1 · s2, s1 ∈ S1, s2 ∈ S2}

• Division of sets: If 0 doesn’t belong toS2,

S1 � S2 , {x | x = s1/s2, s1 ∈ S1, s2 ∈ S2}

2.7.1 DSm rule of combination for imprecise beliefs

We present the generalization of the DSm rules to combine anytype of imprecise belief assignment which may
be represented by the union of several sub-unitary (half-) open intervals, (half-)closed intervals and/or sets of
points belonging to [0,1]. Several numerical examples are also given. In the sequel, one uses the notation(a, b)
for an open interval,[a, b] for a closed interval, and(a, b] or [a, b) for a half open and half closed interval. From
the previous operators on sets, one can generalize the DSm rules (classic and hybrid) from scalars to sets in the
following way [31] (chap. 6):∀A 6= ∅ ∈ DΘ,

mI(A) =
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏

i=1,...,k

mI
i (Xi) (10)

where
∑

and
∏

represent the summation, and respectively product, of sets.

Similarly, one can generalize the hybrid DSm rule from scalars to sets in the following way:

mI
DSmH(A) = mI

M(Θ)(A) , φ(A) �

[

SI
1(A) ⊞ SI

2(A) ⊞ SI
3(A)

]

(11)

where all sets involved in formulas are in the canonical formandφ(A) is thecharacteristic non emptiness
functionof the setA andSI

1(A), SI
2(A) andSI

3(A) are defined by

SI
1(A) ,

∑

X1,X2,...,Xk∈DΘ

X1∩X2∩...∩Xk=A

∏

i=1,...,k

mI
i (Xi) (12)

SI
2(A) ,

∑

X1,X2,...,Xk∈∅
[U=A]∨[(U∈∅)∧(A=It)]

∏

i=1,...,k

mI
i (Xi) (13)

SI
3(A) ,

∑

X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xk=A

X1∩X2∩...∩Xk∈∅

∏

i=1,...,k

mI
i (Xi) (14)

In the case when all sets are reduced to points (numbers), theset operations become normal operations with
numbers; the sets operations are generalizations of numerical operations. When imprecise belief structures re-
duce to precise belief structure, DSm rules (10) and (11) reduce to their precise version (4) and (5) respectively.
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2.7.2 Example

Here is a simple example of fusion with multiple-interval masses. For simplicity, this example is a particular
case when the theorem of admissibility (see [31] p. 138 for details) is verified by a few points, which happen to
be just on the bounders. It is an extreme example, because we tried to comprise all kinds of possibilities which
may occur in the imprecise or very imprecise fusion. So, let’s consider a fusion problem overΘ = {θ1, θ2},
two independent sources of information with the following imprecise admissible belief assignments

A ∈ DΘ mI
1(A) mI

2(A)

θ1 [0.1, 0.2] ∪ {0.3} [0.4, 0.5]
θ2 (0.4, 0.6) ∪ [0.7, 0.8] [0, 0.4] ∪ {0.5, 0.6}

Table 3: Inputs of the fusion with imprecise bba’s.

Using the DSm classic (DSmC) rule for sets, one gets

mI(θ1) = ([0.1, 0.2] ∪ {0.3}) � [0.4, 0.5]

= ([0.1, 0.2] � [0.4, 0.5]) ∪ ({0.3} � [0.4, 0.5])

= [0.04, 0.10] ∪ [0.12, 0.15]

mI(θ2) = ((0.4, 0.6) ∪ [0.7, 0.8]) � ([0, 0.4] ∪ {0.5, 0.6})

= ((0.4, 0.6) � [0, 0.4]) ∪ ((0.4, 0.6) � {0.5, 0.6})

∪ ([0.7, 0.8] � [0, 0.4]) ∪ ([0.7, 0.8] � {0.5, 0.6})

= (0, 0.24) ∪ (0.20, 0.30) ∪ (0.24, 0.36) ∪ [0, 0.32]

∪ [0.35, 0.40] ∪ [0.42, 0.48] = [0, 0.40] ∪ [0.42, 0.48]

mI(θ1 ∩ θ2) = [([0.1, 0.2] ∪ {0.3}) � ([0, 0.4] ∪ {0.5, 0.6})] ⊞ [[0.4, 0.5]

� ((0.4, 0.6) ∪ [0.7, 0.8])]

= [([0.1, 0.2] � [0, 0.4]) ∪ ([0.1, 0.2] � {0.5, 0.6})

∪ ({0.3} � [0, 0.4]) ∪ ({0.3} � {0.5, 0.6})]

⊞ [([0.4, 0.5] � (0.4, 0.6)) ∪ ([0.4, 0.5] � [0.7, 0.8])]

= [[0, 0.08] ∪ [0.05, 0.10] ∪ [0.06, 0.12] ∪ [0, 0.12]

∪ {0.15, 0.18}] ⊞ [(0.16, 0.30) ∪ [0.28, 0.40]]

= [[0, 0.12] ∪ {0.15, 0.18}] ⊞ (0.16, 0.40]

= (0.16, 0.52] ∪ (0.31, 0.55] ∪ (0.34, 0.58] = (0.16, 0.58]

Hence finally the fusion admissible result with DSmC rule is given by:

A ∈ DΘ mI(A) = [mI
1 ⊕ mI

2](A)

θ1 [0.04, 0.10] ∪ [0.12, 0.15]
θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2 (0.16, 0.58]
θ1 ∪ θ2 0

Table 4: Fusion result with the DSmC rule.

If one finds out6 thatθ1∩ θ2
M
≡ ∅ (this is our hybrid modelM one wants to deal with), then one uses the hybrid

DSm rule for sets (11):mI
M(θ1 ∩ θ2) = 0 andmI

M(θ1 ∪ θ2) = (0.16, 0.58], the others imprecise masses are
not changed.

6We consider now a dynamic fusion problem.
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With the hybrid DSm rule (DSmH) applied to imprecise beliefs, one gets now the results given in Table 5.

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10] ∪ [0.12, 0.15]
θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

Table 5: Fusion result with DSmH rule forM.

Let’s check now the admissibility condition. For the source1, there exist the precise masses(m1(θ1) =
0.3) ∈ ([0.1, 0.2]∪{0.3}) and(m1(θ2) = 0.7) ∈ ((0.4, 0.6)∪[0.7, 0.8]) such that0.3+0.7 = 1. For the source
2, there exist the precise masses(m1(θ1) = 0.4) ∈ ([0.4, 0.5]) and(m2(θ2) = 0.6) ∈ ([0, 0.4] ∪ {0.5, 0.6})
such that0.4 + 0.6 = 1. Therefore both sources associated withmI

1(.) andmI
2(.) are admissible imprecise

sources of information. It can be verified that DSmC fusion ofm1(.) andm2(.) yields the paradoxical bba
m(θ1) = [m1⊕m2](θ1) = 0.12, m(θ2) = [m1⊕m2](θ2) = 0.42 andm(θ1∩θ2) = [m1⊕m2](θ1∩θ2) = 0.46.
One sees that the admissibility condition is satisfied since(m(θ1) = 0.12) ∈ (mI(θ1) = [0.04, 0.10] ∪
[0.12, 0.15]), (m(θ2) = 0.42) ∈ (mI(θ2) = [0, 0.40]∪[0.42, 0.48]) and(m(θ1∩θ2) = 0.46) ∈ (mI(θ1∩θ2) =
(0.16, 0.58]) such that0.12+0.42+0.46 = 1. Similarly if one finds out thatθ1∩ θ2 = ∅, then one uses DSmH
rule and one gets:m(θ1 ∩ θ2) = 0 andm(θ1 ∪ θ2) = 0.46; the others remain unchanged. The admissibility
condition still holds, because one can pick at least one number in each subsetmI(.) such that the sum of these
numbers is 1.

3 Proportional Conflict Redistribution rule

Instead of applying a direct transfer of partial conflicts onto partial uncertainties as with DSmH, the idea behind
the Proportional Conflict Redistribution (PCR) rule [33,34] is to transfer (total or partial) conflicting masses to
non-empty sets involved in the conflicts proportionally with respect to the masses assigned to them by sources
as follows:

1. calculation the conjunctive rule of the belief masses of sources;

2. calculation the total or partial conflicting masses;

3. redistribution of the (total or partial) conflicting masses to the non-empty sets involved in the conflicts
proportionally with respect to their masses assigned by thesources.

