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Abstract — The management and combination of uncertain, imprecigeyfand even paradoxical or high conflicting
sources of information has always been, and still remaisypof primal importance for the development of reliable
modern information systems involving artificial reasoning this introduction, we present a survey of our recent the-
ory of plausible and paradoxical reasoning, known as De&niarandache Theory (DSmT), developed for dealing with
imprecise, uncertain and conflicting sources of informatitVe focus our presentation on the foundations of DSmT and
on its most important rules of combination, rather than oowsing specific applications of DSmT available in litera-
ture. Several simple examples are given throughout thisguration to show the efficiency and the generality of this ne
approach.

Keywords: Dezert-Smarandache Theory, DSmT, quantitative and qtigtreasoning, information fusion.

MSC 2000 68T37, 94A15, 94A17, 68T40.

1 Introduction

The management and combination of uncertain, imprecissgyfand even paradoxical or high conflicting
sources of information has always been, and still remaidaytoof primal importance for the development of
reliable modern information systems involving artificiabsoning. The combination (fusion) of information
arises in many fields of applications nowadays (especialtieiense, medicine, finance, geo-science, economy,
etc). When several sensors, observers or experts have twnid@red together to solve a problem, or if one
wants to update our current estimation of solutions for &giproblem with some new information available,
we need powerful and solid mathematical tools for the fussmecially when the information one has to deal
with is imprecise and uncertain. In this paper, we presentraey of our recent theory of plausible and
paradoxical reasoning, known as Dezert-Smarandache y{lB8mT) in the literature, developed for dealing
with imprecise, uncertain and conflicting sources of infation. Recent publications have shown the interest
and the ability of DSmT to solve problems where other apgreadail, especially when conflict between
sources becomes high. We focus this presentation ratheedaundations of DSmT, and on the main important
rules of combination, than on browsing specific applicaionDSmT available in literature. Several simple
examples are given throughout the presentation to showffibiecy and the generality of DSmT.

2 Foundations of DSMT

The development of DSmT (Dezert-Smarandache Theory o$jileuand paradoxical reasonirig][B1, 8]) arises
from the necessity to overcome the inherent limitations &TD(Dempster-Shafer Theorj J24]) which are
closely related with the acceptance of Shafer's model ferfttsion problem under consideration (i.e. the
frame ofdiscernment© is implicitly defined as a finite set afxhaustiveand exclusivehypothesed;, i =
1,...,n since the masses of belief are defined only on the power sét okee sectioff 2.1 for details),
the third middle excluded principle (i.e. the existencetwf tomplement for any elements/propositions be-
longing to the power set o), and the acceptance of Dempster’s rule of combinationofilg normal-
ization) as the framework for the combination of independssurces of evidence. Discussions on limi-
tations of DST and presentation of some alternative ruleBampster’s rule of combination can be found

This paper is based on the first chapter@ [36].



in [63,64[55[49. 36, 1L, bD.121)38] 46} [L3,[19[1)| 29, 18aBt] therefore they will be not reported in details in

this introduction. We argue that these three fundamentaditions of DST can be removed and another new
mathematical approach for combination of evidence is ptssThis is the purpose of DSmMT.

The basis of DSmT is the refutation of the principle of thedl@xcluded middle and Shafer's model, since
for a wide class of fusion problems the intrinsic nature gidtheses can be only vague and imprecise in such
a way that precise refinement is just impossible to obtaireality so that the exclusive elemertscannot
be properly identified and precisely separated. Many prodlawvolving fuzzy continuous and relative con-
cepts described in natural language and having no absaletpietation like tallness/smallness, pleasure/pain,
cold/hot, Sorites paradoxes, etc, enter in this catego§mD starts with the notion dfee DSm modelde-
noted M7 (©), and consider® only as a frame of exhaustive elemefifsi = 1,...,n which can potentially
overlap. This model ifreebecause no other assumption is done on the hypothesesghue#tk exhaustivity
constraint which can always be satisfied according the mogtinciple explained in[31]. No other constraint
is involved in the free DSm model. When the free DSm model $idlae classic commutative and associative
classical DSm rule of combination, denoted DSmC, corredipgnto the conjunctive consensus defined on the
free Dedekind’s lattice is performed.

Depending on the intrinsic nature of the elements of thefuproblem under consideration, it can however
happen that the free model does not fit the reality because sabsets o® can contain elements known to
be truly exclusive but also truly non existing at all at a gitene (specially when working on dynamic fusion
problem where the fram® varies with time with the revision of the knowledge avaiigbl These integrity
constraints are then explicitly and formally introducetbithe free DSm modeM/(©) in order to adapt it
properly to fit as close as possible with the reality and petoréonstruct dybrid DSm modeM (©) on which
the combination will be efficiently performed. Shafer’s rebdienoted\°(0), corresponds to a very specific
hybrid DSm model including all possible exclusivity corétts. DST has been developed for working only
with M°(©) while DSmT has been developed for working with any kind ofdiylnodel (including Shafer’s
model and the free DSm model), to manage as efficiently andselg as possible imprecise, uncertain and
potentially high conflicting sources of evidence while kagpin mind the possible dynamicity of the infor-
mation fusion problematic. The foundations of DSmT aredfare totally different from those of all existing
approaches managing uncertainties, imprecisions andasnfDSmT provides a new interesting way to attack
the information fusion problematic with a general framekiororder to cover a wide variety of problems.

DSmT refutes also the idea that sources of evidence prok@lelieliefs with the same absolute interpreta-
tion of elements of the same franeand the conflict between sources arises not only because pbtsible
unreliability of sources, but also because of possiblestiit and relative interpretation 6f, e.g. what is
considered as good for somebody can be considered as badnfebedy else. There is some unavoidable
subjectivity in the belief assignments provided by the sesrof evidence, otherwise it would mean that all
bodies of evidence have a same objective and universapmetation (or measure) of the phenomena under
consideration, which unfortunately rarely occurs in itgabbut when basic belief assignments (bba’s) are based
on someobjective probabilitiedransformations. But in this last case, probability thecay handle properly
and efficiently the information, and DST, as well as DSmTdmees useless. If we now get out of the prob-
abilistic background argumentation for the constructibblm, we claim that in most of cases, the sources of
evidence provide their beliefs about elements of the frahtleedfusion problem only based on their own limited
knowledge and experience without reference to the (inadae$ absolute truth of the space of possibilities.
Several successful applications of DSmT (in target tragkgatellite surveillance, situation analysis, robotics,
medicine, etc) can be found ip [31] 34].

2.1 The power set, hyper-power set and super-power set

In DSmT, we take very care of the model associated with thé&set hypotheses where the solution of the
problem is assumed to belong to. In particular, the threesetis (power set, hyper-power set and super-power
set) can be used depending on their ability to fit adequatélyttve nature of hypotheses. In the following, we



assume tha® = {6y,...,0,} is a finite set (called frame) of exhaustive elemerffsIf © = {0;,...,0,}

is a priori not closed® is said to be an open world/frame), one can always includé anciosure element,
sayf,+1 in such away that we can work with a new closed world/frafig .. ., 6,,,0,,1}. So without loss

of generality, we will always assume that we work in a closeatlavby considering the fram® as a finite
set of exhaustive elements. Before introducing the powetlse hyper-power set and the super-power set it is
necessary to recall that subsets are regarded as propesiti®empster-Shafer Theory (see Chapter £ df [24])
and we adopt the same approach in DSmT.

e Subsets as propositionsGlenn Shafer in pages 35-37 pf][24] considers the subsgigpssitions in
the case we are concerned with the true value of some quartiying its possible values i®. Then
the propositionsP,(A) of interest are those of the fofim

Py(A) = The true value of is in a subsetA of ©.

Any propositionP(A) is thus in one-to-one correspondence with the sulset ©. Such correspon-
dence is very useful since it translates the logical not@reonjunctionA, disjunctionv, implication=-

and negation- into the set-theoretic notions of intersectionuniony, inclusionC and complementa-
tion ¢(.). Indeed, ifPy(A) andPy(B) are two propositions corresponding to subsétnd B of ©, then

the conjunctiorPy(A) APy(B) corresponds to the intersectiein B and the disjunctioPy(A) vV Py (B)
corresponds to the unioA U B. A is a subset of3 if and only if Py(A) = Py(B) and A is the set-
theoretic complement aB with respect ta (written A = cg(B)) if and only if Pg(A) = =Py(B). In
other words, the following equivalences are then used leritlee operations on the subsets and on the

propositions:
Operations Subsets Propositions
Intersection/conjunction ANB Py(A) A Py(B)
Union/disjunction AUB Py(A) V Py(B)
Inclusion/implication AcCB Po(A) = Pyo(B)
Complementation/negation A = cg(B) | Py(A) = —Py(B)

Table 1: Correspondence between operations on subsets gndpositions.

e Canonical form of a proposition: In DSmT we consider all propositions/sets in a canonicahfoWe
take the disjunctive normal form, which is a disjunction ohjnctions, and it is unique in Boolean

algebra and simplest. For examplé,= AN BN (AU BUQC)itis notin a canonical form, but we
simplify the formula andX = A N B is in a canonical form.

e The power set 2° 2 (0, U)

Aside Dempster’s rule of combination, the power set is onthefcorner stones of Dempster-Shafer Theory
(DST) since the basic belief assignments to combine areetkfin the power set of the fran®e In mathemat-
ics, given a se®, the power set 00, written 29 is the set of all subsets 6. In ZFC axiomatic set theory,
the existence of the power set of any set is postulated byxieensof power set. In other word€) generates
the power se2® with the U (union) operator only.

We do not assume here that elemehtare necessary exclusive, unless specified. There is ntiestond; but the
exhaustivity.

2We use the symbat to mearequals by definitiorthe right-hand side of the equation is the definition of #fehand
side.



More precisely, the power séf is defined as the set of all composite propositions/subssits fltom
elements of with U operator such that:

1. @,91,...,9n €29,
2. If A,B €29, thenAUB € 2°.
3. No other elements belong 28, except those obtained by using rules 1 and 2.

Examples of power sets

o If © = {6,065}, then20=101.02} — (g} 19,1 {6}, {61,605} } which is commonly written a8® =
{0,01,02,01 U0}

e Let’s consider two frame®; = {A,B} and©, = {X,Y}, then their power sets are respectively
201={A.B} — 1) A, B, AU B} and292={XY} — {( X Y, X UY}. Let's consider a refined frame
orel = {6y,60,,03,0,4}. The granule®;, i = 1,...,4 are not necessarily exhaustive, nor exclusive. If
A and B are expressed more precisely in function of the granjldsy example asl = {01, 0,,03} =
61 Ub Uz andB £ {65,604} = 02 U 6, then the power sets can be expressed from the grafiuses
follows:

201={4B5) = (9 A, B, AU B}
={0,{01,02,03},{02,04},{{01, 02,03}, {02,604} }}
—

A B AUB
= {@,91 UbyUb3,0:U604,01 U0 U063 U94}

If X andY” are expressed more precisely in function of the finer grafylby example asy = {6,} =
f1 andY £ {92, 03, 94} = 6y U 03 U 64 then:

= {®> {91}7 {927 937 94}7 {{91}7 {927 937 94}}}
~—
X Y XUY
= {@,91,92 UfsUby, 6 U92U93U94}

We see that one has naturally:

9O1={AB) £ 90r={X.Y} 4 9O ={61.0505.61)
even if working fromd; with AU B = X UY = {#1,6,,03,04} = O/,
e The hyper-power set D® £ (6,U,N)

One of the cornerstones of DSmT is the free Dedekind's &ffl§ denotedhyper-power sein DSmT
framework. Let® = {64, ...,0,} be afinite set (called frame) afexhaustive elements. The hyper-power set
D® is defined as the set of all composite propositions/subsgitsiiom elements ofd with U andn operators
such that:

1. 0,64,...,6, € D®.
2. IfA,B e D® thenAnB e D® andAU B € D°.

3. No other elements belong 10°, except those obtained by using rules 1 or 2.



Therefore by convention, we writB® = (©, U, N) which means tha® generatesD® under operators
andn. The dual (obtained by switching andn in expressions) oD® is itself. There are elements iR®
which are self-dual (dual to themselves), for exampleor the case whemn = 3 in the following example.
The cardinality ofD® is majored by22" when the cardinality 0B equalsn, i.e. |©] = n. The generation
of hyper-power seD® is closely related with the famous Dedekind’s problé¢iJ[4oB8]enumerating the set
of isotone Boolean functions. The generation of the hypsver set is presented ifi [31]. Since for any given
finite set®, | D®| > |2°| we call D® the hyper-power setf ©.

Example of the first hyper-power sets
e For the degenerate case+ 0) where® = {}, one hasD® = {ag £ 0} and|D®| = 1.
e Wheno = {;}, one hasD® = {ay 2 0, a1 £ 0;} and|D®| = 2.

e When©® = {6;,60,}, one hasD® = {ag,a1,...,as} and|D®| = 5 with ag £ 0, oy £ 6, N 6y,
Q9 = 01, as = 05 andoy = 01 U 6.

e WhenO = {0y, 05,63}, one hasD® = {ag, ay,...,az} and|D®| = 19 with

Oé()é@

aléelﬁﬁgﬂﬁg a10é92
agéelﬁeg 11 é@g
agéﬁlﬁﬂg Oélgé (91ﬁ92)U93
a4é92ﬁ93 0413é (91ﬁ93)U92
as £ (01U 6) N 03 ais 2 (02N 63) UG,
aﬁé(ﬂluﬁg)ﬂﬂg a15é01U92
a7é(92U93)ﬂ91 alﬁéﬁlueg

as = (91092)U(01 ﬁ@g)U(@gﬂ@g) 17 é@gueg
agéel algéeluegueg

The cardinality of hyper-power sé® for n > 1 follows the sequence of Dedekind’s numbdrg [26], i.e.
1,2,5,19,167, 7580,7828353,... and analytical exprassidedekind’s numbers has been obtained recently
by Tombak in [4p] (se€[[31] for details on generation and ondeof D®). Interesting investigations on the
programming of the generation of hyper-power sets for exgging applications have been done in Chapter 15

of [B4] and in [36].
Examples of hyper-power sets

Let's consider the frame®, = {A, B} and©®©, = {X, Y}, then their corresponding hyper-power sets are
DO ={AB} — ) ANB,A,B,AUB} andD®={XY} = ) X Y, X,Y, X UY}. Let’s consider a refined
frame©"¢/ = {60,,0,03,0,} where the granuleg;, i = 1,...,4 are now considered asily exhaustive and
exclusive If A andB are expressed more precisely in function of the granylbg example asl 2 {01, 65,03}
andB = {65,0,} then

DO =ABY — 19 AN B, A, B, AU B}

= {®7 {917 927 93} N {927 94}7 {017 927 03}7 {927 04}7

——
ANB={02} A B
{{01.,02,03},{02,04}}}
AUB={91,92,93,94}
= {@,92,91 UbyUbs,0:U04,01 UbO U603 U94}
?é 291:{A,B}




If X andY are expressed more precisely in function of the finer grarylby example ast = {6,} and
Y £ {63,03,0,} then in assuming thak, i = 1,..., 4 are exhaustive and exclusive, one gets

DO=IXYY — £ X NY, X, Y, X UY}
= {®> {91} N {927 937 94}7@7 {927 937 94}7 {{91}7 {927 937 94}}}
XNYy=0 X Y XUy
0
= {®> {91}7 {927 037 94}7 {{91}7 {927 937 94}}}
N~~~

X Y XUY
= 902={X,Y}

Therefore, we see th@©>={X.Y'} = 29:={X.Y'} hecause the exclusivity constraikitn Y = () holds since one
has assumed = {6,} andY £ {6, 03, 0,4} with exhaustive and exclusive granulgsi = 1,...,4.

If the granuled;, i = 1,...,4 are not assumed exclusive, then of course the expressidngef-power
sets cannot be simplified and one would have:

DO=ABY — 19 AN B, A, B,AU B}
= {@, (91 U92U93)ﬂ (92 U94),91 U6y Ubs,0sU80,,0; U92U93U94}
7é 291={A,B}

DO XYY —fp X NY, X, Y, X UY}
= {0,601 N (62U 05 U04),01,02 005U 04,0 U602 U05U0}
# 292:{X7Y}

Shafer’s model of a frame More generally, when all the elements of a given fra@hare known (or are
assumed to be) truly exclusive, then the hyper-poweiD$&teduces to the classical power 88t Therefore,
working on power se® as Glenn Shafer has proposed in his Mathematical Theory feBge [2}]) is
equivalent to work on hyper-power sBX° with the assumption that all elements of the frame are ekeus
This is what we calShafer's model of the fram®, written M%(©), even if such model/assumption has not
been clearly stated explicitly by Shafer himself in his miit@e book.

e The super-power set S© £ (0,U, N, ¢(.))

The notion of super-power set has been introduced by Smarhedn the Chapter 8 df[34]. It corresponds
actually to the theoretical construction of the power seghefminimaf] refined frame9™/ of ©. © generates
S® under operators), N and complementation(.). S® = (©,U,N, ¢(.)) is a Boolean algebra with respect to
the union, intersection and complementation. Therefonkiwg with the super-power set is equivalent to work
with a minimal theoretical refined frant@™/ satisfying Shafer's model. More preciself is defined as the
set of all composite propositions/subsets built from elet:mief© with U, N andc(.) operators such that:

1. 0,6q,...,0, € S°.
2. IfA,Be S® thenANnB e S® AUB e S°.
3. If A € 59, thene(A) € S©.

4. No other elements belong 89, except those obtained by using rules 1, 2 and 3.

3The minimality refers here to the cardinality of the refineahfies.



As reported in[32], a similar generalization has been presly used in 1993 by Guan and B¢ll|[14] for the
Dempster-Shafer rule using propositions in sequentiatlagd reintroduced in 1994 by Paris in his bopK [20],
page 4.

Example of a super-power set

Let’s consider the fram® = {6, 6>} and let's assumeé, N6, = 0, i.e. §; andb, are not disjoint according
to Fig.[] whered £ p; denotes the part @ belonging only t@; (p stands here fapart), B £ p, denotes the
part of, belonging only tod; andC £ p,, denotes the part @f; andé, belonging to both. In this example,
§0=1{01.92} js then given by

SO = {0,6, N6y, 01,05,01 Uby, c(0),c(0; Nb),c(61),c(62),c(0; Uby)}

wherec(.) is the complement i®. Sincec(()) = 6, U 62 ande(6; U 63) = (), the super-power set is actually
given by
S© = {0,061 N Oa,01,02,01 U o, (61 NOa),c(61),c(f)}

Let’s now consider the minimal refinemedte/ = {A, B, C} of © built by splitting the granuleg; and
9, depicted on the previous Venn diagram into disjoint parts @</ satisfies the Shafer's model) as follows:

S)

Fig. 1: Venn diagram of a free DSm model for a 2D frame.

0L =AUC, f, = BUC, 61Nby=C

Then the classical power set®f*/ is given by

29"Y — {0, A,B,C,AUB,AUC,BUC,AUBUC}

We see that we can define easily a one-to-one corresponderitien ~, between all the elements of the
super-power se§© and the elements of the power 88f’ as follows:

D~0, (01Nb)~C, 6 ~(AUC), by~ (BUC), (01Ub)~(AUBUCQC)

6(91 N 92) ~ (A @] B), 0(91) ~ B, 0(92) ~ A

Such one-to-one correspondence between the elemeffs afd 29"/ can be defined for any cardinality
|©| > 2 of the frame® and thus one can considéP as the mathematical construction of the poweQ@éff
of the minimal refinement of the frante. Of course, whe® already satisfies Shafer's model, the hyper-power
set and the super-power set coincide with the classical pseteof©. It is worth to note that even if we have
a mathematical tool to built the minimal refined frame sgirgf Shafer's model, it doesn’'t mean necessary



that one must work with this super-power set in general ith apalications because most of the times the
elements/granules &® have no clear physical meaning, not to mention the drastiease of the complexity
since one hag® C D® C S© and

ref
20| = 20 < |DO| < |§©0| = 27! = 921 (1)
Typically,
O] =n |2®| — on |D@| |S@| — |2(~),.ef| VAR
2 4 5 23 =8
3 8 19 27 — 128
4 16 167 | 215 = 32768
5 32 7580 | 231 = 2147483648

Table 2: Cardinalities o®, D® andS®.

In summary, DSmT offers truly the possibility to build andwork on refined frames and to deal with
the complement whenever necessary, but in most of applicatither the frame® is already built/chosen
to satisfy Shafer's model or the refined granules have na glegsical meaning which finally prevent to be
considered/assessed individually so that working on thpehpower set is usually sufficient for dealing with
uncertain imprecise (quantitative or qualitative) anchhigconflicting sources of evidences. Working Wi
is actually very similar to working witi2® in the sense that in both cases we work with classical powsy se
the only difference is that when working wigf we have implicitly switched from the original frant@repre-
sentation to a minimal refineme®t®/ representation. Therefore, in the sequel we focus our ssmus based
mainly on hyper-power set rather than (super-) power settwhias already been the basis for the development
of DST. But as already mentioned, DSmT can easily deal witiebinctions defined 02 or S© similarly
as those defined aR®.

Generic notation: In the sequel, we use the generic notatiéf for denoting the sets (power set, hyper-power
set and super-power set) on which the belief functions diaeabk

Remark on the logical refinement The refinement in logic theory presented recently by Chaivi] was
actually proposed in nineties by a Guan and Hell [14] and bysHQ]. This refinement is isomorphic to the
refinement in set theory done by many researcher®. # {61, 65, 65} is a language where the propositional
variables ard, 65, 03, Cholvy considers all 8 possible logical combinations afgarsitionsd;’s or negations
of §;’s (called interpretations), and defines the- 23 disjoint parts/propositions of the Venn diagram in Kig. 2
[one also considers as a part the negation of the total ignetan the set theory, so that:

i1 = 01 Ay A By
in = 01 A Oy A =03

is = 01 A =6 A O3

ig = 0; A =By A b3
i5 = =01 A O A O3
i = =01 A O A 63
i = =01 A = A 05
is = =01 A =0y A —03

where—6; means the negation 6f.



P123

01 A6 A O3

=01 A By A =03 \ =01 Afy AB3 | =01 A= A B3

P23

=01 A =03 A =03 Po

Fig. 2: Venn diagram of the free DSm model for a 3D frame.

Because of Shafer’'s equivalence of subsets and propasit@holvy’s logical refinement is strictly equiv-
alent to the refinement we did already in 2006 in definf#fg) - see Chap. 8 of[34] - but in the set theory
framework. We did it using Smarandache’s codification (¢asynderstand and read) in the following way:

- each Venn diagram disjoint payt;, or p;;; represents respectively the intersectiopoéndp; only, or
p; andp; andpy, only, etc; while the complement of the total ignorance issideredp, [p stands for
part].

Thus, we have an easier and clearer representation in DSInTrttCholvy’s logical representation. While
the refinement in DST using logical approachorery large is very hard, we can simply consider in the DSmT
the super-power s&® = (©,U,N, ¢(.)). So, in DSMT representation the disjoint parts are noted|bsws:

pr23 =01 AN N3 =1y

p12 = 01 A2 A =3 = io
p13 =01 A =02 A3 = i3
p23 = 01 AN O2 AN O3 = i5
p1 =01 A=l A =03 =iy
p2 =~ A by A —03 = ig
p3 =~ A b2 A\ O3 = ir
po = 01 A =02 A —03 = ig

As seeing, in Smarandache’s codification a disjoint Vengrdia part is equal to the intersection of single-
tons whose indexes show up as indexes of the Venn part; fongeanp,, case indexes 1 and 2, intersected
with the complement of the missing indexes, in this casexridis missing.

Smarandache’s codification can easily transform any set 88 into its canonical disjunctive normal form.
For examplef, = p1 U p12 U p13 U p1og (i.€. all Venn diagram disjoint parts that contain the intiExin their
indexes ; such indexes frosf are 1, 12, 13, 123) can be expressed as

01 = (91 N 6(92) N 6(93)) U (91 NN 6(93))(91 N 6(92) N 93) U (91 NN 93)

where the set values of each part was taken from the abowe tabl



01 Ay = p12Up1os (i.€. all Venn diagram disjoint parts that contain the intlEX” in their indexes) equals
to (91 A By A —|93) V (91 A Oy A 93)

The refinement based on Venn Diagram, becomes very hard modtaimpossible when the cardinal ©f
n, is large and all intersections are non-empty (the free Mo8eappose: = 20, or even bigger, and we have
the free model. How can we construct a Venn Diagram wheredw sl possible intersections of 20 sets? Its
geometrical figure would be very hard to design and very hangtad (you don’t identify well each disjoint
part of a such Venn Diagram to what intersection of sets ibiigd to). The larger is, the more difficult is
the refinement. Fortunately, based on Smarandache’s aithfic we can algebraically design in an easy way
for all such intersections (for examplerifis very big, we can use computer programs to make combirsation
of indexes{1,2,...,n} taken in groups or 1, of 2, ..., or of elements each), so the refinement should not
be a big problem from the programming point of view, but we tral&ways keep in mind if such refinement
is really necessary and if it has (or not) a deep physicatpné¢ation and justification for the problem under
consideration.

The assertion if]2], upon Milan Daniel’s, that hybrid DSrferis equivalent to Dubois-Prade rule is untrue,
since in dynamic fusion they give different results. Suchnegle has been already given jh [7] and is reported
in section 2.6]3 for the sake of clarification for the read@tse assertion i{]2] that “from an expressivity point
of view DSmT is equivalent to DST” is partially true sinceghiea is true when the refinement is possible (not
always it is practically/physically possible), and evenentthe spaces we work o8° = 29"" where the
hypotheses are exclusive, DSmT offers the advantage teakfmement is already done (it is not necessary
for the user to do (or implicitly presuppose) it as in DST)sé&l DSmT accepts from the very beginning the
possibility to deal with non-exclusive hypotheses and afrse it can a fortiori deal with sets of exclusive hy-
pothesis and work either @ or 2™ whenever necessary, while DST first requires implicitly trkwith
exclusive hypotheses only.

The main distinctions between DSmT and DST are summarizedebfollowing points:

1. Therefinement is not always (physically) possible, esfigdor elements from the frame of discernment
whose frontiers are not clear, such as: colors, vague setdear hypotheses, etc. in the frame of
discernment; DST does not fit well for working in such casdsle\DSmT does;

2. Even in the case when the frame of discernment can be rdfieedheatomicelements of the frame
have all a distinct physical meaning), it is still easier g8 DSMT than DST since in DSmT framework
the refinement is done automatically by the mathematicadtcaction of the super-power set;

3. DSmT offers better fusion rules, for example Proportidbanflict redistribution Rule # 5 (PCR5) -
presented in the sequel - is better than Dempster’s rulgjchiism rule (DSmH) works for the dynamic
fusion, while Dubois-Prade fusion rule does not (DSmH isxeresion of Dubois-Prade rule);

4. DSmT offers the best qualitative operators (when workiid labels) giving the most accurate and
coherent results;

5. DSmT offers new interesting quantitative conditionindes (BCRs) and qualitative conditioning rules
(QBCRs), different from Shafer’s conditioning rule (SCBER can be seen simply as a combination of
a prior mass of belief with the mass(A) = 1 wheneverA is the conditioning event;

6. DSmT proposes a new approach for working with imprecisengitative or qualitative information and
not limited to interval-valued belief structures as pragbgenerally in the literatur@][B,[6]47].