The way the conflicting mass is redistributed yields actually several versions of PCR rules. These PCR fusion
rules work for any degree of conflict, for any DSm models (Shafer’s model, free DSm model or any hybrid
DSm model) and both in DST and DSmT frameworks for static or dynamical fusion situations. We present
below only the most sophisticated proportional conflict redistribution rule denoted PCR5 in [33, 34]. PCR5
rule is what we feel the most efficient PCR fusion rule developed so far. This rule redistributes the partial
conflicting mass to the elements involved in the partial conflict, considering the conjunctive normal form of
the partial conflict. PCR5 is what we think the most mathematically exact redistribution of conflicting mass to
non-empty sets following the logic of the conjunctive rule.It does a better redistribution of the conflicting mass
than Dempster’s rule since PCR5 goes backwards on the tracksof the conjunctive rule and redistributes the
conflicting mass only to the sets involved in the conflict and proportionally to their masses put in the conflict.
PCR5 rule is quasi-associative and preserves the neutral impact of the vacuous belief assignment because in
any partial conflict, as well in the total conflict (which is a sum of all partial conflicts), the conjunctive normal
form of each partial conflict does not includeΘ sinceΘ is a neutral element for intersection (conflict), therefore
Θ gets no mass after the redistribution of the conflicting mass. We have proved in [34] the continuity property
of the fusion result with continuous variations of bba’s to combine.
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3.1 PCR formulas

The PCR5 formula for the combination of two sources (s = 2) is given by:mPCR5(∅) = 0 and∀X ∈ GΘ\{∅}

mPCR5(X) = m12(X) +
∑

Y ∈GΘ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (15)

where all sets involved in formulas are in canonical form andwhereGΘ corresponds to classical power set2Θ if
Shafer’s model is used, or to a constrained hyper-power setDΘ if any other hybrid DSm model is used instead,
or to the super-power setSΘ if the minimal refinementΘref of Θ is used;m12(X) ≡ m∩(X) corresponds to
the conjunctive consensus onX between thes = 2 sources and where all denominators are different from zero.
If a denominator is zero, that fraction is discarded.

A general formula of PCR5 for the fusion ofs > 2 sources has been proposed in [34], but a more intu-
itive PCR formula (denoted PCR6) which provides good results in practice has been proposed by Martin and
Osswald in [34] (pages 69-88) and is given by:mPCR6(∅) = 0 and∀X ∈ GΘ \ {∅}

mPCR6(X) = m12...s(X) +

s∑

i=1

mi(X)2
∑

s−1
∩

k=1
Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(s−1))∈(GΘ)s−1










s−1∏

j=1

mσi(j)(Yσi(j))

mi(X)+

s−1∑

j=1

mσi(j)(Yσi(j))










(16)

whereσi counts from 1 tos avoidingi:

{
σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i,

(17)

SinceYi is a focal element of expert/sourcei, mi(X)+

s−1∑

j=1

mσi(j)(Yσi(j)) 6= 0; the belief mass assignment

m12...s(X) ≡ m∩(X) corresponds to the conjunctive consensus onX between thes > 2 sources. For two
sources (s = 2), PCR5 and PCR6 formulas coincide.

3.2 Examples

• Example 1: Let’s takeΘ = {A,B} of exclusive elements (Shafer’s model), and the following bba:

A B A ∪ B

m1(.) 0.6 0 0.4
m2(.) 0 0.3 0.7

m∩(.) 0.42 0.12 0.28

The conflicting mass isk12 = m∩(A∩B) and equalsm1(A)m2(B)+m1(B)m2(A) = 0.18. Therefore
A andB are the only focal elements involved in the conflict. Hence according to the PCR5 hypothesis
only A and B deserve a part of the conflicting mass andA ∪ B do not deserve. With PCR5, one
redistributes the conflicting massk12 = 0.18 to A andB proportionally with the massesm1(A) and
m2(B) assigned toA andB respectively.
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Here are the results obtained from Dempster’s rule, DSmH andPCR5:

A B A ∪ B

mDS 0.512 0.146 0.342
mDSmH 0.420 0.120 0.460
mPCR5 0.540 0.180 0.280

• Example 2: Let’s modify example 1 and consider

A B A ∪ B

m1(.) 0.6 0 0.4
m2(.) 0.2 0.3 0.5

m∩(.) 0.50 0.12 0.20

The conflicting massk12 = m∩(A∩B) as well as the distribution coefficients for the PCR5 remainsthe
same as in the previous example but one gets now

A B A ∪ B

mDS 0.609 0.146 0.231
mDSmH 0.500 0.120 0.380
mPCR5 0.620 0.180 0.200

• Example 3: Let’s modify example 2 and consider

A B A ∪ B

m1(.) 0.6 0.3 0.1
m2(.) 0.2 0.3 0.5

m∩(.) 0.44 0.27 0.05

The conflicting massk12 = 0.24 = m1(A)m2(B) + m1(B)m2(A) = 0.24 is now different from
previous examples, which means thatm2(A) = 0.2 and m1(B) = 0.3 did make an impact on the
conflict. ThereforeA andB are the only focal elements involved in the conflict and thus only A andB
deserve a part of the conflicting mass. PCR5 redistributes the partial conflicting mass 0.18 toA andB
proportionally with the massesm1(A) andm2(B) and also the partial conflicting mass 0.06 toA andB
proportionally with the massesm2(A) andm1(B). After all derivations (see [13] for details), one finally
gets:

A B A ∪ B

mDS 0.579 0.355 0.066
mDSmH 0.440 0.270 0.290
mPCR5 0.584 0.366 0.050

One clearly sees thatmDS(A ∪ B) gets some mass from the conflicting mass althoughA ∪ B does not
deserve any part of the conflicting mass (according to PCR5 hypothesis) sinceA ∪ B is not involved in
the conflict (onlyA andB are involved in the conflicting mass). Dempster’s rule appears to us less exact
than PCR5 and Inagaki’s rules [15]. It can be showed [13] thatInagaki’s fusion rule (with an optimal
choice of tuning parameters) can become in some cases very close to PCR5 but upon our opinion PCR5
result is more exact (at least less ad-hoc than Inagaki’s one).

• Example 4 (A more concrete example): Three people, John (J), George (G), and David (D) are sus-
pects to a murder. So the frame of discernment isΘ , {J,G,D}. Two sourcesm1(.) and m2(.)
(witnesses) provide the following information:
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J G D

m1 0.9 0 0.1
m2 0 0.8 0.2

We know that John and George are friends, but John and David hate each other, and similarly George and
David.

a) Free model, i. e. all intersections are nonempty:J∩G 6= ∅, J∩D 6= ∅, G∩D 6= ∅, J∩G∩D 6= ∅.
Using the DSm classic rule one gets:

J G D J ∩ G J ∩ D G ∩ D J ∩ G ∩ D

mDSmC 0 0 0.02 0.72 0.18 0.08 0

So we can see that John and George together (J ∩ G) are most likely to have committed the crime,
since the massmDSmC(J ∩ G) = 0.72 is the biggest resulting mass after the fusion of the two
sources. In Shafer’s model, only one suspect could commit the crime, but the free and hybrid
models allow two or more people to have committed the same crime - which happens in reality.

b) Let’s consider the hybrid model, i. e. some intersectionsare empty, and others are not. According to
the above statement about the relationships between the three suspects, we can deduce thatJ ∩G 6=
∅, while J ∩ D = G ∩ D = J ∩ G ∩ D = ∅. Then we first apply the DSm Classic rule, and then
the transfer of the conflicting masses is done with PCR5:

J G D J ∩ G J ∩ D G ∩ D J ∩ G ∩ D
m1 0.9 0 0.1
m2 0 0.8 0.2
mDSmC 0 0 0.02 0.72 0.18 0.08 0

Using PCR5 now we transferm(J ∩D) = 0.18, sinceJ ∩ D = ∅, to J andD proportionally with
0.9 and 0.2 respectively, soJ gets 0.15 andD gets 0.03 since:

xJ/0.9 = z1D/0.2 = 0.18/(0.9 + 0.2) = 0.18/1.1

whencexJ = 0.9(0.18/1.1) = 0.15 andz1D = 0.2(0.18/1.1) = 0.03.

Again using PCR5, we transferm(G ∩ D) = 0.08, sinceG ∩ D = ∅, to G andD proportionally
with 0.8 and 0.1 respectively, soG gets 0.07 andD gets 0.01 since:

yG/0.8 = z2D/0.1 = 0.08/(0.8 + 0.1) = 0.08/0.9

whenceyG = 0.8(0.08/0.9) = 0.07 andzD = 0.1(0.08/0.9) = 0.01. Adding we get finally:

J G D J ∩ G J ∩ D G ∩ D J ∩ G ∩ D
mPCR5 0.15 0.07 0.06 0.72 0 0 0

So one has a high belief that the criminals are John and George(both of them committed the crime)
sincem(J ∩ D) = 0.72 and it is by far the greatest fusion mass.

In Shafer’s model, if we try to refine we get the disjoint parts: D, J ∩ G, J \ (J ∩ G), andG \ (J ∩ G),
but the last two are ridiculous (what is the real/physical nature ofJ \ (J ∩ G) or G \ (J ∩ G) ? Half of
a person(!) ?), so the refining does not work here in reality. That’s why the hybrid and free models are
needed.