2.2 Notion of free and hybrid DSm models

Free DSm model The element®,, i = 1,...,n of © constitute the finite set of hypotheses/concepts charac-
terizing the fusion problem under consideration. Wheneh&no constraint on the elements of the frame, we
call this model théree DSm modelwritten M7 (6). This free DSm model allows to deal directly with fuzzy

10



concepts which depict a continuous and relative intrinattire and which cannot be precisely refined into finer
disjoint information granules having an absolute inteiqtien because of the unreachable universal truth. In
such case, the use of the hyper-power B8t (without integrity constraints) is particularly well aded for
defining the belief functions one wants to combine.

Shafer’s model In some fusion problems involving discrete concepts,ral¢lementd;, i = 1,...,n of ©
can be truly exclusive. In such case, all the exclusivityst@ints ort;, i = 1, ..., n have to be included in the
previous model to characterize properly the true naturdefiision problem and to fit it with the reality. By
doing this, the hyper-power s&®° as well as the super-power s&? reduce naturally to the classical power
set2® and this constitutes what we have cal®dafer's modeldenotedM?(©). Shafer's model corresponds
actually to the most restricted hybrid DSm model.

Hybrid DSm models: Between the class of fusion problems corresponding tortse DSm modeM/ (©)
and the class of fusion problems corresponding to Shafeodein\M®(0), there exists another wide class
of hybrid fusion problems involving i® both fuzzy continuous concepts and discrete hypothesesudn
(hybrid) class, some exclusivity constraints and possgagne non-existential constraints (especially when
working on dynamif} fusion) have to be taken into account. Each hybrid fusiomlera of this class will then
be characterized by a proper hybrid DSm model dendt@®) with M(0) # M/ (0) andM(©) # M°(O).

In any fusion problems, we consider as primordial at the eginning and before combining information
expressed as belief functions to define clearly the propend®© of the given problem and to choose explicitly
its corresponding model one wants to work with. Once thisose] the second important point is to select
the proper se2®, D® or S© on which the belief functions will be defined. The third imfaot point will be
the choice of an efficient rule of combination of belief fuoots and finally the criteria adopted for decision-
making.

In the sequel, we focus our presentation mainly on hyperep@etD® (unless specified) since it the most
interesting new aspect of DSmT for readers already familign DST framework, but a fortiori we can work
similarly on classical power sef if Shafer's model holds, and even aR™’ (the power set of the minimal
refined frame) whenever one wants to use it and if possible.

Examples of models for a frame©:

e Let's consider the 2D problem whef@ = {#,6-} with D® = {(),0, N 65,6,,605,6, U 6} and assume

now thatd; andé, are truly exclusive (i.e. Shafer's modgt° holds), then becausg N 6, M (), one gets
0

DO = (0,6, N2 0,0,,0,0, U} = {0,6,605,6, Uby} =20

e As another simple example of hybrid DSm model, let's conside 3D case with the fram@ = {6, 02, 65}
with the modelM # M/ in which we force all possible conjunctions to be empty, dut 6,. This hybrid
DSm model is then represented with the Venn diagram on Figh81e boundaries of intersection@fandds
are not precisely defined #f andf, represent only fuzzy concepts likenallnesandtallnessby example).

2.3 Generalized belief functions

From a general fram®, we define a map(.) : G® — [0, 1] associated to a given body of eviderigas

m(P) =0  and > m(A) =1 2)

AcG®

The quantitym(A) is called thegeneralized basic belief assignment/mégsba) ofA.

4i.e. when the fram® and/or the modeM is changing with time.
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Fig. 3: Venn diagram of a DSm hybrid model for a 3D frame.

Thegeneralized belief and plausibility functioase defined in almost the same manner as within DST, i.e.

Bel(A) = Y m(B) Pll4) = ) m(B) (3)
BCA BNA#D
Beg® Beg®

We recall thatG® is the generic notation for the set on which the gbba is def{g&d can be2®, D®
or evenS® depending on the model chosen f8). These definitions are compatible with the definitions of
the classical belief functions in DST framework whéf? = 2° for fusion problems where Shafer's model
M?P(©) holds. We still haverA € G®, Bel(A) < PI(A). Note that when working with the free DSm model
M/ (©), one has always PA) = 1 VA # () € (G® = D®) which is normal.

Example: Let's consider the simple frane = {4, B}, then depending on the model we chooseG8t, one
will consider either:

e G© as the power s&® and therefore:

m(A) +m(B)+m(AUB) =1

e G as the hyper-power s@® and therefore:

m(A) +m(B)+m(AUB)+m(ANB) =1

e G° as the super-power s6f and therefore:

m(A) +m(B)+m(AUB)+m(ANB)+m(c(A)) + m(c(B)) + m(c(A) Uc(B)) =1

2.4 The classic DSm rule of combination

When the free DSm mode\1/ (©) holds for the fusion problem under consideration, the @a3$m rule of
combinationm s gy = m(.) £ [my1 @ mo](.) of two independeffitsources of evidences, and 3, over the
same frame® with belief functions Bel(.) and Bek(.) associated with gbbau; (.) andma(.) corresponds to
the conjunctive consensus of the sources. Itis giverj By [31]

VCeD®  muyue)(C)=m(C)= > mi(A)my(B) (4)
A,BeD®
ANB=C
Since D® is closed undet) andn set operators, this new rule of combination guaranteestiatis a
proper generalized belief assignment, ine(.) : D® — [0,1]. This rule of combination is commutative and
associative and can always be used for the fusion of soungekving fuzzy concepts when free DSm model
holds for the problem under consideration. This rule has lex¢éended fos > 2 sources in[[31].

SWhile independence is a difficult concept to define in all tiemanaging epistemic uncertainty, we follow here the
interpretation of Smets i|ﬁ|37] anﬂ38], p. 285 and consillat two sources of evidence are independent (i.e distimtt a
noninteracting) if each leaves one totally ignorant abbetgarticular value the other will take.
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According to Tabl¢]2, this classic DSm rule of combinatiooki® very expensive in terms of computations
and memory size due to the huge number of elemeni33when the cardinality 0B increases. This remark
is however valid only if the cores (the set of focal elemeritgliba) Ky (m;) and Ko (ms2) coincide withD®,

i.e. whenmq(A) > 0 andmy(A) > 0 forall A # () € D®. Fortunately, it is important to note here that in
most of the practical applications the sizes{m;) and/Cy(m2) are much smaller thaD®| because bodies
of evidence generally allocate their basic belief assigritmenly over a subset of the hyper-power set. This
makes things easier for the implementation of the classimD$8e (4). The DSm rule is actually very easy
to implement. It suffices for each focal elementof(m,) to multiply it with the focal elements ofs(ms)
and then to pool all combinations which are equivalent utigerlgebra of sets. While very costly in term on
memory storage in the worst case (i.e. whemalld) > 0, A € D® or A € 29™'), the DSm rule however
requires much smaller memory storage than when working $fthi.e. working with a minimal refined frame
satisfying Shafer’'s model.

In most fusion applications only a small subset of elemeht®® have a non null basic belief mass be-
cause all the commitments are just usually impossible taiolgrecisely when the dimension of the problem
increases. Thus, it is not necessary to generate and keegniory all elements ab® (or eventuallyS®) but
only those which have a positive belief mass. However thegerieal technical challenge on how to manage
efficiently all elements of the hyper-power set. This prabie obviously much more difficult when trying to
work on a refined frame of discernme®t®/ if one really prefers to use Dempster-Shafer theory andyappl
Dempster’s rule of combination. It is important to keep imthihat the ultimate and minimal refined frame
consisting in exhaustive and exclusive finite set of refinadiusive hypotheses is just impossible to justify and
to define precisely for all problems dealing with fuzzy aneléfined continuous concepts. A discussion on
refinement with an example has be included in [31].

2.5 The hybrid DSm rule of combination

When the free DSm modeWt/ (©) does not hold due to the true nature of the fusion problem rucalesid-
eration which requires to take into account some known iitiegonstraints, one has to work with a proper
hybrid DSm modelM (6) # M7 (0). In such case, the hybrid DSm rule (DSmH) of combination tase
the chosen hybrid DSm modgH () for k > 2 independent sources of information is defined foralt D®
as [311:

mpsma(A) = mage)(4) 2 6(A) [S1(4) + S2(A) + S5(4)] (5)

where all sets involved in formulas are in the canonical fema ¢(A) is the characteristic non-emptiness
functionof a setA, i.e. p(A) = 1if A ¢ @ andgp(A) = 0 otherwise, wher® = {@n, 0}. D4 is the set of
all elements ofD® which have been forced to be empty through the constraintiseomodelM and( is the
classical/universal empty sef; (A) = m 7 (p)(A), S2(A), S3(A) are defined by

k
S1(4) = > [Tmi(x) (6)

X1,X2,..,X,eD® i=1
Xi1NXoN..NXp=A

k
Sa(A) = Z H m;(X;) (7)

X1,X2,...,Xk60 =1
U=AV[(UED)N(A=11)]

k
S3(4) £ > [Tmi(x) (8)
X1,Xo,...,.X,eD® =1
X1UXoU...UX=A
X1NX2N..NX,€0
with i £ u(X1)Uu(Xo)U. .. Uu(X},) whereu(X) is the union of alb; that composeX, I; £ ;U U. ..U,
is the total ignorancesS; (A) corresponds to the classic DSm rule foindependent sources based on the free
DSm modelM/ (©); Sy (A) represents the mass of all relatively and absolutely engigghich is transferred

13



to the total or relative ignorances associated with nonteximl constraints (if any, like in some dynamic
problems); S3(A) transfers the sum of relatively empty sets directly ontodhronical disjunctive form of
non-empty sets.

The hybrid DSm rule of combination generalizes the clasSaDule of combination and is not equivalent
to Dempter’s rule. It works for any models (the free DSm mo@&lafer's model or any other hybrid models)
when manipulatingorecisegeneralized (or eventually classical) basic belief fuordi An extension of this
rule for the combination ofmprecisegeneralized (or eventually classical) basic belief flordiis presented
in next section. As already stated, in DSmT framework it sgdossible to deal directly with complements
if necessary depending on the problem under consideratidnttee information provided by the sources of
evidence themselves.

The first and simplest way is to work wis® on Shafer’s model when a minimal refinement is possible and
makes sense. The second way is to deal with partially knoamdrand introduce directly the complementary
hypotheses into the frame itself. By example, if one knowg tmo hypothese#, > and their complements
61, B, then we can choose switch from original fra®e= {61, 6-} to the new frame = {6, 05,0,,65}. In
such case, we don't necessarily assume@hat 6, andf, = 6, becaus®, andd, may include other unknown
hypotheses we have no information about (case of partiakkricmame). More generally, in DSmT framework,
it is not necessary that the frame is built on pure/simplesgjiily vague) hypotheses as usually done in
all theories managing uncertainty. The frafecan also contain directly as elements conjunctions and/or
disjunctions (or mixed propositions) and negations/camants of pure hypotheses as well. The DSm rules
also work in such non-classic frames because DSmT works yuiatributive lattice built from© anywhere
O is defined.

2.6 Examples of combination rules

Here are some numerical examples on results obtained by D& af combination. More examples can be
found in [33].

2.6.1 Example witl® = {6,602, 603,04}

Let's consider the frame of discernment= {6, 02, 03, 6, }, two independent experts, and the two following
bbas
m1(91) =0.6 m1(93) =04 m2(92) =0.2 m2(94) =0.8

represented in terms of mass matrix
06 0 04 0
M= 0 02 0 038

e Dempster’s rule cannot be applied becausex< j < 4, one getsn(6;) = 0/0 (undefined!).

e But the classic DSm rule works because one obtaingd;) = m(62) = m(f3) = m(fs) = 0, and
m(f; N Oy) = 0.12, m(0; N Oy) = 0.48, m(fy N 63) = 0.08, m(fs N 64) = 0.32 (partial para-
doxes/conflicts).

e Suppose now one finds out that all intersections are empgféBs model), then one applies the hybrid
DSm rule and one gets (indéxstands here fonybrid rule): my, (61 U 62) = 0.12, my (61 U 64) = 0.48,
’I’)’Lh(92 U 93) = 0.08 andmh(Gg U 94) = 0.32.

2.6.2 Generalization of Zadeh'’s example wiith= {61, 62, 65}

Let’s considell < e1,¢e5 < 1 be two very tiny positive numbers (close to zero), the frarfhdiscernment be
© = {61, 602,03}, have two experts (independent sources of eviden@ds,) giving the belief masses

m1(91) =1- €1 m1(92) =0 m1(93) = €1

m2(91) =0 m2(92) =1- €9 m2(93) = €9
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From now on, we prefer to use matrices to describe the masses,

1—61 0 €1
0 1—e €

e Using Dempster’s rule of combination, one gets

_ (€1€2) =
m(f3) = (1—¢€)-04+0-(1 —e€)+ €16 =1

which is absurd (or at least counter-intuitive). Note thagtever positive values fet, ¢ are, Demp-
ster’s rule of combination provides always the same resuak) which is abnormal. The only acceptable
and correct result obtained by Dempster’s rule is reallpioletd only in the trivial case whef = ¢; = 1,

i.e. when both sources agreefinwith certainty which is obvious.

e Using the DSm rule of combination based on free-DSm model,g&ism (03) = e1e2, m(0; N Oy) =
(I1—€e1)(1—€2), m(01Nb3) = (1—€1)e2, m(02N03) = (1 —e2)er and the others are zero which appears
more reliable/trustable.

e Going back to Shafer’s model and using the hybrid DSm ruleooflmination, one gets:i(63) = €€,
m(Hl U 92) = (1 - 61)(1 - 62), m(91 @] 93) = (1 — 61)62, m(92 U 93) = (1 — 62)61 and the others are
zero.

Note that in the special case when= ¢, = 1/2, one has
m1(91) = 1/2 m1(92) = 0 m1(93) = 1/2

m2(91) =0 mg(eg) = 1/2 m2(93) = 1/2

Dempster’s rule of combinations still yields(63;) = 1 while the hybrid DSm rule based on the same Shafer’s
model yields nown(63) = 1/4, m(6; U 63) = 1/4, m(0; U 03) = 1/4, m(62 U 03) = 1/4 which is normal.

2.6.3 Comparison with Smets, Yager and Dubois & Prade rules

We compare the results provided by DSmT rules and the maimmnrules of combination on the follow-
ing very simple numerical example where only 2 independentces (a priori assumed equally reliable) are
involved and providing their belief initially on the 3D fra® = {61, 05,60s}. Itis assumed in this example
that Shafer's model holds and thus the belief assignments) andms(.) do not commit belief to internal
conflicting information.m (.) andms(.) are chosen as follows:

m1(91) =0.1 m1(92) =04 m1(93) =0.2 m1(91 U 92) =0.3

m2(91) =0.5 m2(92) =0.1 ”ITL2(93) =0.3 m2(91 U 92) =0.1

These belief masses are usually represented in the formadfed Imass matrixM given by

o1 04 02 03

M= 05 01 03 0.1

9)
where index; for the rows corresponds to the index of the sourceinand the indexeg for columns ofM
correspond to a given choice for enumerating the focal eisnaf all sources. In this particular example, in-
dexj = 1 corresponds té,, j = 2 corresponds té,, j = 3 corresponds t; andj = 4 corresponds t6; U#-.

Now let’s imagine that one finds out th@j is actually truly empty because some extra and certain knowl
edge onds is received by the fusion center. As example, 6, and 3 may correspond to three suspects
(potential murders) in a police investigatiom, (.) andms(.) corresponds to two reports of independent wit-
nesses, but it turns out that finally has provided a strong alibi to the criminal police invesiig@nce arrested

15



by the policemen. This situation corresponds to set up adhybodel M with the constraints 4 0.

Let's examine the result of the fusion in such situation wiatd by the Smets’, Yager's, Dubois & Prade’s
and hybrid DSm rules of combinations. First note that, bamedhe free DSm model, one would get by
applying the classic DSm rule (denoted here by inflem (') the following fusion result

mpsmc(01) =0.21  mpgmc(62) = 0.11
mDSmC(93) = 0.06 mDSmc(91 U 92) =0.03
mDSmC(Hl N 92) =0.21 mDsmC(Hl M 93) =0.13
) (

mpsmc (62 Nbs) =0.14 mpsmc (03N (61 U6)) =0.11

But because of the exclusivity constraints (imposed her¢hbyuse of Shafer's model and by the non-

existential constrairtis M (), the total conflicting mass is actually given by, = 0.06 +0.21 +0.13 4+ 0.14 +
0.11 = 0.65.

e If one appliesDempster’s rule [P4] (denoted here by indeR.S), one gets:

mps(@) =0
mpg(61) = 0.21/[1 — kyz] = 0.21/[1 — 0.65] = 0.21/0.35 = 0.600000
mps(f2) = 0.11/[1 — kys] = 0.11/[1 — 0.65] = 0.11/0.35 = 0.314286
mps (01 UBy) = 0.03/[1 — kia] = 0.03/[1 — 0.65] = 0.03/0.35 = 0.085714

e If one appliesSmets’ rule[83]40] (i.e. the non normalized version of Dempster’s wilh the conflicting
mass transferred onto the empty set), one gets:

ms(0) = m(0) = 0.65 (conflicting mass)
mg(61) = 0.21
mg(f2) = 0.11

mg(6; U 6s) = 0.03

my(0) =0
my (61) = 0.21
my (6s) = 0.11
my (61 U 62) = 0.03 4+ k12 = 0.03 + 0.65 = 0.68

e If one appliesDubois & Prade’s rule [[[3], one gets becaugy M 0:

mpp(0) =0 (by definition of Dubois & Prade’s rule)
mpp(61) = [mi(61)ma2(01) + m1(61)ma (61 U b)

+ ma(61)m1 (61 U 62)]

+ [m1(61)m2(63) + ma(61)ma(63)]
=[0.1-0540.1-0.1+0.5-0.3]4[0.1-0.3+0.5-0.2]
=0.21+0.13=0.34

mpp(f2) =[0.4-0.140.4-0.1+0.1-0.3] +[0.4-0.340.1-0.2]
=0.11+0.14 =0.25
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mpp(01U0y) = [m1(61 UBO)mao(01 U bs)]
+ [m1 (01 U O2)ma(03) + mao(01 U bs)my(63)]
+ [mq(61)m2(02) + ma(61)m1(62)]
=[0.30.1] +[0.3-0.34+0.1-0.2] +[0.1 - 0.1 4+ 0.5 - 0.4]
= [0.03] + [0.09 + 0.02] + [0.01 + 0.20]
=0.03 4+ 0.11 + 0.21 = 0.35

Now if one adds up the masses, one @ets0.34 4+ 0.25 4+ 0.35 = 0.94 which is less than 1. Therefore
Dubois & Prade’s rule of combination does not work when alstiog, or an union of singletons, becomes
empty (in a dynamic fusion problem). The products of suchtgrmefement columns of the mass matrix
M are lost; this problem is fixed in DSmT by the sufi(.) in (B) which transfers these products to the
total or partial ignorances.

e Finally, if one appliedDSmH rule, one gets becausg M 0:

mpsmu(0) =0 (by definition of DSmH)
mpsmu(61) =034 (same asnpp(61))
mpsma (f2) =0.25  (same asnpp(6-))
)

= [m1 (01 U b2)ma (61 U O3)]

+ [m1(01 U 02)m2(03) + ma (61 U O2)m(63)]

+ [ma(61)m2(62) + ma(61)ma (02)] + [m1(63)m2(63)]
=0.03+0.11 +0.21 + 0.06 = 0.35 4+ 0.06 = 0.41
# mpp (01 U0s)

mpsmu (01 U 02

We can easily verify thatn psp,z(61) + mpsme(62) + mpsme (61 U 62) = 1. In this example, using
the hybrid DSm rule, one transfers the product of the emfgigrentds column,my (63)ma(63) = 0.2 -
0.3 = 0.06, to mpsmm (01 U O2), which becomes equal @35 + 0.06 = 0.41. Clearly, DSmH rule
doesn’t provide the same result as Dubois and Prade’s rutegrily when working on static frames of
discernment (restricted cases).

2.7 Fusion of imprecise beliefs

In many fusion problems, it seems very difficult (if not impitge) to have precise sources of evidence gener-
ating precise basic belief assignments (especially whéeflienctions are provided by human experts), and
a more flexible plausible and paradoxical theory supporitimgrecise information becomes necessary. In the
previous sections, we presented the fusiopraiciseuncertain and conflicting/paradoxical generalized basic
belief assignments (gbba) in DSMT framework. We mean hemgrdxgise gbba, basic belief functions/masses
m(.) defined precisely on the hyper-power £%& where each mass,(X), whereX belongs taD®, is repre-
sented by only one real number belongind(ol] such that) " . e m(X) = 1. In this section, we present
the DSm fusion rule for dealing witadmissible imprecise generalized basic belief assignsneft.) defined

as real subunitary intervals ¢, 1], or even more general as real subunitary sets [i.e. setsjauatssarily
intervals].

An imprecise belief assignment’(.) over D® is saidadmissibleif and only if there exists for every
X € D° at least one real numben(X) € m!(X) such thaty_ v pe m(X) = 1. The idea to work with
imprecise belief structures represented by real subsatvals of[0, 1] is not new and has been investigated
in [LLd,[3,[6] and references therein. The proposed workdablaiin the literature, upon our knowledge were
limited only to sub-unitary interval combination in the fimawork of Transferable Belief Model (TBM) de-
veloped by Smetdq [39, #0]. We extend the approach of LamatacgaMand Denceux based on subunitary
interval-valued masses to subunitary set-valued madsesfore the closed intervals used by Denceux to de-
note imprecise masses are generalized to any sets inclad@gl], i.e. in our case these sets can be unions
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of (closed, open, or half-open/half-closed) intervals/andcalars all in0, 1]. Here, the proposed extension
is done in the context of DSmT framework, although it can @pply directly to fusion of imprecise belief
structures within TBM as well if the user prefers to adopt TBither than DSmT.

Before presenting the general formula for the combinatibgemeralized imprecise belief structures, we
remind the following set operators involved in the DSm fadiormulas. Several numerical examples are given
in the chapter 6 of[31].

e Addition of sets
S| H Sy = 85,85 é{x!w:sl—i—sz,sl € 51, 89 GSQ}

e Subtraction of sets
S1 85y £ {w | T =81 — 82,51 € 51,82 S SQ}

e Multiplication of sets
S1 385, = {x ‘ T =81-89,81 € 51,89 € SQ}

e Division of sets If 0 doesn't belong ts,

51085, = {x ’ x:$1/82,81 € 51,89 € SQ}

2.7.1 DSm rule of combination for imprecise beliefs

We present the generalization of the DSm rules to combindygrgyof imprecise belief assignment which may
be represented by the union of several sub-unitary (hgiendntervals, (half-)closed intervals and/or sets of
points belonging to [0,1]. Several numerical examples B@given. In the sequel, one uses the notatior)

for an open intervalja, b] for a closed interval, anf, b] or [a, b) for a half open and half closed interval. From

the previous operators on sets, one can generalize the O8sn(classic and hybrid) from scalars to sets in the
following way [B1] (chap. 6)¥A # () € D®,

m!(4) = > [T ™) (10)

X1,X0,..,.X,ED9i=1,...k
(X1NX9N..NX})=A

where > " |and| | ] | represent the summation, and respectively product, of sets

Similarly, one can generalize the hybrid DSm rule from ssala sets in the following way:
s (A) = Mhye)(A) 2 6(4) B | ST(A) B S5(4) B 55(4)] (12)

where all sets involved in formulas are in the canonical femad ¢(A) is the characteristic non emptiness
functionof the setd andS{(A), SZ(A) andSi(A) are defined by

SHEVEE DY IT| mfx) (12)

X1,Xo,..,.X,€D9i=1,...k
X1NXoN...NXp=A

Sy(A) £ > [T mix) (13)

X17X27“'7Xkem 7‘:177k
U= AJV[UEO) A (A=)

I A I
SHEVE DY IT| mix) (14)
X1,Xo,..,.X,€D9i=1,...k
X1UXqU...UX}=A
X1NXgN...NX €0
In the case when all sets are reduced to points (hnumbersyethaperations become normal operations with
numbers; the sets operations are generalizations of ncaheperations. When imprecise belief structures re-

duce to precise belief structure, DSm ruleg (10) gnfl (11)aedo their precise versiof] (4) arfdl (5) respectively.
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2.7.2 Example

Here is a simple example of fusion with multiple-interval sses. For simplicity, this example is a particular
case when the theorem of admissibility (sg¢ [31] p. 138 ftaitly is verified by a few points, which happen to
be just on the bounders. It is an extreme example, becausgedéd comprise all kinds of possibilities which
may occur in the imprecise or very imprecise fusion. Sos letinsider a fusion problem ovér = {6,605},
two independent sources of information with the followingprecise admissible belief assignments

AeDP mi(A) mi(A)
o 0.1,0.2] U {0.3} 04,0.5]
6, | (0.4,0.6)U[0.7,0.8] | [0,0.4] U {0.5,0.6}

Table 3: Inputs of the fusion with imprecise bba’s.

Using the DSm classic (DSmC) rule for sets, one gets

m(61) = ([0.1,0.2) U {0.3}) @ [0.4,0.5]
= ([0.1,0.2] @ [0.4,0.5]) U ({0.3} & [0.4,0.5])
= [0.04,0.10] U [0.12,0.15]

m!(6;) = ((0.4,0.6) U [0.7,0.8]) = ([0,0.4] U {0.5,0.6})
((0.4,0.6) @[0,0.4]) U ((0.4,0.6) = {0.5,0.6})
U ([0.7,0.8] @ [0,0.4]) U ([0.7,0.8] @ {0.5,0.6})
= (0,0.24) U (0.20,0.30) U (0.24,0.36) U [0,0.32]
U [0.35,0.40] U [0.42,0.48] = [0,0.40] U [0.42, 0.48]

m! (6, M 62) = [([0.1,0.2] U {0.3}) @ (]0,0.4] U {0.5,0.6})] B [[0.4,0.5]

@ ((0.4,0.6) U [0.7,0.8])]

=[([0.1,0.2] @ [0,0.4]) U ([0.1,0.2] @ {0.5,0.6})
U ({0.3} @ [0,0.4]) U ({0.3} @ {0.5,0.6})]
[ [([0.4,0.5] @ (0.4,0.6)) U ([0.4,0.5] & [0.7,0.8])]

= [[0,0.08] U [0.05,0.10] U [0.06,0.12] U [0, 0.12]
U {0.15,0.18}] B [(0.16,0.30) U [0.28, 0.40]]

= [[0,0.12] U {0.15,0.18}] &8 (0.16, 0.40]

= (0.16,0.52] U (0.31,0.55] U (0.34,0.58] = (0.16,0.58]

Hence finally the fusion admissible result with DSmC ruleiigg by:

A e D® | ml(A) = [ml @mi](A)
0 | [0.04,0.10] U[0.12,0.15]
05 [0,0.40] U [0.42, 0.48]

61 N6y (0.16, 0.58]
01U 0 0

Table 4: Fusion result with the DSmC rule.

If one finds ol thatd; N6 & () (this is our hybrid modeM one wants to deal with), then one uses the hybrid
DSm rule for sets[(Q1)m}, (61 N 62) = 0 andml (61 U 62) = (0.16,0.58], the others imprecise masses are
not changed.

5We consider now a dynamic fusion problem.
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With the hybrid DSm rule (DSmH) applied to imprecise beliefse gets now the results given in Tafle 5.

Ae D® mfvl(A) = [m{ &) mé](A)
o [0.04,0.10] U [0.12, 0.15]
0 [0,0.40] U [0.42,0.48]
61 N6y 'AE/t 0 0
61 U 0y (0.16,0.58]

Table 5: Fusion result with DSmH rule fav1.