• Example 5 (Imprecise PCR5): The PCR5 formula can naturally work also for the combination of
imprecise bba’s. This has been already presented in section1.11.8 page 49 of [34] with a numerical
example to show how to apply it. This example will therefore not be reincluded here.
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3.3 Zadeh’s example

We compare here the solutions for well-known Zadeh’s example [53, 56] provided by several fusion rules.
A detailed presentation with more comparisons can be found in [31, 34]. Let’s considerΘ = {M,C, T} as
the frame of three potential origins about possible diseases of a patient (M standing formeningitis, C for
concussionandT for tumor), the Shafer’s model and the two following belief assignments provided by two
independent doctors after examination of the same patient.

m1(M) = 0.9 m1(C) = 0 m1(T ) = 0.1

m2(M) = 0 m2(C) = 0.9 m2(T ) = 0.1

The total conflicting mass is high since it is

m1(M)m2(C) + m1(M)m2(T ) + m2(C)m1(T ) = 0.99

• with Dempster’s rule and Shafer’s model (DS), one gets the counter-intuitive result (see justifications
in [53,11,50,46,31]):mDS(T ) = 1

• with Yager’s rule [50] and Shafer’s model:mY (M ∪ C ∪ T ) = 0.99 andmY (T ) = 0.01

• with DSmH and Shafer’s model:

mDSmH(M ∪ C) = 0.81 mDSmH(T ) = 0.01

mDSmH(M ∪ T ) = mDSmH(C ∪ T ) = 0.09

• The Dubois & Prade’s rule (DP) [11] based on Shafer’s model provides in Zadeh’s example the same
result as DSmH, because DP and DSmH coincide in all static fusion problems7.

• with PCR5 and Shafer’s model:mPCR5(M) = mPCR5(C) = 0.486 andmPCR5(T ) = 0.028.

One sees that when the total conflict between sources becomeshigh, DSmT is able (upon authors opinion) to
manage more adequately through DSmH or PCR5 rules the combination of information than Dempster’s rule,
even when working with Shafer’s model - which is only a specific hybrid model. DSmH rule is in agreement
with DP rule for the static fusion, but DSmH and DP rules differ in general (for non degenerate cases) for dy-
namic fusion while PCR5 rule is the most exact proportional conflict redistribution rule. Besides this particular
example, we showed in [31] that there exist several infinite classes of counter-examples to Dempster’s rule
which can be solved by DSmT.

In summary, DST based on Dempster’s rule provides counter-intuitive results in Zadeh’s example, or in non-
Bayesian examples similar to Zadeh’s and no result when the conflict is 1. Only ad-hoc discounting techniques
allow to circumvent troubles of Dempster’s rule or we need toswitch to another model of representation/frame;
in the later case the solution obtained doesn’t fit with the Shafer’s model one originally wanted to work with.
We want also to emphasize that in dynamic fusion when the conflict becomes high, both DST [24] and Smets’
Transferable Belief Model (TBM) [39] approaches fail to respond to new information provided by new sources.
This can be easily showed by the very simple following example.

Example (where TBM doesn’t respond to new information):

Let Θ = {A,B,C} with the (precise) bba’sm1(A) = 0.4, m1(C) = 0.6 andm2(A) = 0.7, m2(B) = 0.3.
Then one gets8 with Dempster’s rule, Smets’ TBM (i.e. the non-normalized version of Dempster’s combina-

7Indeed DP rule has been developed for static fusion only while DSmH has been developed to take into account the
possible dynamicity of the frame itself and also its associated model.

8We introduce here explicitly the indexes of sources in the fusion result since more than two sources are considered in
this example.
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tion), DSmH and PCR5:m12
DS(A) = 1, m12

TBM (A) = 0.28, m12
TBM (∅) = 0.72,







m12
DSmH(A) = 0.28

m12
DSmH(A ∪ B) = 0.12

m12
DSmH(A ∪ C) = 0.42

m12
DSmH(B ∪ C) = 0.18

and







m12
PCR5(A) = 0.574725

m12
PCR5(B) = 0.111429

m12
PCR5(C) = 0.313846

Now let’s consider a temporal fusion problem and introduce athird sourcem3(.) with m3(B) = 0.8 and
m3(C) = 0.2. Then one sequentially combines the results obtained bym12

TBM (.), m12
DS(.), m12

DSmH(.) and

m12
PCR(.) with the new evidencem3(.) and one sees thatm(12)3

DS becomes not defined (division by zero) and

m
(12)3
TBM (∅) = 1 while (DSmH) and (PCR5) provide







m
(12)3
DSmH(B) = 0.240

m
(12)3
DSmH(C) = 0.120

m
(12)3
DSmH(A ∪ B) = 0.224

m
(12)3
DSmH(A ∪ C) = 0.056

m
(12)3
DSmH(A ∪ B ∪ C) = 0.360

and







m
(12)3
PCR5(A) = 0.277490

m
(12)3
PCR5(B) = 0.545010

m
(12)3
PCR5(C) = 0.177500

When the mass committed to empty set becomes one at a previoustemporal fusion step, then both DST
and TBM do not respond to new information. Let’s continue theexample and consider a fourth sourcem4(.)

with m4(A) = 0.5, m4(B) = 0.3 andm4(C) = 0.2. Then it is easy to see thatm
((12)3)4
DS (.) is not defined

since at previous stepm(12)3
DS (.) was already not defined, and thatm

((12)3)4
TBM (∅) = 1 whateverm4(.) is because

at the previous fusion step one hadm
(12)3
TBM (∅) = 1. Therefore for a number of sourcesn ≥ 2, DST and TBM

approaches do not respond to new information incoming in thefusion process while both (DSmH) and (PCR5)
rules respond to new information. To make DST and/or TBM working properly in such cases, it is necessary
to introduce ad-hoc temporal discounting techniques whichare not necessary to introduce if DSmT is adopted.
If there are good reasons to introduce temporal discounting, there is obviously no difficulty to apply the DSm
fusion of these discounted sources. An analysis of this behavior for target type tracking is presented in [9,34].

4 The generalized pignistic transformation (GPT)

4.1 The classical pignistic transformation

We follow here Philippe Smets’ vision which considers the management of information as a two 2-levels
process: credal (for combination of evidences) and pignistic9 (for decision-making) , i.e ”when someone must
take a decision, he/she must then construct a probability function derived from the belief function that describes
his/her credal state. This probability function is then used to make decisions” [38] (p. 284). One obvious way
to build this probability function corresponds to the so-called Classical Pignistic Transformation (CPT) defined
in DST framework (i.e. based on the Shafer’s model assumption) as [40]:

BetP{A} =
∑

X∈2Θ

|X ∩ A|

|X|
m(X) (18)

where |A| denotes the number of worlds in the setA (with convention|∅|/|∅| = 1, to defineBetP{∅}).
Decisions are achieved by computing the expected utilitiesof the acts using the subjective/pignisticBetP{.}
as the probability function needed to compute expectations. Usually, one uses the maximum of the pignistic
probability as decision criterion. The maximum ofBetP{.} is often considered as a prudent betting decision
criterion between the two other alternatives (max of plausibility or max. of credibility which appears to be
respectively too optimistic or too pessimistic). It is easyto show thatBetP{.} is indeed a probability function
(see [39]).

9Pignistic terminology has been coined by Philippe Smets andcomes frompignus, a bet in Latin.

25



4.2 Notion of DSm cardinality

One important notion involved in the definition of the Generalized Pignistic Transformation (GPT) is theDSm
cardinality. TheDSm cardinalityof any elementA of hyper-power setDΘ, denotedCM(A), corresponds to
the number of parts ofA in the corresponding fuzzy/vague Venn diagram of the problem (modelM) taking
into account the set of integrity constraints (if any), i.e.all the possible intersections due to the nature of the el-
ementsθi. This intrinsic cardinalitydepends on the modelM (free, hybrid or Shafer’s model).M is the model
that containsA, which depends both on the dimensionn = |Θ| and on the number of non-empty intersections
present in its associated Venn diagram (see [31] for details). The DSm cardinality depends on the cardinal of
Θ = {θ1, θ2, . . . , θn} and on the model ofDΘ (i.e., the number of intersections and between what elements of
Θ - in a word the structure) at the same time; it is not necessarily that every singleton, sayθi, has the same DSm
cardinal, because each singleton has a different structure; if its structure is the simplest (no intersection of this
elements with other elements) thenCM(θi) = 1, if the structure is more complicated (many intersections)then
CM(θi) > 1; let’s consider a singletonθi: if it has 1 intersection only thenCM(θi) = 2, for 2 intersections only
CM(θi) is 3 or 4 depending on the modelM, for m intersections it is betweenm + 1 and2m depending on the
model; the maximum DSm cardinality is2n−1 and occurs forθ1∪θ2∪ . . .∪θn in the free modelMf ; similarly
for any set fromDΘ: the more complicated structure it has, the bigger is the DSmcardinal; thus the DSm
cardinality measures the complexity of en element fromDΘ, which is a nice characterization in our opinion;
we may say that for the singletonθi not even|Θ| counts, but only its structure (= how many other singletons
intersectθi). Simple illustrative examples are given in Chapter 3 and 7 of [31]. One has1 ≤ CM(A) ≤ 2n − 1.
CM(A) must not be confused with the classical cardinality|A| of a given setA (i.e. the number of its distinct
elements) - that’s why a new notation is necessary here.CM(A) is very easy to compute by programming from
the algorithm of generation ofDΘ given explicated in [31].