Let's check now the admissibility condition. For the soulceghere exist the precise massges; (0;) =
0.3) € ([0.1,0.2]U{0.3}) and(m(f2) = 0.7) € ((0.4,0.6)U[0.7,0.8]) such thab.3+0.7 = 1. For the source
2, there exist the precise masses; (6;) = 0.4) € ([0.4,0.5]) and (mz(f2) = 0.6) € ([0,0.4] U {0.5,0.6})
such that0.4 + 0.6 = 1. Therefore both sources associated with(.) andmi(.) are admissible imprecise
sources of information. It can be verified that DSmC fusiomaf(.) andms(.) yields the paradoxical bba
m(@l) = [ml@mQ](Hl) =0.12, m(92) = [ml@mz](eg) =0.42 andm(@lﬁgg) = [ml@mz](elﬂeg) = 0.46.
One sees that the admissibility condition is satisfied sipoéd;) = 0.12) € (m!(6;) = [0.04,0.10] U
[0.12,0.15]), (m(f2) = 0.42) € (m!(f2) = [0,0.40]U[0.42,0.48]) and(m (01 NBs) = 0.46) € (m!(61Nb) =
(0.16,0.58]) such that).12+ 0.42+0.46 = 1. Similarly if one finds out tha#; N 62 = ), then one uses DSmH
rule and one getsin(f; N #2) = 0 andm(0; U O2) = 0.46; the others remain unchanged. The admissibility
condition still holds, because one can pick at least one euainkeach subset(.) such that the sum of these
numbers is 1.

3 Proportional Conflict Redistribution rule

Instead of applying a direct transfer of partial conflictsogpartial uncertainties as with DSmH, the idea behind
the Proportional Conflict Redistribution (PCR) rule][B3]} B4to transfer (total or partial) conflicting masses to
non-empty sets involved in the conflicts proportionallylwigspect to the masses assigned to them by sources
as follows:

1. calculation the conjunctive rule of the belief massesofees;
2. calculation the total or partial conflicting masses;

3. redistribution of the (total or partial) conflicting massto the non-empty sets involved in the conflicts
proportionally with respect to their masses assigned bgdleces.

The way the conflicting mass is redistributed yields acyusdlveral versions of PCR rules. These PCR fusion
rules work for any degree of conflict, for any DSm models (8Hafmodel, free DSm model or any hybrid
DSm model) and both in DST and DSmMT frameworks for static araglyical fusion situations. We present
below only the most sophisticated proportional conflictisgtbution rule denoted PCRS5 ifi [33,]34]. PCR5
rule is what we feel the most efficient PCR fusion rule devetbgo far. This rule redistributes the partial
conflicting mass to the elements involved in the partial ¢onftonsidering the conjunctive normal form of
the partial conflict. PCR5 is what we think the most mathegadlti exact redistribution of conflicting mass to
non-empty sets following the logic of the conjunctive rutedoes a better redistribution of the conflicting mass
than Dempster’s rule since PCR5 goes backwards on the toddke conjunctive rule and redistributes the
conflicting mass only to the sets involved in the conflict angpprtionally to their masses put in the conflict.
PCRS5 rule is quasi-associative and preserves the neutpacinof the vacuous belief assignment because in
any partial conflict, as well in the total conflict (which is@ans of all partial conflicts), the conjunctive normal
form of each partial conflict does not incluéesince®© is a neutral element for intersection (conflict), therefore
© gets no mass after the redistribution of the conflicting m¥#s have proved i [34] the continuity property
of the fusion result with continuous variations of bba’s tanbine.
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3.1 PCR formulas
The PCR5 formula for the combination of two sources=(2) is given by:m pcrs(0) = 0 andvx € G\ {0}

ml(X)2m2(Y) mg(X)2m1(Y)

mpcrs(X) = mia(X) + Z [ml(X)+m2(Y) ma(X) +my(Y)

YeGO\{X}
XNy =0

] (15)

where all sets involved in formulas are in canonical formahereG® corresponds to classical power 8&tif
Shafer’s model is used, or to a constrained hyper-poweb8af any other hybrid DSm model is used instead,
or to the super-power sé&t® if the minimal refinemen®7¢/ of © is used;m2(X) = mn(X) corresponds to
the conjunctive consensus ghbetween the = 2 sources and where all denominators are different from zero.
If a denominator is zero, that fraction is discarded.

A general formula of PCR5 for the fusion ef> 2 sources has been proposed|if [34], but a more intu-
itive PCR formula (denoted PCR6) which provides good resulipractice has been proposed by Martin and
Osswald in [3#] (pages 69-88) and is given bypcrq () = 0 andvX € G \ {0}

s—1
] [ m0.0) Vo)
i—1
mpcre(X) =mia. s(X) + Zmi(X)2 Z : = (16)
i=1 s—1
N Y, (k)ﬂX:@ mZ(X)—I_ZmO' (])(YO'Z(]))
j=1

whereo; counts from 1 tos avoidingi:

{ oi(j) =Jj ifj <i,

oi(j)=j+1 ifj>i, 17)

s—1
SinceY; is a focal element of expert/sourdem:(X)+ » _ my,;)(Vy, () # 0; the belief mass assignment
=1

mia..s(X) = mn(X) corresponds to the conjunctive consensusXobetween thes > 2 sources. For two
sources £ = 2), PCR5 and PCR6 formulas coincide.

3.2 Examples

e Example 1 Let's take® = { A, B} of exclusive elements (Shafer's model), and the followibg:b

A B AUB
mi() | 06 0 04
ma() | 0 03 07

[mn() [ 042 012 0.28]

The conflicting mass 812 = mn (AN B) and equalsn, (A)ma(B) +mi(B)ma(A) = 0.18. Therefore
A and B are the only focal elements involved in the conflict. Henosoating to the PCR5 hypothesis
only A and B deserve a part of the conflicting mass atdJ B do not deserve. With PCRS5, one
redistributes the conflicting mag¢s, = 0.18 to A and B proportionally with the masses(A4) and
mo(B) assigned tod and B respectively.
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Here are the results obtained from Dempster’s rule, DSmHAPIR5:

A B AUB

mps 0.512 0.146 0.342
mpsmy || 0.420 0.120 0.460
mpcrs || 0.540 0.180 0.280

Example 2 Let's modify example 1 and consider

A B AUB
mi() | 06 0 04
ma() | 0.2 0.3 05

[mn() [050 0.2 0.20]

The conflicting mas;» = m~(A N B) as well as the distribution coefficients for the PCR5 rem#ies
same as in the previous example but one gets now

A B AUB
mps 0.609 0.146 0.231
mpsmp | 0.500 0.120 0.380
mpcrs || 0.620 0.180 0.200

Example 3 Let's modify example 2 and consider

A B AUB
mi() | 06 0.3 01
ma() | 02 0.3 05

[mn() [ 044 027 0.05]

The conflicting massi2 = 0.24 = my(A)ma(B) + mi(B)me(A) = 0.24 is now different from
previous examples, which means that(A) = 0.2 andm,(B) = 0.3 did make an impact on the
conflict. Therefored and B are the only focal elements involved in the conflict and tholy 61 and B
deserve a part of the conflicting mass. PCR5 redistributepdhntial conflicting mass 0.18 té and B
proportionally with the masses; (A) andmy(B) and also the partial conflicting mass 0.064@nd B
proportionally with the masses,(A) andm; (B). After all derivations (seq[13] for details), one finally
gets:

A B AUB
Mps 0579 0.355 0.066
mpsmp | 0.440 0.270  0.290
mpcrs | 0.584 0.366 0.050

One clearly sees that ps(A U B) gets some mass from the conflicting mass althadgh B does not
deserve any part of the conflicting mass (according to PCRbthesis) sincel U B is not involved in
the conflict (onlyA and B are involved in the conflicting mass). Dempster’s rule app&aus less exact
than PCR5 and Inagaki’s rulef J15]. It can be showedl [13] thagaki's fusion rule (with an optimal
choice of tuning parameters) can become in some cases e/ ttd PCR5 but upon our opinion PCR5
result is more exact (at least less ad-hoc than Inagaki’s one

Example 4 (A more concrete example) Three people, John/, George (=), and David ) are sus-
pects to a murder. So the frame of discernmen®is® {J,G,D}. Two sourcesn;(.) andma(.)
(witnesses) provide the following information:
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J G D
m; {09 0 01
mg || O 0.8 0.2

We know that John and George are friends, but John and Dateédhah other, and similarly George and
David.

a) Free model, i. e. all intersections are nonemgty.G # 0, JND # 0,GND # 0, JNGND # (.
Using the DSm classic rule one gets:

J G D JnG JNnD GnD JnGnND
mpsmc || 0 0 0.02 0.72 0.18 0.08 0

So we can see that John and George together ¢) are most likely to have committed the crime,
since the massipsc(J N G) = 0.72 is the biggest resulting mass after the fusion of the two
sources. In Shafer's model, only one suspect could comraitctime, but the free and hybrid
models allow two or more people to have committed the sameecriwhich happens in reality.

b) Let's consider the hybrid model, i. e. some intersectemesempty, and others are not. According to
the above statement about the relationships between #medhspects, we can deduce thatG #
@, whileJND=GnND=JnNnGnN D = (). Then we first apply the DSm Classic rule, and then
the transfer of the conflicting masses is done with PCR5:

J G D JnG JnD GnD JnGnNnD
my 09 O 0.1
ma 0 08 0.2
MpDSmC 0 0 002 0.72 0.18 0.08 0

Using PCR5 now we transfen(.JJ N D) = 0.18, sinceJ N D = (), to J and D proportionally with
0.9 and 0.2 respectively, sbgets 0.15 and gets 0.03 since:

2J/0.9 = 21D/0.2 = 0.18/(0.9 +0.2) = 0.18/1.1

whencerJ = 0.9(0.18/1.1) = 0.15 andz1D = 0.2(0.18/1.1) = 0.03.
Again using PCRS5, we transfen(G N D) = 0.08, sinceG N D = (), to G and D proportionally
with 0.8 and 0.1 respectively, €& gets 0.07 and) gets 0.01 since:

yG/0.8 = 22D /0.1 = 0.08/(0.8 + 0.1) = 0.08/0.9
whenceyG = 0.8(0.08/0.9) = 0.07 andzD = 0.1(0.08/0.9) = 0.01. Adding we get finally:

J G D JnG JNnD GND JNnGnNnD
mpcrs || 0.15 0.07 0.06 0.72 0 0 0

So one has a high belief that the criminals are John and Gé@oogie of them committed the crime)
sincem(J N D) = 0.72 and it is by far the greatest fusion mass.

In Shafer's model, if we try to refine we get the disjoint paifts JN G, J \ (J N G), andG \ (J N G),
but the last two are ridiculous (what is the real/physicaureofJ \ (J N G) or G \ (J N G) ? Half of

a person(!) ?), so the refining does not work here in realityat® why the hybrid and free models are
needed.

Example 5 (Imprecise PCR5) The PCRS5 formula can naturally work also for the combinatod
imprecise bba’s. This has been already presented in settidn8 page 49 of[[B4] with a numerical
example to show how to apply it. This example will therefoot Ipe reincluded here.
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3.3 Zadeh’s example

We compare here the solutions for well-known Zadeh's exanffsd,[5p] provided by several fusion rules.
A detailed presentation with more comparisons can be foor{f1,[34]. Let's conside® = {M,C, T} as
the frame of three potential origins about possible diseadea patient §/ standing formeningitis C' for
concussiorand 7" for tumor), the Shafer's model and the two following belief assigntagirovided by two
independent doctors after examination of the same patient.

0 my(C) = 0.9 ma(T) =

The total conflicting mass is high since it is
ml(M)mg(C) + ml(M)mg (T) + mg(C)ml (T) = 0.99

e with Dempster’s rule and Shafer's model (DS), one gets thenta-intuitive result (see justifications
in (53,03 [5P[@B31])mps (T) = 1

e with Yager's rule [5P] and Shafer's modehy (M U C U T) = 0.99 andmy (T) = 0.01

e with DSmH and Shafer’'s model:
mDSmH(M U C) = 0.81 mDSmH(T) =0.01
mDSmH(M U T) = mDSmH(C U T) = 0.09

e The Dubois & Prade’s rule (DP) [IL1] based on Shafer's modetiges in Zadeh's example the same
result as DSmH, because DP and DSmH coincide in all statiorfysoblem§.

e with PCR5 and Shafer’s modehpCR5(M) = ’I’)’LPCR5(C) = 0.486 andmpCR5(T) = 0.028.

One sees that when the total conflict between sources beddgiesDSmT is able (upon authors opinion) to
manage more adequately through DSmH or PCR5 rules the catidrirof information than Dempster’s rule,
even when working with Shafer's model - which is only a spedifybrid model. DSmH rule is in agreement
with DP rule for the static fusion, but DSmH and DP rules diffegeneral (for non degenerate cases) for dy-
namic fusion while PCR5 rule is the most exact proportiomaiflict redistribution rule. Besides this particular
example, we showed irf [B1] that there exist several infinigsses of counter-examples to Dempster’s rule
which can be solved by DSmT.

In summary, DST based on Dempster’s rule provides countaitive results in Zadeh’s example, or in non-
Bayesian examples similar to Zadeh’s and no result whenah#ict is 1. Only ad-hoc discounting techniques
allow to circumvent troubles of Dempster’s rule or we neeshtiich to another model of representation/frame;
in the later case the solution obtained doesn't fit with thaf&ts model one originally wanted to work with.
We want also to emphasize that in dynamic fusion when theicob#comes high, both DST [24] and Smets’
Transferable Belief Model (TBM)[39] approaches fail topesd to new information provided by new sources.
This can be easily showed by the very simple following exampl

Example (where TBM doesn’t respond to new information):

Let© = {A, B, C} with the (precise) bba's1;(A) = 0.4, mi(C) = 0.6 andmgy(A) = 0.7, mo(B) = 0.3.
Then one gefswith Dempster’s rule, Smets’ TBM (i.e. the non-normalizeztsion of Dempster’'s combina-

"Indeed DP rule has been developed for static fusion onlyenb$mH has been developed to take into account the
possible dynamicity of the frame itself and also its asdedianodel.

8We introduce here explicitly the indexes of sources in tiséofinresult since more than two sources are considered in
this example.
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tion), DSmMH and PCR5n12¢(A) = 1, mi%;,,(A) = 0.28, mi%;, (0) = 0.72,

A
mDSmHE )= ) 01 m}EC%(A) = 0.574725
m —
DSmH and mi2 p(B) = 0.111429
mDSmH(AUC’)—042 12
mpops(C) = 0.313846
m g,y (BUC) =0.18

Now let’s consider a temporal fusion problem and introdudkira sourcems(.) with ms(B) = 0.8 and
m3(C) = 0.2. Then one sequentially combines the results obtainechdy,,(.), mi3s(.), mis,. () and

m}3-,(.) with the new evidencen;(.) and one sees thm%?g’ becomes not defined (division by zero) and
mi23 () = 1 while (DSmH) and (PCR5) provide

(123 (B) = 0.240

D (C) = 0.120 m323 (A) = 0.277490
o (AUB) =0.224 and mU23_(B) = 0.545010
Doy (AUC) = 0.056 m23 () = 0.177500
(128 (AUBUC) = 0.360

When the mass committed to empty set becomes one at a prdgiopsral fusion step, then both DST
and TBM do not respond to new information. Let's continue ¢kample and consider a fourth soureg(.)
with m4(A) = 0.5, ma(B) = 0.3 andmy(C) = 0.2. Then it is easy to see that{:®* () is not defined
since at previous stem(lz) (.) was already not defined, and thafFB 17 (0) =1 whatevermy(.) is because
at the previous fusion step one 1,23)]\34(@) = 1. Therefore for a number of sources> 2, DST and TBM
approaches do not respond to new information incoming iritkien process while both (DSmH) and (PCR5)
rules respond to new information. To make DST and/or TBM wagkproperly in such cases, it is necessary
to introduce ad-hoc temporal discounting techniques waremot necessary to introduce if DSmT is adopted.
If there are good reasons to introduce temporal discountirege is obviously no difficulty to apply the DSm
fusion of these discounted sources. An analysis of this\behtor target type tracking is presented [h[[9], 34].

4 The generalized pignistic transformation (GPT)
4.1 The classical pignistic transformation

We follow here Philippe Smets’ vision which considers thenagement of information as a two 2-levels
process: credal (for combination of evidences) and pigfligtor decision-making) , i.ewhen someone must
take a decision, he/she must then construct a probabilitgtian derived from the belief function that describes
his/her credal state. This probability function is then dise make decisiofi§Bg] (p. 284). One obvious way
to build this probability function corresponds to the stiethClassical Pignistic Transformation (CPT) defined
in DST framework (i.e. based on the Shafer's model assumptis [4D]:

XnA
BetP{A} = ) _ | ] |
Xe2@

where|A| denotes the number of worlds in the sét(with convention|(|/|0] = 1, to define Bet P{(}).
Decisions are achieved by computing the expected utildfeébe acts using the subjective/pignistiket P{.}

as the probability function needed to compute expectatiddsially, one uses the maximum of the pignistic
probability as decision criterion. The maximum Bt P{.} is often considered as a prudent betting decision
criterion between the two other alternatives (max of plailisi or max. of credibility which appears to be
respectively too optimistic or too pessimistic). It is eésyphow thatBet P{.} is indeed a probability function

(see [3P)).

9Pignistic terminology has been coined by Philippe Smetscandes fronpignus a bet in Latin.

m(X) (18)
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4.2 Notion of DSm cardinality

One important notion involved in the definition of the Getligeal Pignistic Transformation (GPT) is tlESm
cardinality. The DSm cardinalityof any elementA of hyper-power seD®, denoted’(A), corresponds to
the number of parts ofl in the corresponding fuzzy/vague Venn diagram of the prableodel M) taking
into account the set of integrity constraints (if any), a#t the possible intersections due to the nature of the el-
ementd);. Thisintrinsic cardinality depends on the modaH (free, hybrid or Shafer's modelM is the model
that contains4, which depends both on the dimensier= |©| and on the number of non-empty intersections
present in its associated Venn diagram ($ef [31] for détallie DSm cardinality depends on the cardinal of
© = {61,0,...,0,} and on the model aD® (i.e., the number of intersections and between what elesraént
O - in a word the structure) at the same time; it is not necdgdhet every singleton, sad, has the same DSm
cardinal, because each singleton has a different strycfut® structure is the simplest (no intersection of this
elements with other elements) thég, (6;) = 1, if the structure is more complicated (many intersectighe
Cm(6;) > 1; let’s consider a singletofy: if it has 1 intersection only thefiy(6;) = 2, for 2 intersections only
Crm(6;) is 3 or 4 depending on the modg, for m intersections it is between + 1 and2™ depending on the
model; the maximum DSm cardinality2—! and occurs fof; U6, U. .. U6, in the free modeM7; similarly

for any set fromD®: the more complicated structure it has, the bigger is the @Srdinal; thus the DSm
cardinality measures the complexity of en element ftbff, which is a nice characterization in our opinion;
we may say that for the singletdh not even|©| counts, but only its structure (= how many other singletons
intersecty;). Simple illustrative examples are given in Chapter 3 anél[BTj. One hasl < Cx(A4) < 2™ —1.
Cam(A) must not be confused with the classical cardinglity of a given setA (i.e. the number of its distinct
elements) - that's why a new notation is necessary lggg.A) is very easy to compute by programming from
the algorithm of generation dd® given explicated in[[31].

Example: let’s take back the example of the simple hybrid DSm modstdbed in sectiof 2.2, then one gets
the following list of elements (with their DSm cardinal) fiire restrictedD® taking into account the integrity
constraints of this hybrid model:
AeD® Cm(A)
A
g = @

a1

0
1
1
2
Oé4=92 2
3
aﬁéﬂlueg 3
a7é¢92U93 3
agéeergueg 4

Example of DSm cardinal€ ,((A) for hybrid modelM.

4.3 The Generalized Pignistic Transformation

To take a rational decision within DSmT framework, it is nesazry to generalize the Classical Pignistic Trans-
formation in order to construct a pignistic probability @tion from any generalized basic belief assignment
m(.) drawn from the DSm rules of combination. Here is the simpest direct extension of the CPT to define
the Generalized Pignistic Transformation:

Cm(X NA)

VA e D®, BetP{A} = )_ )

XeD®

m(X) (29)

whereC((X) denotes the DSm cardinal of propositighfor the DSm modelM of the problem under con-
sideration.
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The decision about the solution of the problem is usuallgtaky the maximum of pignistic probability
function BetP{.}. Let's remark the close ressemblance of the two pignistinsiormations[(38) and (19).
It can be shown thaf (19) reduces fo](18) when the hyper-peaD® reduces to classical power ¥t if
we adopt Shafer's model. But {19) is a generalization[of @iBe it can be used for computing pignistic
probabilities for any models (including Shafer's modef)h&s been proved iff [B1] (Chap. 7) thaetP{.}
defined in [IP) is indeed a probability distribution. In tlildwing section, we introduce a new alternative to
BetP which is presented in details [n]36].

5 The DSmP transformation

In the theories of belief functions, the mapping from thedjeb the probability domain is a controversial issue.
The original purpose of such mappings was to make (hardsidecibut contrariwise to erroneous widespread
idea/claim, this is not the only interest for using such niagg nowadays. Actually the probabilistic transfor-
mations of belief mass assignments (as the pignistic toamsition mentioned previously) are for example very
useful in modern multitarget multisensor tracking systéansn any other systems) where one deals with soft
decisions (i.e. where all possible solutions are kept fateststimation with their likelihoods). For example, in
a Multiple Hypotheses Tracker using both kinematical atdbate data, one needs to compute all probabilities
values for deriving the likelihoods of data associationdthpses and then mixing them altogether to estimate
states of targets. Therefore, it is very relevant to use gomgpvhich provides a high probabilistic information
content (PIC) for expecting better performances.

In this section, we briefly recall a new probabilistic traorsfiation, denoted.Sm P and introduced in[[10]
which will be explained in details irf [B6]DSm.P is straight and different from other transformations. The
basic idea ofD.Sm P consists in a new way of proportionalizations of the massohegartial ignorance such as
A1UAs0or AJU(AaNAs)or (A1 NAy)U(AsNAy), etc. and the mass of the total ignorantg ) A,U. ..U A,
to the elements involved in the ignorances. This new transdtion takes into account both the values of the
masses and the cardinality of elements in the proporticediktribution process. We first remind what PIC
criteria is and then shortly present the general formuld®®mP transformation with few numerical examples.
More examples and comparisons with respect to other tramsf@ns are given i{[36].

5.1 The Probabilistic Information Content (PIC)

Following Sudano’s approach [41]42] 44], we adopt the Riitibic Information Content (PIC) criterion as

a metric depicting the strength of a critical decision by acsjic probability distribution. It is an essential
measure in any threshold-driven automated decision sysidra PIC is the dual of the normalized Shannon
entropy. A PIC value of one indicates the total knowledge tkena correct decision (one hypothesis has a
probability value of one and the rest of zero). A PIC value efozindicates that the knowledge to make a
correct decision does not exist (all the hypotheses havejaal @robability value), i.e. one has the maximal
entropy. The PIC is used in our analysis to sort the perfooasiof the different pignistic transformations
through several numerical examples. We first recall whahB8ta entropy and PIC measure are and their tight
relationship.

e Shannon entropy

Shannon entropy, usually expressed in bits (binary digitsa probability measur#{.} over a discrete
finite set® = {61, ...,0,} is defined bfq [PT]:

H(P) £ =% " P{0;} logy(P{6;}) (20)
i=1
H(P) is maximal for the uniform probability distribution oveér, i.e. whenP{6;} = 1/nfori=1,2,...,n.
In that case, one getd (P) = Hyax = — Y 1 +1ogy(2) = logy(n). H(P) is minimal for a totallydeter-
ministic probability, i.e. for anyP{.} such thatP{6,} = 1 for somei € {1,2,...,n} andP{#;} = 0 for
j # 1. H(P) measures the randomness carried by any discrete propab{li.

with common conventiofl log, 0 = 0.
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e The PIC metric

The Probabilistic Information Content (PIC) of a probagilmeasureP{.} associated with a probabilistic
source over a discrete finite $8t= {6;,...,0,} is defined by [42]:

PIC(P) =1+ 3" P{6:} logy(P{6:)) (21)
max Z:1

The PIC is nothing but the dual of the normalized Shannoropgitand thus is actually unit les?/C(P)
takes its values if0, 1]. PIC(P) is maximum, i.e.PICy.x = 1 with any deterministicprobability and it is
minimum, i.e. PIC;, = 0, with the uniform probability over the fram@. The simple relationships between
H(P)andPIC(P)arePIC(P)=1— (H(P)/Hmax) andH (P) = Hpyax - (1 — PIC(P)).

5.2 The DSmP formula

Let’s consider a discrete frant@with a given model (free DSm model, hybrid DSm model or Shafaiodel),
the DSm P mapping is defined bypSmP.(()) = 0 andvX € G® \ {0} by

> m(Z)+e-C(XNY)
o
DSmP.(X) =
a ygc;e Y m(Z)+e-CY)

ZCY
c(2)=1

m(Y) (22)

wheree > 0 is a tuning parameter ar@® corresponds to the generic s2?( S© or D® including eventually

all the integrity constraints (if any) of the modgl); C(X NnY’) andC(Y') denote the DSm cardin%of the
setsX NY andY respectively.e allows to reach the maximum PIC value of the approximatiom¢f) into a
subjective probability measure. The smallethe better/bigger PIC value. In some particular degeaarases
however, theD Sm P._y values cannot be derived, but thesm P.~.( values can however always be derived by
choosinge as a very small positive number, say= 1/1000 for example in order to be as close as we want to
the maximum of the PIC. When= 1 and when the masses of all elemeftsavingC(Z) = 1 are zero,[(22)
reduces t0[(19), i.eDSmP._; = BetP. The passage from a free DSm model to a Shafer's model invohee
passage from a structure to another one, and the cardiratgetas well in the formulg (22).

DSmP works for all models (free, hybrid and Shafer’s). In ordeafiply classical transformation (Pig-
nistic, Cuzzolin’s one, Sudano’s ones, etc - s@e [36]), vexlra first to refine the frame (on the cases when it
is possible!) in order to work with Shafer’s model, and thpplg their formulas. In the case where refinement
makes sense, then one can apply the other subjective plibalwn the refined frameD Sm P works on the
refined frame as well and gives the same result as it does amtieefined frame. ThuBSmP with e > 0
works on any models and so is very general and appealgn P does a redistribution of the ignorance mass
with respect to both the singleton masses and the singletardinals in the same time. Now, if all masses of
singletons involved in all ignorances are different fromoz¢hen we can take= 0, andDSm P gives the best
result, i.e. the best PIC value. In summabSm P does an 'improvement’ over previous known probabilistic
transformations in the sense tHat'm P mathematically makes a more accurate redistribution oigitherance
masses to the singletons involved in ignorancBsim P and Bet P work in both theories: DST (= Shafer’s
model) and DSmT (= free or hybrid models) as well.

I\We have omitted the index of the model for the notation convenience.
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5.3 Examples for DSmP and BetP
The examples briefly presented here are detailefl in [36]iwinicdudes also additional results based on Cuz-
zolin's and Sudano’s transformations.

¢ With Shafer's model and a non-Bayesian mass

Let’s consider the fram® = {4, B} and let's assume Shafer's model and the non-Bayesian mase (m
precisely the simple support mass) given in Tdble 6. We suimmi Tabl€g[}, the results obtained with DSmP
and BetP. One sees thBI C'(DSmP._o) is maximum among all PIC values.