Example: let’s take back the example of the simple hybrid DSm model described in section 2.2, then one gets
the following list of elements (with their DSm cardinal) forthe restrictedDΘ taking into account the integrity
constraints of this hybrid model:

A ∈ DΘ CM(A)

α0 , ∅ 0

α1 , θ1 ∩ θ2 1

α2 , θ3 1

α3 , θ1 2

α4 , θ2 2

α5 , θ1 ∪ θ2 3

α6 , θ1 ∪ θ3 3

α7 , θ2 ∪ θ3 3

α8 , θ1 ∪ θ2 ∪ θ3 4

Example of DSm cardinals: CM(A) for hybrid modelM.

4.3 The Generalized Pignistic Transformation

To take a rational decision within DSmT framework, it is necessary to generalize the Classical Pignistic Trans-
formation in order to construct a pignistic probability function from any generalized basic belief assignment
m(.) drawn from the DSm rules of combination. Here is the simplestand direct extension of the CPT to define
the Generalized Pignistic Transformation:

∀A ∈ DΘ, BetP{A} =
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X) (19)

whereCM(X) denotes the DSm cardinal of propositionX for the DSm modelM of the problem under con-
sideration.
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The decision about the solution of the problem is usually taken by the maximum of pignistic probability
function BetP{.}. Let’s remark the close ressemblance of the two pignistic transformations (18) and (19).
It can be shown that (19) reduces to (18) when the hyper-powersetDΘ reduces to classical power set2Θ if
we adopt Shafer’s model. But (19) is a generalization of (18)since it can be used for computing pignistic
probabilities for any models (including Shafer’s model). It has been proved in [31] (Chap. 7) thatBetP{.}
defined in (19) is indeed a probability distribution. In the following section, we introduce a new alternative to
BetP which is presented in details in [36].

5 The DSmP transformation

In the theories of belief functions, the mapping from the belief to the probability domain is a controversial issue.
The original purpose of such mappings was to make (hard) decision, but contrariwise to erroneous widespread
idea/claim, this is not the only interest for using such mappings nowadays. Actually the probabilistic transfor-
mations of belief mass assignments (as the pignistic transformation mentioned previously) are for example very
useful in modern multitarget multisensor tracking systems(or in any other systems) where one deals with soft
decisions (i.e. where all possible solutions are kept for state estimation with their likelihoods). For example, in
a Multiple Hypotheses Tracker using both kinematical and attribute data, one needs to compute all probabilities
values for deriving the likelihoods of data association hypotheses and then mixing them altogether to estimate
states of targets. Therefore, it is very relevant to use a mapping which provides a high probabilistic information
content (PIC) for expecting better performances.

In this section, we briefly recall a new probabilistic transformation, denotedDSmP and introduced in [10]
which will be explained in details in [36].DSmP is straight and different from other transformations. The
basic idea ofDSmP consists in a new way of proportionalizations of the mass of each partial ignorance such as
A1∪A2 or A1∪(A2∩A3) or (A1∩A2)∪(A3∩A4), etc. and the mass of the total ignoranceA1∪A2∪ . . .∪An,
to the elements involved in the ignorances. This new transformation takes into account both the values of the
masses and the cardinality of elements in the proportional redistribution process. We first remind what PIC
criteria is and then shortly present the general formula forDSmP transformation with few numerical examples.
More examples and comparisons with respect to other transformations are given in [36].

5.1 The Probabilistic Information Content (PIC)

Following Sudano’s approach [41, 42, 44], we adopt the Probabilistic Information Content (PIC) criterion as
a metric depicting the strength of a critical decision by a specific probability distribution. It is an essential
measure in any threshold-driven automated decision system. The PIC is the dual of the normalized Shannon
entropy. A PIC value of one indicates the total knowledge to make a correct decision (one hypothesis has a
probability value of one and the rest of zero). A PIC value of zero indicates that the knowledge to make a
correct decision does not exist (all the hypotheses have an equal probability value), i.e. one has the maximal
entropy. The PIC is used in our analysis to sort the performances of the different pignistic transformations
through several numerical examples. We first recall what Shannon entropy and PIC measure are and their tight
relationship.

• Shannon entropy

Shannon entropy, usually expressed in bits (binary digits), of a probability measureP{.} over a discrete
finite setΘ = {θ1, . . . , θn} is defined by10 [25]:

H(P ) , −
n∑

i=1

P{θi} log2(P{θi}) (20)

H(P ) is maximal for the uniform probability distribution overΘ, i.e. whenP{θi} = 1/n for i = 1, 2, . . . , n.
In that case, one getsH(P ) = Hmax = −

∑n
i=1

1
n log2(

1
n ) = log2(n). H(P ) is minimal for a totallydeter-

ministic probability, i.e. for anyP{.} such thatP{θi} = 1 for somei ∈ {1, 2, . . . , n} andP{θj} = 0 for
j 6= i. H(P ) measures the randomness carried by any discrete probability P{.}.

10with common convention0 log
2
0 = 0.
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• The PIC metric

The Probabilistic Information Content (PIC) of a probability measureP{.} associated with a probabilistic
source over a discrete finite setΘ = {θ1, . . . , θn} is defined by [42]:

PIC(P ) = 1 +
1

Hmax
·

n∑

i=1

P{θi} log2(P{θi}) (21)

The PIC is nothing but the dual of the normalized Shannon entropy and thus is actually unit less.PIC(P )
takes its values in[0, 1]. PIC(P ) is maximum, i.e.PICmax = 1 with anydeterministicprobability and it is
minimum, i.e.PICmin = 0, with the uniform probability over the frameΘ. The simple relationships between
H(P ) andPIC(P ) arePIC(P ) = 1 − (H(P )/Hmax) andH(P ) = Hmax · (1 − PIC(P )).

5.2 The DSmP formula

Let’s consider a discrete frameΘ with a given model (free DSm model, hybrid DSm model or Shafer’s model),
theDSmP mapping is defined byDSmPǫ(∅) = 0 and∀X ∈ GΘ \ {∅} by

DSmPǫ(X) =
∑

Y ∈GΘ

∑

Z⊆X∩Y
C(Z)=1

m(Z) + ǫ · C(X ∩ Y )

∑

Z⊆Y
C(Z)=1

m(Z) + ǫ · C(Y )
m(Y ) (22)

whereǫ ≥ 0 is a tuning parameter andGΘ corresponds to the generic set (2Θ, SΘ or DΘ including eventually
all the integrity constraints (if any) of the modelM); C(X ∩ Y ) andC(Y ) denote the DSm cardinals11 of the
setsX ∩ Y andY respectively.ǫ allows to reach the maximum PIC value of the approximation ofm(.) into a
subjective probability measure. The smallerǫ, the better/bigger PIC value. In some particular degenerate cases
however, theDSmPǫ=0 values cannot be derived, but theDSmPǫ>0 values can however always be derived by
choosingǫ as a very small positive number, sayǫ = 1/1000 for example in order to be as close as we want to
the maximum of the PIC. Whenǫ = 1 and when the masses of all elementsZ havingC(Z) = 1 are zero, (22)
reduces to (19), i.e.DSmPǫ=1 = BetP . The passage from a free DSm model to a Shafer’s model involves the
passage from a structure to another one, and the cardinals change as well in the formula (22).

DSmP works for all models (free, hybrid and Shafer’s). In order toapply classical transformation (Pig-
nistic, Cuzzolin’s one, Sudano’s ones, etc - see [36]), we need at first to refine the frame (on the cases when it
is possible!) in order to work with Shafer’s model, and then apply their formulas. In the case where refinement
makes sense, then one can apply the other subjective probabilities on the refined frame.DSmP works on the
refined frame as well and gives the same result as it does on thenon-refined frame. ThusDSmP with ǫ > 0
works on any models and so is very general and appealing.DSmP does a redistribution of the ignorance mass
with respect to both the singleton masses and the singletons’ cardinals in the same time. Now, if all masses of
singletons involved in all ignorances are different from zero, then we can takeǫ = 0, andDSmP gives the best
result, i.e. the best PIC value. In summary,DSmP does an ’improvement’ over previous known probabilistic
transformations in the sense thatDSmP mathematically makes a more accurate redistribution of theignorance
masses to the singletons involved in ignorances.DSmP andBetP work in both theories: DST (= Shafer’s
model) and DSmT (= free or hybrid models) as well.

11We have omitted the index of the modelM for the notation convenience.
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5.3 Examples for DSmP and BetP

The examples briefly presented here are detailed in [36] which includes also additional results based on Cuz-
zolin’s and Sudano’s transformations.

• With Shafer’s model and a non-Bayesian mass

Let’s consider the frameΘ = {A,B} and let’s assume Shafer’s model and the non-Bayesian mass (more
precisely the simple support mass) given in Table 6. We summarize in Table 7, the results obtained with DSmP
and BetP. One sees thatPIC(DSmPǫ→0) is maximum among all PIC values.

A B A ∪ B

m(.) 0.4 0 0.6

Table 6: Quantitative inputs.

A B PIC(.)

BetP (.) 0.7000 0.3000 0.1187
DSmPǫ=0.001(.) 0.9985 0.0015 0.9838
DSmPǫ=0(.) 1 0 1

Table 7: Results of the probabilistic transformations.

The best result is anadequate probability, not the biggest PICin this case. This is becauseP (B) deserves
to receive some mass fromm(A∪B), so the most correct result is done byDSmPǫ=0.001 in Table 7 (of course
we can choose any other very small positive value forǫ if we want). Always when a singleton whose mass is
zero, but it is involved in an ignorance whose mass is not zero, thenǫ (in DSmP formula (22)) should be taken
different from zero.

• With a Hybrid DSm model

Let’s consider the frameΘ = {A,B,C} and let’s consider the hybrid DSm model in which all intersections
of elements ofΘ are empty, butA ∩ B corresponding to figure 4. In this case,GΘ reduces to 9 elements
{∅, A ∩ B,A,B,C,A ∪ B,A ∪ C,B ∪ C,A ∪ B ∪ C}. The input masses of focal elements are given by
m(A∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A∪B) = 0.30, m(A∪C) = 0.10, andm(A∪B ∪C) =
0.10 and given in the Table 8.

D′ A′ ∪ D′ C ′

m(.) 0.2 0.1 0.2

A′ ∪ B′ ∪ D′ A′ ∪ C ′ ∪ D′ A′ ∪ B′ ∪ C ′ ∪ D′

m(.) 0.3 0.1 0.1

Table 8: Quantitative inputs.
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Fig. 4: Hybrid model forΘ = {A,B,C}.
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Applying BetP and DSmP transformations, one gets:

A′ B′ C ′ D′ PIC(.)

BetP (.) 0.2084 0.1250 0.2583 0.4083 0.0607
DSmPǫ=0.001(.) 0.0025 0.0017 0.2996 0.6962 0.5390

Table 9: Results of the probabilistic transformations.

• With a free DSm model

Let’s consider the frameΘ = {A,B,C} and let’s consider the free DSm model depicted on Figure 5 with
the input masses given in Table 10. To apply Sudano’s and Cuzzolin’s mappings, one works on the refined
frameΘref = {A′, B′, C ′,D′, E′, F ′, G′} where the elements ofΘref are exclusive (assuming such refinement
has a physically sense) according to Figure 5. This refinement step is not necessary when usingDSmP since
it works directly on DSm free model. The PIC values obtained with DSmP and BetP are given in Table 11. One
sees thatDSmPǫ→0 provides here again the best results in term of PIC.

&%
'$

&%
'$

&%
'$@R
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�	

B

@IC

D′

G′

C ′

E′ F ′

B′A′

Fig. 5: Free DSm model for a 3D frame.

A ∩ B ∩ C A ∩ B A

m(.) 0.1 0.2 0.3

A ∪ B A ∪ B ∪ C

m(.) 0.1 0.3

Table 10: Quantitative inputs.

Transformations PIC(.)

BetP (.) 0.1176
DSmPǫ=0.001(.) 0.8986

Table 11: Results of the probabilistic transformations.

An extension of DSmP (denoted qDSmP) for working with qualitative labels instead of numbers is possible
and has been proposed and presented in 2008 in [10]. A simple example for qDSmP is given in the next section.

6 Fusion of qualitative beliefs

We recall here the notion of qualitative belief assignment to model beliefs of human experts expressed in
natural language (with linguistic labels). We show how qualitative beliefs can be efficiently combined using an
extension of DSmT to qualitative reasoning. A more detailedpresentation can be found in [34]. The derivations
are based on a new arithmetic on linguistic labels which allows a direct extension of all quantitative rules of
combination and conditioning. The qualitative version of PCR5 rule and DSmP is also presented in the sequel.

6.1 Qualitative Operators

Computing with words (CW) and qualitative information is more vague, less precise than computing with
numbers, but it offers the advantage of robustness if done correctly. Here is a general arithmetic we propose
for computing with words (i.e. with linguistic labels). Let’s consider a finite frameΘ = {θ1, . . . , θn} of
n (exhaustive) elementsθi, i = 1, 2, . . . , n, with an associated modelM(Θ) on Θ (either Shafer’s model
M0(Θ), free-DSm modelMf (Θ), or more general any Hybrid-DSm model [31]). A modelM(Θ) is defined
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by the set of integrity constraints on elements ofΘ (if any); Shafer’s modelM0(Θ) assumes all elements of
Θ truly exclusive, while free-DSm modelMf (Θ) assumes no exclusivity constraints between elements of the
frameΘ. Let’s define a finite set of linguistic labels̃L = {L1, L2, . . . , Lm} wherem ≥ 2 is an integer.L̃
is endowed with a total order relationship≺, so thatL1 ≺ L2 ≺ . . . ≺ Lm. To work on a close linguistic
set under linguistic addition and multiplication operators, we extends̃L with two extreme valuesL0 andLm+1

whereL0 corresponds to the minimal qualitative value andLm+1 corresponds to the maximal qualitative value,
in such a way that

L0 ≺ L1 ≺ L2 ≺ . . . ≺ Lm ≺ Lm+1

where≺ means inferior to, or less (in quality) than, or smaller (in quality) than, etc. hence a relation of order
from a qualitative point of view. But if we make a correspondence between qualitative labels and quantitative
values on the scale[0, 1], thenLmin = L0 would correspond to the numerical value 0, whileLmax = Lm+1

would correspond to the numerical value 1, and eachLi would belong to[0, 1], i. e.

Lmin = L0 < L1 < L2 < . . . < Lm < Lm+1 = Lmax

From now on, we work on extended ordered setL of qualitative values

L = {L0, L̃, Lm+1} = {L0, L1, L2, . . . , Lm, Lm+1}

In our previous works, we did propose approximate qualitative operators, but in [36] we propose to use
better and accurate operators for qualitative labels. Since these new operators are defined in details in the
chapter of [36] devoted on the DSm Field and Linear Algebra ofRefined Labels (FLARL), we just briefly
introduce here only the the main ones (i.e. the accurate label addition, multiplication and division). In FLARL,
we can replace the ”qualitative quasi-normalization” of qualitative operators we used in our previous papers by
”qualitative normalization” since in FLARL we have exact qualitative calculations and exact normalization.

• Label addition :
La + Lb = La+b (23)

since a
m+1 + b

m+1 = a+b
m+1 .

• Label multiplication :
La × Lb = L(ab)/(m+1) (24)

since a
m+1 · b

m+1 = (ab)/(m+1)
m+1 .

• Label division (whenLb 6= L0):
La ÷ Lb = L(a/b)(m+1) (25)

since a
m+1 ÷ b

m+1 = a
b = (a/b)(m+1)

m+1 .

More accurate qualitative operations (substraction, scalar multiplication, scalar root, scalar power, etc) can
be found in [36]. Of course, if one really need to stay within the original set of labels, an approximation will be
necessary at the very end of the calculations.

6.2 Qualitative Belief Assignment

A qualitative belief assignment12 (qba) is a mapping functionqm(.) : GΘ 7→ L whereGΘ corresponds either
to 2Θ, to DΘ or even toSΘ depending on the model of the frameΘ we choose to work with. In the case when
the labels are equidistant, i.e. the qualitative distance between any two consecutive labels is the same, we get
an exact qualitative result, and a qualitative basic beliefassignment (bba) is considered normalized if the sum
of all its qualitative masses is equal toLmax = Lm+1. If the labels are not equidistant, we still can use all
qualitative operators defined in the FLARL, but the qualitative result is approximate, and a qualitative bba is
considered quasi-normalized if the sum of all its masses is equal toLmax. Using the qualitative operator of

12We call it alsoqualitative belief massor q-massfor short.
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FLARL, we can easily extend all the combination and conditioning rules from quantitative to qualitative. In the
sequel we will considers ≥ 2 qualitative belief assignmentsqm1(.), . . . , qms(.) defined over the same space
GΘ and provided bys independent sourcesS1, . . . , Ss of evidence.

Note: The addition and multiplication operators used in all qualitative fusion formulas in next sections corre-
spond toqualitative additionandqualitative multiplicationoperators and must not be confused with classical
addition and multiplication operators for numbers.