A|BJAUB
m() 04| 0] 06

Table 6: Quantitative inputs.

A B PIC(.) |
BetP(.) 0.7000| 0.3000|| 0.1187
DSmP.—o001(.) | 0.9985| 0.0015|| 0.9838
DSmP.—o(.) 1 0 1

Table 7: Results of the probabilistic transformations.

The best result is aadequate probabilitynotthe biggest PIGn this case. This is becausq B) deserves
to receive some mass from(A U B), so the most correct result is done BYsm P.— 001 in Table[J (of course
we can choose any other very small positive valuecfibwe want). Always when a singleton whose mass is
zero, but it is involved in an ignorance whose mass is not, zeeme (in D.Sm P formula (22)) should be taken
different from zero.

e With a Hybrid DSm model

Let's consider the fram® = { A, B, C'} and let's consider the hybrid DSm model in which all intetiets
of elements of® are empty, butd N B corresponding to figurf] 4. In this cag@® reduces to 9 elements
{0,AnB,A,B,C,AUB,AUC,BUC,AU BU C}. The input masses of focal elements are given by
m(ANB) =0.20, m(A) = 0.10, m(C) = 0.20, m(AU B) = 0.30, n(AUC) = 0.10, andm(AUBUC) =
0.10 and given in the Tablf 8.

D’ A'uD c’

m(.) 0.2 0.1 0.2
AuB'uD | AucC'uD | AuBucC' uD

m(.) 0.3 0.1 0.1

Table 8: Quantitative inputs.

T

Fig. 4: Hybrid model fo® = {A, B, C'}.
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Applying BetP and DSmP transformations, one gets:

A B’ C’ D’ PIC(.)

BetP(.) 0.2084| 0.1250| 0.2583| 0.4083| 0.0607

DSmP.—p001(.) | 0.0025| 0.0017| 0.2996| 0.6962| 0.5390
Table 9: Results of the probabilistic transformations.

o With a free DSm model

Let's consider the fram@® = {A, B, C'} and let's consider the free DSm model depicted on Fifjure B wit
the input masses given in Takle] 10. To apply Sudano’s anddlinazmappings, one works on the refined
frame©™ = {A’, B',C’, D', E', F', '} where the elements &' are exclusive (assuming such refinement
has a physically sense) according to Figlire 5. This refinéstep is not necessary when usifgm P since
it works directly on DSm free model. The PIC values obtainéth WSmP and BetP are given in Taljlé¢ 11. One
sees thaD.SmP._., provides here again the best results in term of PIC.

Fig. 5: Free DSm model for a 3D frame.

ANBNC| ANB | A
m(.) 0.1 0.2 0.3

AUB |AUBUC
m(.) 0.1 0.3

Table 10: Quantitative inputs.

Transformations| PIC(.)
BetP(.) 0.1176
DsmPEZQ_Ool(.) 0.8986

Table 11: Results of the probabilistic transformations.

An extension of DSmP (denoted gDSmP) for working with qaéilre labels instead of numbers is possible
and has been proposed and presented in 2008Jin [10]. A sixatege for qDSmMP is given in the next section.

6 Fusion of qualitative beliefs

We recall here the notion of qualitative belief assignmentiodel beliefs of human experts expressed in
natural language (with linguistic labels). We show how gatle beliefs can be efficiently combined using an
extension of DSmT to qualitative reasoning. A more detgiiesentation can be found in[34]. The derivations
are based on a new arithmetic on linguistic labels whichaalla direct extension of all quantitative rules of
combination and conditioning. The qualitative version 65 rule and DSmP is also presented in the sequel.

6.1 Qualitative Operators

Computing with words (CW) and qualitative information is mao/ague, less precise than computing with
numbers, but it offers the advantage of robustness if doneaity. Here is a general arithmetic we propose
for computing with words (i.e. with linguistic labels). Letconsider a finite fram&® = {64,...,0,} of

n (exhaustive) element®;, i = 1,2,...,n, with an associated mode\1(©) on O (either Shafer's model
M°(©), free-DSm modeM/ (©), or more general any Hybrid-DSm modET][31]). A model(©) is defined
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by the set of integrity constraints on elementsaofif any); Shafer's modeM(6) assumes all elements of
O truly exclusive, while free-DSm modeit/ (©) assumes no exclusivity constraints between elements of the
frame©. Let's define a finite set of linguistic labels = {L,, Lo, ..., L,,} wherem > 2 is an integer.L
is endowed with a total order relationshify so thatl; < Ly < ... < L,,. To work on a close linguistic
set under linguistic addition and multiplication operatare extend<, with two extreme valueg, and L,
wherel corresponds to the minimal qualitative value dng,; corresponds to the maximal qualitative value,
in such a way that

Lo<Li <Ly<...<Lp <Lnpn

where< means inferior to, or less (in quality) than, or smaller (irafity) than, etc. hence a relation of order
from a qualitative point of view. But if we make a corresponce between qualitative labels and quantitative
values on the scal@, 1], then L,,;, = Lo would correspond to the numerical value 0, whilg.x = L;,+1
would correspond to the numerical value 1, and eactvould belong tdo, 1], i. e.

Lin=Lo < L1 < L3 <...< Ly < Lipt1 = Lmax
From now on, we work on extended ordered Betf qualitative values
L= {L0> INJ? Lm+1} = {L0> Ly, Lo, ..., Ly, Lm+1}

In our previous works, we did propose approximate qualigatiperators, but i [86] we propose to use
better and accurate operators for qualitative labels. eSthese new operators are defined in details in the
chapter of [36] devoted on the DSm Field and Linear Algebr&efined Labels (FLARL), we just briefly
introduce here only the the main ones (i.e. the accuraté dalgiition, multiplication and division). In FLARL,
we can replace the "qualitative quasi-normalization” oflifative operators we used in our previous papers by
"qualitative normalization” since in FLARL we have exactajjtative calculations and exact normalization.

e Label addition :

La + Lb = La+b (23)
H a b a+b
since g + o7 = 247
e Label multiplication :
La X Ly = Lap) ) (m+1) (24)
. a b ab)/(m+1
SINCeT-T T = : )77/1(+1 L.
e Label division (whenl, # Lo):
Lo + Ly = Lab)(m+1) (25)
; a . b a a/b)(m+1
SINCe T ~ T = b = ( /721(+1 L,

More accurate qualitative operations (substractionascalltiplication, scalar root, scalar power, etc) can
be found in [3p]. Of course, if one really need to stay witthia briginal set of labels, an approximation will be
necessary at the very end of the calculations.

6.2 Qualitative Belief Assignment

A qualitative belief assignmdH (gba) is a mapping functiogmn(.) : G® +— L whereG® corresponds either

to 29, to D® or even taS® depending on the model of the frarfBewe choose to work with. In the case when
the labels are equidistant, i.e. the qualitative distaretevéen any two consecutive labels is the same, we get
an exact qualitative result, and a qualitative basic balgsignment (bba) is considered normalized if the sum
of all its qualitative masses is equal 19,,x = L.,+1. If the labels are not equidistant, we still can use all
gualitative operators defined in the FLARL, but the qudiitaresult is approximate, and a qualitative bba is
considered quasi-normalized if the sum of all its massesjigleto L,,,.. Using the qualitative operator of

2\We call it alsoqualitative belief maser g-massor short.
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FLARL, we can easily extend all the combination and conditig rules from quantitative to qualitative. In the
sequel we will consides > 2 qualitative belief assignmentgn(.),...,gms(.) defined over the same space
G® and provided by independent sources , . . ., S, of evidence.

Note: The addition and multiplication operators used in all gative fusion formulas in next sections corre-
spond toqualitative additionandqualitative multiplicationoperators and must not be confused with classical
addition and multiplication operators for numbers.

6.3 Qualitative Conjunctive Rule

The gqualitative Conjunctive Rule (QCR) ef> 2 sources is defined similarly to the quantitative conjurectiv
consensus rule, i.e.

gmger(X) = Y [ ami(x0) (26)
X1,..,X,€G® i=1
X1N..NXs=X

The total qualitative conflicting mass is given by

Ky .s= Z quZ(XZ)

le---7X5€G® i=1
X1N...NXs=0

6.4 Qualitative DSm Classic rule

The qualitative DSm Classic rule (g-DSmC) for> 2 is defined similarly to DSm Classic fusion rule (DSmC)
as follows :gm,psmc(#) = Lo and for allX € D®\ {0},

S

gmepsme(X) = > JJem(X) (27)
Xln“wxseD@i:l
XiN..NXs=X

6.5 Qualitative hybrid DSm rule
The qualitative hybrid DSm rule (g-DSmH) is defined simifad quantitative hybrid DSm rulg [B1] as follows:

qmgpsmu(0) = Ly (28)
and for allX € G® \ {0}

amapsmi (X) 2 6(X) - [a51(X) + 53(X) + aS3(X)] (29)

where all sets involved in formulas are in the canonical fema ¢(X) is the characteristic non-emptiness
functionof a setX, i.e. ¢(X) = Ly,41 if X ¢ @ and¢(X) = L, otherwise, wher® = {@r, 0}. O, is the
set of all elements aD® which have been forced to be empty through the constrairttseahodelM and( is
the classical/universal empty sefS; (X) = gmgpsmc(X), ¢52(X), ¢S3(X) are defined by

¢ (X)2 Y J[emi(x) (30)

X1,X2,..,.X,€D9 =1
X1NX2N..NX=X

X1,X2,...,X:s€0 i=1
[U=XIV[UEDA(X=T})]
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gS3(X) £ > [aemixa) (32)

X1,Xo2,...,X,eD® i=1

X1UXoU.. . UX =X

X1NX2N...NXs€0
with i £ u(X1)U...Uu(Xs) whereu(X) is the union of alp; that composeX, I; £ 0, U... U6, is the total
ignorance.¢S; (X) is nothing but the gDSMC rule farindependent sources basedbtf (0); ¢S»(X) is the
qualitative mass of all relatively and absolutely emptyg sdtich is transferred to the total or relative ignorances
associated with non existential constraints (if any, liks@me dynamic problems)Ss(X) transfers the sum
of relatively empty sets directly onto the canonical disfive form of non-empty sets. qDSmH generalizes
gDSmC works for any models (free DSm model, Shafer's modenyr hybrid models) when manipulating
gualitative belief assignments.

6.6 Qualitative PCR5 rule (QPCR5)

In classical (i.e. quantitative) DSmMT framework, the Pmbipmal Conflict Redistribution rule no. 5 (PCR5)

defined in [34] has been proven to provide very good and caheesults for combining (quantitative) belief

masses, se€ [d3, 9]. When dealing with qualitative beliéfisimthe DSm Field and Linear Algebra of Refined
Labels [3p] we get an exact qualitative result no matter vitnsion rule is used (DSm fusion rules, Dempster’s
rule, Smets’s rule, Dubois-Prade’s rule, etc.). The exadtitative result will a refined label (but the user can
round it up or down to the closest integer index label).

6.7 A simple example of qualitative fusion of gba’s

Let's consider the following set of ordered linguistic l&be
L= {L(]a Lla L27 L37 L47 L5}

(for example,L1, Lo, L3 and L, may represent the valueg:; = very poot L, = poor, L; £ goodand
L, = very good where= symbol meandy definitio).

Let's consider now a simple two-source case with a 2D fr&ne {6,065}, Shafer's model fo®, and
gba’s expressed as follows:

gmi(01) = L1, qmi(02) = L3, qmi(61Ub) = Ly

qma(01) = La, qma(02) = L1, qma(61U62) = Lo

The two qualitative massesn (.) andgms(.) are normalized since:
qm1(01) + gma(02) + qmi (61 U 0s) = L1 + L3 + Ly = Liy3+1 = L3

and
qma(61) + qma(62) + qma(61 Ubs) = Lo+ L1 + Lo = Lot142 = Ls

We first derive the result of the conjunctive consensus. ikisls:

gmi2(61) = qgmi(61)gma(61) + gma(01)gma(01 U 62) + gmq (01 U O2)gma(61)
=11 x Lo+ Ly X Lo+ L1 x Lo

:L%Q-I-LL;-FL%:L%_i_%_i_ =Ls =119

[S1S]
o

gmi2(62) = qgmi(62)gma(62) + gmi(02)gma (01 U 62) + gmq (01 U O2)gma(62)
=L3 X L1+ Ly x Lo+ Ly x Ly

=Lsi+Ls2+Lia =Lz e¢,1=Lw=1L
5 5 5 5 5 5

o

o]
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gmiz(01 U 62) = gmy (61 U b2)gma(6h Ub2) = Ly x Ly = L1z = Lg = Loy

gmi2(01 N 62) = gmy(01)gma(B2) + gmi(02)gma(61)
=1 XL1+L2XL3:L% —l—L?

Therefore we get:
e for the fusion with gDSmMC, when assumifign 6, # 0,
qmgpsmc(01) = Lia  gmgpsmc(02) = Lo
qmgpsmc (61 U 02) = Lo 4 qmgpsmc (61 Nb2) = L4
o for the fusion with gDSmH, when assumifig N 6, = (). The mass of; N 6; is transferred t@; U 0,.

Hence:
gmgpsmu(61) = L2 qmgpsmu(02) = Lo

qmgpsmu (61 N02) = Lo qmgpsmu (61 Ub2) = Los+ Lia = Lig
e for the fusion with gPCR5, when assumiégn 6, = (). The masgymi2(6; N 6y) = Ly 4 is transferred
to ¢, and tods in the following way:
gmi2(61 N 62) = qmy(01)gma(62) + gma(61)gmi(62)
Then,gmq(61)gma(02) = L1 x L1 = L%l = L% = Lg. is redistributed t@; andé, proportionally
with respect to their qualitative masses put in the conflicend respectively.;:

o, _ Yo _ Lo _Lo.z_Lo.2_L02 I
— 5=

— — — — A -
Ly 14 L+ 14 L1 Lo 2 0.5

N

whencer91 = Ypy =1, ><L05—L105 —L05 =Lg1.-

Actually, we could easier see th@inl(el)qmg(eg) Ly .2 had in this case to be equally split between
#, andd, since the mass put in the conflict By andf, was the same for each of therh;. Therefore
L2 = Loz = Lo1.