6.3 Qualitative Conjunctive Rule

The qualitative Conjunctive Rule (qCR) ofs ≥ 2 sources is defined similarly to the quantitative conjunctive
consensus rule, i.e.

qmqCR(X) =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=X

s∏

i=1

qmi(Xi) (26)

The total qualitative conflicting mass is given by

K1...s =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=∅

s∏

i=1

qmi(Xi)

6.4 Qualitative DSm Classic rule

The qualitative DSm Classic rule (q-DSmC) fors ≥ 2 is defined similarly to DSm Classic fusion rule (DSmC)
as follows :qmqDSmC(∅) = L0 and for allX ∈ DΘ \ {∅},

qmqDSmC(X) =
∑

X1,,...,Xs∈DΘ

X1∩...∩Xs=X

s∏

i=1

qmi(Xi) (27)

6.5 Qualitative hybrid DSm rule

The qualitative hybrid DSm rule (q-DSmH) is defined similarly to quantitative hybrid DSm rule [31] as follows:

qmqDSmH(∅) = L0 (28)

and for allX ∈ GΘ \ {∅}

qmqDSmH(X) , φ(X) ·
[

qS1(X) + qS2(X) + qS3(X)
]

(29)

where all sets involved in formulas are in the canonical formandφ(X) is thecharacteristic non-emptiness
functionof a setX, i.e. φ(X) = Lm+1 if X /∈ ∅ andφ(X) = L0 otherwise, where∅ , {∅M, ∅}. ∅M is the
set of all elements ofDΘ which have been forced to be empty through the constraints ofthe modelM and∅ is
the classical/universal empty set.qS1(X) ≡ qmqDSmC(X), qS2(X), qS3(X) are defined by

qS1(X) ,
∑

X1,X2,...,Xs∈DΘ

X1∩X2∩...∩Xs=X

s∏

i=1

qmi(Xi) (30)

qS2(X) ,
∑

X1,X2,...,Xs∈∅

[U=X]∨[(U∈∅)∧(X=It)]

s∏

i=1

qmi(Xi) (31)
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qS3(X) ,
∑

X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xs=X
X1∩X2∩...∩Xs∈∅

s∏

i=1

qmi(Xi) (32)

with U , u(X1)∪ . . .∪u(Xs) whereu(X) is the union of allθi that composeX, It , θ1∪ . . .∪ θn is the total
ignorance.qS1(X) is nothing but the qDSmC rule fors independent sources based onMf (Θ); qS2(X) is the
qualitative mass of all relatively and absolutely empty sets which is transferred to the total or relative ignorances
associated with non existential constraints (if any, like in some dynamic problems);qS3(X) transfers the sum
of relatively empty sets directly onto the canonical disjunctive form of non-empty sets. qDSmH generalizes
qDSmC works for any models (free DSm model, Shafer’s model orany hybrid models) when manipulating
qualitative belief assignments.

6.6 Qualitative PCR5 rule (qPCR5)

In classical (i.e. quantitative) DSmT framework, the Proportional Conflict Redistribution rule no. 5 (PCR5)
defined in [34] has been proven to provide very good and coherent results for combining (quantitative) belief
masses, see [33,9]. When dealing with qualitative beliefs within the DSm Field and Linear Algebra of Refined
Labels [36] we get an exact qualitative result no matter whatfusion rule is used (DSm fusion rules, Dempster’s
rule, Smets’s rule, Dubois-Prade’s rule, etc.). The exact qualitative result will a refined label (but the user can
round it up or down to the closest integer index label).

6.7 A simple example of qualitative fusion of qba’s

Let’s consider the following set of ordered linguistic labels

L = {L0, L1, L2, L3, L4, L5}

(for example,L1, L2, L3 andL4 may represent the values:L1 , very poor, L2 , poor, L3 , goodand
L4 , very good, where, symbol meansby definition).

Let’s consider now a simple two-source case with a 2D frameΘ = {θ1, θ2}, Shafer’s model forΘ, and
qba’s expressed as follows:

qm1(θ1) = L1, qm1(θ2) = L3, qm1(θ1 ∪ θ2) = L1

qm2(θ1) = L2, qm2(θ2) = L1, qm2(θ1 ∪ θ2) = L2

The two qualitative massesqm1(.) andqm2(.) are normalized since:

qm1(θ1) + qm1(θ2) + qm1(θ1 ∪ θ2) = L1 + L3 + L1 = L1+3+1 = L5

and
qm2(θ1) + qm2(θ2) + qm2(θ1 ∪ θ2) = L2 + L1 + L2 = L2+1+2 = L5

We first derive the result of the conjunctive consensus. Thisyields:

qm12(θ1) = qm1(θ1)qm2(θ1) + qm1(θ1)qm2(θ1 ∪ θ2) + qm1(θ1 ∪ θ2)qm2(θ1)

= L1 × L2 + L1 × L2 + L1 × L2

= L 1·2
5

+ L 1·2
5

+ L 1·2
5

= L 2
5
+ 2

5
+ 2

5
= L 6

5
= L1.2

qm12(θ2) = qm1(θ2)qm2(θ2) + qm1(θ2)qm2(θ1 ∪ θ2) + qm1(θ1 ∪ θ2)qm2(θ2)

= L3 × L1 + L3 × L2 + L1 × L1

= L 3·1
5

+ L 3·2
5

+ L 1·1
5

= L 3
5
+ 6

5
+ 1

5
= L 10

5
= L2
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qm12(θ1 ∪ θ2) = qm1(θ1 ∪ θ2)qm2(θ1 ∪ θ2) = L1 × L2 = L 1·2
5

= L 2
5

= L0.4

qm12(θ1 ∩ θ2) = qm1(θ1)qm2(θ2) + qm1(θ2)qm2(θ1)

= L1 × L1 + L2 × L3 = L 1·1
5

+ L 2·3
5

= L 1
5
+ 6

5
= L 7

5
= L1.4

Therefore we get:

• for the fusion with qDSmC, when assumingθ1 ∩ θ2 6= ∅,

qmqDSmC(θ1) = L1.2 qmqDSmC(θ2) = L2

qmqDSmC(θ1 ∪ θ2) = L0.4 qmqDSmC(θ1 ∩ θ2) = L1.4

• for the fusion with qDSmH, when assumingθ1 ∩ θ2 = ∅. The mass ofθ1 ∩ θ2 is transferred toθ1 ∪ θ2.
Hence:

qmqDSmH(θ1) = L1.2 qmqDSmH(θ2) = L2

qmqDSmH(θ1 ∩ θ2) = L0 qmqDSmH(θ1 ∪ θ2) = L0.4 + L1.4 = L1.8

• for the fusion with qPCR5, when assumingθ1 ∩ θ2 = ∅. The massqm12(θ1 ∩ θ2) = L1.4 is transferred
to θ1 and toθ2 in the following way:

qm12(θ1 ∩ θ2) = qm1(θ1)qm2(θ2) + qm2(θ1)qm1(θ2)

Then,qm1(θ1)qm2(θ2) = L1 × L1 = L 1·1
5

= L 1
5

= L0.2 is redistributed toθ1 andθ2 proportionally
with respect to their qualitative masses put in the conflictL1 and respectivelyL1:

xθ1

L1
=

yθ2

L1
=

L0.2

L1 + L1
=

L0.2

L1+1
=

L0.2

L2
= L 0.2

2
·5 = L 1

2
= L0.5

whencexθ1 = yθ2 = L1 × L0.5 = L 1·0.5
5

= L 0.5
5

= L0.1.

Actually, we could easier see thatqm1(θ1)qm2(θ2) = L0.2 had in this case to be equally split between
θ1 andθ2 since the mass put in the conflict byθ1 andθ2 was the same for each of them:L1. Therefore
L0.2

2 = L 0.2
2

= L0.1.

Similarly, qm2(θ1)qm1(θ2) = L2 × L3 = L 2·3
5

= L 6
5

= L1.2 has to be redistributed toθ1 and θ2

proportionally withL2 andL3 respectively :

x′
θ1

L2
=

y′θ2

L3
=

L1.2

L2 + L3
=

L1.2

L2+3
=

L1.2

L5
= L 1.2

5
·5 = L1.2

whence

{

x′
θ1

= L2 × L1.2 = L 2·1.2
5

= L 2.4
5

= L0.48

y′θ2
= L3 × L1.2 = L 3·1.2

5
= L 3.6

5
= L0.72

Now, add all these to the qualitative masses of

θ1 andθ2 respectively:

qmqPCR5(θ1) = qm12(θ1) + xθ1 + x′
θ1

= L1.2 + L0.1 + L0.48 = L1.2+0.1+0.48 = L1.78

qmqPCR5(θ2) = qm12(θ2) + yθ2 + y′θ2
= L2 + L0.1 + L0.72 = L2+0.1+0.72 = L2.82

qmqPCR5(θ1 ∪ θ2) = qm12(θ1 ∪ θ2) = L0.4

qmqPCR5(θ1 ∩ θ2) = L0

The qualitative mass results using all fusion rules (qDSmC,qDSmH,qPCR5) remain normalized in FLARL.

Naturally, if one prefers to express the final results with qualitative labels belonging in the original discrete
set of labelsL = {L0, L1, L2, L3, L4, L5}, some approximations will be necessary to round continuousindexed
labels to their closest integer/discrete index value; by example,qmqPCR5(θ1) = L1.78 ≈ L2, qmqPCR5(θ2) =
L2.82 ≈ L3 andqmqPCR5(θ1 ∪ θ2) = L0.4 ≈ L0.
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6.8 A simple example for the qDSmP transformation

We first recall that the qualitative extension of (22), denoted qDSmPǫ(.) is given byqDSmPǫ(∅) = 0 and
∀X ∈ GΘ \ {∅} by

qDSmPǫ(X) =
∑

Y ∈GΘ

∑

Z⊆X∩Y
C(Z)=1

qm(Z) + ǫ · C(X ∩ Y )

∑

Z⊆Y
C(Z)=1

qm(Z) + ǫ · C(Y )
qm(Y ) (33)

where all operations in (33) are referred to labels, that isq-operators on linguistic labels and not classical oper-
ators on numbers.

Let’s consider the simple frameΘ = {θ1, θ2} (heren = |Θ| = 2) with Shafer’s model (i.e.θ1∩θ2 = ∅) and
the following set of linguistic labelsL = {L0, L1, L2, L3, L4, L5}, with L0 = Lmin andL5 = Lmax = Lm+1

(herem = 4) and the following qualitative belief assignment:qm(θ1) = L1, qm(θ2) = L3 andqm(θ1 ∪ θ2) =
L1. qm(.) is quasi-normalized since

∑

X∈2Θ qm(X) = L5 = Lmax. In this example and withDSmP
transformation,qm(θ1 ∪ θ2) = L1 is redistributed toθ1 andθ2 proportionally with respect to their qualitative
massesL1 andL3 respectively. Since bothL1 andL3 are different fromL0, we can take the tuning parameter
ǫ = 0 for the best transfer.ǫ is taken different from zero when a mass of a set involved in a partial or total
ignorance is zero (for qualitative masses, it meansL0).
Therefore using (25), one has

xθ1

L1
=

xθ2

L3
=

L1

L1 + L3
=

L1

L4
= L 1

4
·5 = L 5

4
= L1.25

and thus using (24), one gets

xθ1 = L1 × L1.25 = L 1·(1.25)
5

= L 1.25
5

= L0.25

xθ2 = L3 × L1.25 = L 3·(1.25)
5

= L 3.75
5

= L0.75

Whence

qDSmPǫ=0(θ1 ∩ θ2) = qDSmPǫ=0(∅) = L0

qDSmPǫ=0(θ1) = L1 + xθ1 = L1 + L0.25 = L1.25

qDSmPǫ=0(θ2) = L3 + xθ2 = L3 + L0.75 = L3.75

Naturally in our example, one has also

qDSmPǫ=0(θ1 ∪ θ2) = qDSmPǫ=0(θ1) + qDSmPǫ=0(θ2) − qDSmPǫ=0(θ1 ∩ θ2)

= L1.25 + L3.75 − L0 = L5 = Lmax

SinceHmax = log2 n = log2 2 = 1, using the qualitative extension of PIC formula (21), one obtains the
following qualitative PIC value:

PIC = 1 +
1

1
· [qDSmPǫ=0(θ1) log2(qDSmPǫ=0(θ1))

+ qDSmPǫ=0(θ2) log2(qDSmPǫ=0(θ2))]

= 1 + L1.25 log2(L1.25) + L3.75 log2(L3.75) ≈ L0.94

since we considered the isomorphic transformationLi = i/(m + 1) (in our particular examplem = 4 interior
labels).
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7 Belief Conditioning Rules

7.1 Shafer’s Conditioning Rule (SCR)

Until very recently, the most commonly used conditioning rule for belief revision was the one proposed by
Shafer [24] and referred here as Shafer’s Conditioning Rule(SCR). The SCR consists in combining the prior
bbam(.) with a specific bba focused onA with Dempster’s rule of combination for transferring the conflicting
mass to non-empty sets in order to provide the revised bba. Inother words, the conditioning by a proposition
A, is obtained by SCR as follows :

mSCR(.|A) = [m ⊕ mS ](.) (34)

wherem(.) is the prior bba to update,A is the conditioning event,mS(.) is the bba focused onA defined by
mS(A) = 1 andmS(X) = 0 for all X 6= A and⊕ denotes Dempster’s rule of combination [24].

The SCR approach based on Dempster’s rule of combination of the prior bba with the bba focused on the
conditioning event remainssubjectivesince actually in such belief revision process both sourcesare subjective
and SCR doesn’t manage properly the objective nature/absolute truth carried by the conditioning term. Indeed,
when conditioning a prior massm(.), knowing(or assuming) that the truth is inA, means that we have in
hands an absolute (not subjective) knowledge, i.e. the truth in A has occurred (or is assumed to have occurred),
thusA is realized (or is assumed to be realized) and this is (or at least must be interpreted as) an absolute
truth. The conditioning term ”GivenA” must therefore be considered as an absolute truth, whilemS(A) = 1
introduced in SCR cannot refer to an absolute truth actually, but only to asubjective certaintyon the possible
occurrence ofA from avirtual second source of evidence. The advantage of SCR remains undoubtedly in its
simplicity and the main argument in its favor is its coherence with conditional probability when manipulating
Bayesian belief assignment. But in our opinion, SCR should better be interpreted as the fusion ofm(.) with
a particular subjective bbamS(A) = 1 rather than an objective belief conditioning rule. This fundamental
remark motivated us to develop a new family of BCR [34] based on hyper-power set decomposition (HPSD)
explained briefly in the next section. It turns out that many BCR are possible because the redistribution of
masses of elements outside ofA (the conditioning event) to those insideA can be done inn-ways. This will be
briefly presented right after the next section.

7.2 Hyper-Power Set Secomposition (HPSD)

Let Θ = {θ1, θ2, . . . , θn}, n ≥ 2, a modelM(Θ) associated forΘ (free DSm model, hybrid or Shafer’s
model) and its corresponding hyper-power setDΘ. Let’s consider a (quantitative) basic belief assignment
(bba)m(.) : DΘ 7→ [0, 1] such that

∑

X∈DΘ m(X) = 1. Suppose one finds out that the truth is in the set
A ∈ DΘ \ {∅}. Let PD(A) = 2A ∩ DΘ \ {∅}, i.e. all non-empty parts (subsets) ofA which are included
in DΘ. Let’s consider the normal cases whenA 6= ∅ and

∑

Y ∈PD(A) m(Y ) > 0. For the degenerate case
when the truth is inA = ∅, we consider Smets’ open-world, which means that there are other hypotheses
Θ′ = {θn+1, θn+2, . . . θn+m}, m ≥ 1, and the truth is inA ∈ DΘ′

\ {∅}. If A = ∅ and we consider a close-
world, then it means that the problem is impossible. For another degenerate case, when

∑

Y ∈PD(A) m(Y ) = 0,

i.e. when the source gave us a totally (100%) wrong information m(.), then, we define:m(A|A) , 1 and,
as a consequence,m(X|A) = 0 for any X 6= A. Let s(A) = {θi1 , θi2, . . . , θip}, 1 ≤ p ≤ n, be the
singletons/atoms that composeA (for example, ifA = θ1 ∪ (θ3 ∩ θ4) thens(A) = {θ1, θ3, θ4}). The Hyper-
Power Set Decomposition (HPSD) ofDΘ \ ∅ consists in its decomposition into the three following subsets
generated byA:

• D1 = PD(A), the parts ofA which are included in the hyper-power set, except the empty set;

• D2 = {(Θ \ s(A)),∪,∩} \ {∅}, i.e. the sub-hyper-power set generated byΘ \ s(A) under∪ and∩,
without the empty set.

• D3 = (DΘ \ {∅}) \ (D1 ∪ D2); each set fromD3 has in its formula singletons from boths(A) and
Θ \ s(A) in the case whenΘ \ s(A) is different from empty set.
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D1, D2 andD3 have no element in common two by two and their union isDΘ \ {∅}.

Simple example of HPSD: Let’s considerΘ = {θ1, θ2, θ3} with Shafer’s model (i.e. all elements ofΘ are
exclusive) and let’s assume that the truth is inθ2 ∪ θ3, i.e. the conditioning term isθ2 ∪ θ3. Then one has the
following HPSD:D1 = {θ2, θ3, θ2 ∪ θ3}, D2 = {θ1} andD3 = {θ1 ∪ θ2, θ1 ∪ θ3, θ1 ∪ θ2∪ θ3}. More complex
and detailed examples can be found in [34].

7.3 Quantitative belief conditioning rules (BCR)

Since there exists actually many ways for redistributing the masses of elements outside ofA (the conditioning
event) to those insideA, several BCR’s have been proposed in [34]. In this introduction, we will not browse all
the possibilities for doing these redistributions and all BCR’s formulas but only one, the BCR number 17 (i.e.
BCR17) which does in our opinion the most refined redistribution since:
- the massm(W ) of each elementW in D2 ∪ D3 is transferred to thoseX ∈ D1 elements which are included
in W if any proportionally with respect to their non-empty masses;
- if no suchX exists, the massm(W ) is transferred in a pessimistic/prudent way to thek-largest element from
D1 which are included inW (in equal parts) if any;
- if neither this way is possible, thenm(W ) is indiscriminately distributed to allX ∈ D1 proportionally with
respect to their nonzero masses.

BCR17 is defined by the following formula (see [34], Chap. 9 for detailed explanations and examples):

mBCR17(X|A) = m(X) ·

[

SD1 +
∑

W∈D2∪D3

X⊂W

S(W )6=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W,X is k-largest
S(W )=0

m(W )/k (35)

where ”X is k-largest” means thatX is thek-largest (with respect to inclusion) set included inW and

S(W ) ,
∑

Y ∈D1,Y ⊂W

m(Y )

SD1 ,

∑

Z∈D1,

orZ∈D2 |∄Y ∈D1 with Y ⊂Z

m(Z)

∑

Y ∈D1
m(Y )

Note: The authors mentioned in an Erratum to the printed version ofthe second volume of DSmT book se-
ries (http://fs.gallup.unm.edu//Erratum.pdf ) and they also corrected the online version of the
aforementioned book (see page 240 inhttp://fs.gallup.unm.edu//DSmT-book2.pdf that all de-
nominators of the BCR’s formulas are naturally supposed to be different from zero. Of course, Shafer’s con-
ditional rule as stated in Theorem 3.6, page 67 of [24] does not work when the denominator is zero and that’s
why Shafer has introduced the conditionBel(B̄) < 1 (or equivalentlyPl(B) > 0) in his theorem when the
conditioning term isB.

A simple example for BCR17: Let’s considerΘ = {θ1, θ2, θ3} with Shafer’s model (i.e. all elements ofΘ are
exclusive) and let’s assume that the truth is inθ2 ∪ θ3, i.e. the conditioning term isA , θ2 ∪ θ3. Then one has
the following HPSD:

D1 = {θ2, θ3, θ2 ∪ θ3}, D2 = {θ1}

D3 = {θ1 ∪ θ2, θ1 ∪ θ3, θ1 ∪ θ2 ∪ θ3}.

Let’s consider the following prior bba:m(θ1) = 0.2, m(θ2) = 0.1, m(θ3) = 0.2, m(θ1 ∪ θ2) = 0.1,
m(θ2 ∪ θ3) = 0.1 andm(θ1 ∪ θ2 ∪ θ3) = 0.3.
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With BCR17, forD2, m(θ1) = 0.2 is transferred proportionally to all elements ofD1, i.e.
xθ2
0.1 =

yθ3
0.2 =

zθ2∪θ3
0.1 = 0.2

0.4 = 0.5 whence the parts ofm(θ1) redistributed toθ2, θ3 andθ2 ∪ θ3 are respectivelyxθ2 = 0.05,
yθ3 = 0.10, andzθ2∪θ3 = 0.05. ForD3, there is actually no need to transferm(θ1∪θ3) becausem(θ1∪θ3) = 0
in this example; whereasm(θ1∪θ2) = 0.1 is transferred toθ2 (no case ofk-elements herein);m(θ1∪θ2∪θ3) =
0.3 is transferred toθ2, θ3 andθ2 ∪ θ3 proportionally to their corresponding masses:

xθ2/0.1 = yθ3/0.2 = zθ2∪θ3/0.1 = 0.3/0.4 = 0.75

whencexθ2 = 0.075, yθ3 = 0.15, andzθ2∪θ3 = 0.075. Finally, one gets

mBCR17(θ2|θ2 ∪ θ3) = 0.10 + 0.05 + 0.10 + 0.075 = 0.325

mBCR17(θ3|θ2 ∪ θ3) = 0.20 + 0.10 + 0.15 = 0.450

mBCR17(θ2 ∪ θ3|θ2 ∪ θ3) = 0.10 + 0.05 + 0.075 = 0.225

which is different from the result obtained with SCR, since one gets in this example:

mSCR(θ2|θ2 ∪ θ3) = mSCR(θ3|θ2 ∪ θ3) = 0.25

mSCR(θ2 ∪ θ3|θ2 ∪ θ3) = 0.50

More complex and detailed examples can be found in [34].

7.4 Qualitative belief conditioning rules

In this section we present only the qualitative belief conditioning rule no 17 which extends the principles of the
previous quantitative rule BCR17 in the qualitative domainusing the operators on linguistic labels defined pre-
viously. We consider from now on a general frameΘ = {θ1, θ2, . . . , θn}, a given modelM(Θ) with its hyper-
power setDΘ and a given extended ordered setL of qualitative valuesL = {L0, L1, L2, . . . , Lm, Lm+1}. The
prior qualitative basic belief assignment (qbba) taking its values inL is denotedqm(.). We assume in the sequel
that the conditioning event isA 6= ∅, A ∈ DΘ, i.e. the absolute truth is inA. The approach we present here is
a direct extension of BCR17 using FLARL operators. Such extension can be done with all quantitative BCR’s
rules proposed in [34], but only QBCR17 is presented here forthe sake of space limitations.

7.4.1 Qualitative Belief Conditioning Rule no 17 (QBCR17)

Similarly to BCR17, QBCR17 is defined by the following formula:

qmBCR17(X|A) = qm(X) ·

[

qSD1 +
∑

W∈D2∪D3

X⊂W

qS(W )6=0

qm(W )

qS(W )

]

+
∑

W∈D2∪D3

X⊂W,X is k-largest
qS(W )=0

qm(W )/k (36)

where ”X is k-largest” means thatX is thek-largest (with respect to inclusion) set included inW and

qS(W ) ,
∑

Y ∈D1,Y ⊂W

qm(Y )

SD1 ,

∑

Z∈D1,

orZ∈D2 |∄Y ∈D1 with Y ⊂Z

qm(Z)

∑

Y ∈D1
qm(Y )

Naturally, all operators (summation, product, division, etc) involved in the formula (36) are the operators
defined in FLARL working on linguistic labels. It is worth to note that the formula (36) requires also the divi-
sion of the labelqm(W ) by a scalark. This division is defined as follows:

Let r ∈ R, r 6= 0. Then the label division by a scalar is defined by

La

r
= La/r (37)
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7.4.2 A simple example for QBCR17

Let’s considerL = {L0, L1, L2, L3, L4, L5, L6} a set of ordered linguistic labels. For example,L1, L2, L3, L4

andL5 may represent the values:L1 , very poor, L2 , poor, L3 , medium, L4 , goodandL5 , very good.
Let’s consider also the frameΘ = {A,B,C,D} with the hybrid model corresponding to the Venn diagram on
Figure 6.

&%
'$

&%
'$

&%
'$&%

'$@R
A

�	
B

� C

� D

Fig. 6: Venn Diagram for the hybrid model for this example.

We assume that the prior qualitative bbaqm(.) is given by:

qm(A) = L1, qm(C) = L1, qm(D) = L4

and the qualitative masses of all other elements ofGΘ take the minimal/zero valueL0. This qualitative mass is
quasi-normalized sinceL1 + L1 + L4 = L1+1+4 = L6 = Lmax.

If we assume that the conditioning event is the propositionA ∪ B, i.e. the absolute truth is inA ∪ B, the
hyper-power set decomposition (HPSD) is obtained as follows: D1 is formed by all parts ofA ∪ B, D2 is the
set generated by{(C,D),∪,∩} \ ∅ = {C,D,C ∪D,C ∩ D}, andD3 = {A ∪ C,A ∪ D,B ∪ C,B ∪D,A ∪
B ∪ C,A ∪ (C ∩ D), . . .}. Because the truth is inA ∪ B, qm(D) = L4 is transferred in a prudent way to
(A ∪ B) ∩ D = B ∩ D according to our hybrid model, becauseB ∩ D is the 1-largest element fromA ∪ B
which is included inD. While qm(C) = L1 is transferred toA only, since it is the only element inA ∪ B
whose qualitative massqm(A) is different fromL0 (zero); hence:

qmQBCR17(A) = qm(A) + qm(C) = L1 + L1 = L1+1 = L2.

Therefore, one finally gets:

qmQBCR17(A|A ∪ B) = L2 qmQBCR17(C|A ∪ B) = L0

qmQBCR17(D|A ∪ B) = L0 qmQBCR17(B ∩ D|A ∪ B) = L4

which is a normalized qualitative bba.

More complicated examples based on other QBCR’s can be foundin [35].

8 Conclusion
A general presentation of the foundations of DSmT has been proposed in this introduction. DSmT proposes
new quantitative and qualitative rules of combination for uncertain, imprecise and highly conflicting sources
of information. Several applications of DSmT have been proposed recently in the literature and show the
potential and the efficiency of this new theory. DSmT offers the possibility to work in different fusion spaces
depending on the nature of problem under consideration. Thus, one can work either in2Θ = (Θ,∪) (i.e. in
the classical power set as in DST framework), inDΘ = (Θ,∪,∩) (the hyper-power set — also known as
Dedekind’s lattice) or in the super-power setSΘ = (Θ,∪,∩, c(.)), which includes2Θ and DΘ and which
represents the power set of the minimal refi nement of the frame Θ when the refinement is possible (because
for vague elements whose frontiers are not well known the refinement is not possible). We have enriched the
DSmT with a subjective probability (DSmPǫ) that gets the best Probabilistic Information Content (PIC) in
comparison with other existing subjective probabilities.Also, we have defined and developed the DSm Field
and Linear Algebra of Refined Labels that permit the transformation of any fusion rule to a corresponding
qualitative fusion rule which gives an exact qualitative result (i.e. a refined label), so far the best in literature.
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