2
Similarly, qmg(el)qml(eg) = Lo x Ly = LzT = Lg = L1, has to be redistributed t, andf,
proportionally withL, and L3 respectively : ’ ’

To, Yo, Lo _L1.2_Ll.2_L1 L,
= = L1z, =1L

Ly Ly Lo+Ls Layz Ls BB

= Lg.438

IS

wé) = L2 X L1_2 = Lo Lo
5

Yo, =L3XL1.2=L% = Lss = Lo2

1

& o

Now, add all these to the qualitative masses of

5

whence{

0, and@, respectively:
qmgpcrs(01) = qmi2(01) + x9, + 2, = L1.2 + Lo1 + Lo.as = L1.240.1+40.48 = L1.78
amqpcrs(02) = qmi2(02) + Yo, + yg, = Lo + Lo + Loz = Loyo140.72 = Lo
qmgpcrs(01 U b2) = gmia(01 Ub2) = Loa
qmgpcrs(th N 62) = Lo
The qualitative mass results using all fusion rules (QDSIBPEMH,qPCR5) remain normalized in FLARL.

Naturally, if one prefers to express the final results withldgative labels belonging in the original discrete
setof labeld. = {Ly, L1, L, L3, L4, L5}, Some approximations will be necessary to round continiralexed

labels to their closest integer/discrete index value; ymexe,qmq,pcrs(01) = Li7s = Lo, gmgpcrs(62) =
Ly g2 ~ Lz andgmgpcrs(6h U 62) = Lo.a =~ Lo.
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6.8 A simple example for the gDSmP transformation

We first recall that the qualitative extension pf](22), dedotDSmP.(.) is given bygDSmP.(#) = 0 and
VX € GO\ {0} by

Z gm(Z)+e-C(X NY)
o
DSmP.(X) =
! Yée > qm(Z)+e-CY)

ZCY
c(Z)=1

gm(Y) (33)

where all operations i} (B3) are referred to labels, thataperators on linguistic labels and not classical oper-
ators on numbers.

Let’s consider the simple frant® = {6,605} (heren = |©| = 2) with Shafer’s model (i.e4; N6, = () and
the following set of linguistic labelé, = {Lg, L1, Lo, L3, L4, L5}, With Ly = Ly, @ndLs = Lyax = L1
(herem = 4) and the following qualitative belief assignmentn(61) = L1, gm(62) = Ls andgm (6, U6y) =
Ly. gm(.) is quasi-normalized sinc®_ y 0 qm(X) = L5 = Luyax. In this example and wittDSmP
transformationgm/(6, U 63) = L, is redistributed t#; andd, proportionally with respect to their qualitative
massed.; and L3 respectively. Since both, and L3 are different fromLg, we can take the tuning parameter
e = 0 for the best transfere is taken different from zero when a mass of a set involved iarig or total
ignorance is zero (for qualitative masses, it mebgs
Therefore using[(25), one has

o, _wg, L1 Ly

Ly Ly Li+Ly Ly
and thus using[ (24), one gets

=Lig=1Ls =1Ly
4 4

Tg, = Ly X Lyos = Lia.es) = Lizs = Loas
5 5

Tp, = L3 X L1.25 = L3-(1425) = L@ = L0.75
5 5

Whence

qDSmPE:(](Hl N 92) = qDSmPezo(@) =Ly
gDSmP.—o(01) = L1 + xg, = L1+ Lo2s = L1.25
gDSmP.—y(02) = L3 + g, = L3+ Lo7s = L3175

Naturally in our example, one has also

qDSmPEZO(Hl U 92) = qDSmPEZO(Ql) + qDSmPEZO(Qg) — qDSmPEZO(Hl N 92)
= Ly.o5+ L3775 — Lo = L5 = Lax

Since Hyax = logyn = log, 2 = 1, using the qualitative extension of PIC formufa](21), onéaots the
following qualitative PIC value:

1
PIC =1+ T [qDSmMP.—y(01)logs(gDSmP.—o(01))

+ QDS’I’)’LPE:(](HQ) logz(qDSmPezo(Hg))]
=1+ L1.25logy(L1.25) + L3.75loga(L3.75) =~ Lo.gs

since we considered the isomorphic transformafigr= i /(m + 1) (in our particular examplen = 4 interior
labels).
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7 Belief Conditioning Rules
7.1 Shafer's Conditioning Rule (SCR)

Until very recently, the most commonly used conditionindgerfor belief revision was the one proposed by
Shafer [2}4] and referred here as Shafer's Conditioning R8&R). The SCR consists in combining the prior
bbam/(.) with a specific bba focused ofh with Dempster’s rule of combination for transferring thenftiwting
mass to non-empty sets in order to provide the revised bbather words, the conditioning by a proposition
A, is obtained by SCR as follows :

mscr(-|A) = [m & mg](.) (34)

wherem(.) is the prior bba to updateq is the conditioning eventyns(.) is the bba focused oA defined by
mg(A) =1andmg(X) = 0 forall X # A and® denotes Dempster’s rule of combinatign][24].

The SCR approach based on Dempster’s rule of combinatidmegbrior bba with the bba focused on the
conditioning event remairsubjectivesince actually in such belief revision process both souacesubjective
and SCR doesn’'t manage properly the objective naturefatesolth carried by the conditioning term. Indeed,
when conditioning a prior mass(.), knowing(or assuming) that the truth is iA, means that we have in
hands an absolute (not subjective) knowledge, i.e. the tnutl has occurred (or is assumed to have occurred),
thus A is realized (or is assumed to be realized) and this is (orast Imust be interpreted as) an absolute
truth. The conditioning term "Giver” must therefore be considered as an absolute truth, whijeA) = 1
introduced in SCR cannot refer to an absolute truth actuiallyyonly to asubjective certaintyn the possible
occurrence ofd from avirtual second source of evidence. The advantage of SCR remainsiteddy in its
simplicity and the main argument in its favor is its coheeemgth conditional probability when manipulating
Bayesian belief assignment. But in our opinion, SCR shoeltieb be interpreted as the fusionsef.) with
a particular subjective bbaug(A) = 1 rather than an objective belief conditioning rule. Thisdamental
remark motivated us to develop a new family of BJR| [34] basedhyper-power set decomposition (HPSD)
explained briefly in the next section. It turns out that maryRBare possible because the redistribution of
masses of elements outsideA{the conditioning event) to those insidiecan be done im-ways. This will be
briefly presented right after the next section.

7.2 Hyper-Power Set Secomposition (HPSD)

Let® = {61,02,...,0,}, n > 2, a modelM(©) associated fo® (free DSm model, hybrid or Shafer’s
model) and its corresponding hyper-power &%. Let’s consider a (quantitative) basic belief assignment
(bba)m(.) : D® — [0,1] such thaty" v, pe m(X) = 1. Suppose one finds out that the truth is in the set
A € D9\ {0}. LetPp(A) = 24N D® \ {§}, i.e. all non-empty parts (subsets) dfwhich are included

in D®. Let's consider the normal cases whdn# () and ZYEPD(A) m(Y) > 0. For the degenerate case
when the truth is inA = (), we consider Smets’ open-world, which means that there ter diypotheses
O = {0ni1,0n42, - - Opim}, m > 1, and the truth is il € D"\ {#}. If A = 0 and we consider a close-
world, then it means that the problem is impossible. Forlzradegenerate case, wh@’ye%m) m(Y) =0,

i.e. when the source gave us a totally (100%) wrong inforomati.(.), then, we definem(A4|A) = 1 and,

as a consequencep(X|A) = 0 forany X # A. Lets(A) = {0;,0,,...,0;,}, 1 < p < n, be the

singletons/atoms that compoge(for example, ifA = 6, U (03 N 04) thens(A) = {61, 05,04}). The Hyper-

Power Set Decomposition (HPSD) &f° \ () consists in its decomposition into the three following sibs
generated bw:

e D; =Pp(A), the parts ofd which are included in the hyper-power set, except the engity s

e Dy = {(©®\s(A)),u,n}\ {0}, i.e. the sub-hyper-power set generateddy s(A) underu andn,
without the empty set.

e D3 = (D®\ {0})\ (D1 U Dy); each set fromDs has in its formula singletons from bo#{A) and
© \ s(A) in the case whe® \ s(A) is different from empty set.
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Dy, Dy and D3 have no element in common two by two and their unio®f8 \ {(}.

Simple example of HPShet's consider® = {6y, 62,05} with Shafer's model (i.e. all elements 6f are
exclusive) and let's assume that the truth ig4dru 63, i.e. the conditioning term i8, U #5. Then one has the
following HPSD:D; = {6,03,02 U603}, Dy = {0;} and D3 = {61 U s, 0, Ubs, 0, Uy Ubs}. More complex
and detailed examples can be found[iq [34].

7.3 Quantitative belief conditioning rules (BCR)

Since there exists actually many ways for redistributirg firasses of elements outsideAf{the conditioning
event) to those insidd, several BCR's have been proposed[if [34]. In this intradactwve will not browse all
the possibilities for doing these redistributions and &8s formulas but only one, the BCR number 17 (i.e.
BCR17) which does in our opinion the most refined redistrdsusince:

- the massn (V) of each elemenitV in Dy U Ds is transferred to thos& € D; elements which are included
in W if any proportionally with respect to their non-empty masse

- if no suchX exists, the mass:(W) is transferred in a pessimistic/prudent way to thlargest element from
D1 which are included i (in equal parts) if any;

- if neither this way is possible, then (1) is indiscriminately distributed to alk € D, proportionally with
respect to their nonzero masses.

BCR17 is defined by the following formula (sde][34], Chap. Bdetailed explanations and examples):

mperr(X|A) =m(X) - |Sp, + Y % + > m(W)/k  (35)
WeDaUD3 WeDyUDs3
Xcw Xcw, Xis k-largest
S(W)#£0 S(W)=0

where "X is k-largest” means thaX is thek-largest (with respect to inclusion) set includedihand

sSwys Y m(y)

YeD,YCW
> m(Z)
Z€D17
A OrZeDz|BYeDiwithYCZ
Sp, =
ZY6D1 m(Y)

Note: The authors mentioned in an Erratum to the printed versiamefsecond volume of DSMT book se-
ries (ttp://fs.gallup.unm.edu//Erratum.pdf ) and they also corrected the online version of the
aforementioned book (see page 24itp://fs.gallup.unm.edu//DSmT-book2.pdf that all de-

nominators of the BCR’s formulas are naturally supposecetdifierent from zero. Of course, Shafer’s con-
ditional rule as stated in Theorem 3.6, page 67 df [24] doésvodk when the denominator is zero and that's
why Shafer has introduced the conditiétel(B) < 1 (or equivalentlyPI(B) > 0) in his theorem when the
conditioning term isB.

A simple example for BCR17 Let's considet©® = {6, 02, 65} with Shafer’s model (i.e. all elements 6fare
exclusive) and let's assume that the truth ig4drU 65, i.e. the conditioning term igl £ 6, U #3. Then one has
the following HPSD:

Dy = {02,03,0o U 03}, Dy = {01}

D3 = {91 Uy, 0, Ubs3,01 U6y U 93}
Let's consider the following prior bbam(6;) = 0.2, m(f2) = 0.1, m(83) = 0.2, m(6; U 62) = 0.1,
m(02 U 93) =0.1 andm(91 Uby U 93) =0.3.
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Loy Yos

With BCR17, forD,, m(61) = 0.2 is transferred proportionally to all elements bf, i.e. 53 = 53

Zoou63 0.2

=12 = 7 = 0.5 whence the parts of.(6) redistributed td, 3 andf, U 3 are respectivelyy, = 0.05,
Yo, = 0.10, andzp, 9, = 0.05. For D3, there is actually no need to transfe(d; Ufs) becausen (6, Ub3) =0
in this example; whereas (6, Uf2) = 0.1 is transferred t@, (no case of-elements herein)n (6, Uf,Ub3) =
0.3 is transferred t@-, #5 andf, U 05 proportionally to their corresponding masses:

1‘92/0.1 = y93/0.2 = Z@2U93/0.1 = 0.3/0.4 =0.75
whencery, = 0.075, yp, = 0.15, andzg, 9, = 0.075. Finally, one gets
mpcr17(02|02 U 63) = 0.10 + 0.05 4 0.10 4- 0.075 = 0.325

mpori7(03]602 UO3) = 0.20 + 0.10 + 0.15 = 0.450
mBCRl7(92 U 93|92 U 93) = 0.10 4+ 0.05 4+ 0.075 = 0.225

which is different from the result obtained with SCR, since gets in this example:

mSCR(QQ‘HQ U 93) = mSCR(eg‘HQ U 93) =0.25
mSCR(02 U 93|92 U 93) = 0.50

More complex and detailed examples can be foundl ih [34].

7.4 Qualitative belief conditioning rules

In this section we present only the qualitative belief ctinding rule no 17 which extends the principles of the
previous quantitative rule BCR17 in the qualitative domasing the operators on linguistic labels defined pre-
viously. We consider from now on a general fra@e= {6,,6-,...,60,}, a given modeM (©) with its hyper-
power setD® and a given extended ordered &ebf qualitative valued, = {Lo,L1,La,..., Ly, Lip+1}. The
prior qualitative basic belief assignment (gbba) takisgyélues inL is denotedym(.). We assume in the sequel
that the conditioning event id # (), A € D®, i.e. the absolute truth is iA. The approach we present here is
a direct extension of BCR17 using FLARL operators. Suchrestta can be done with all quantitative BCR’s
rules proposed if[34], but only QBCR17 is presented heréhivsake of space limitations.

7.4.1 CQualitative Belief Conditioning Rule no 17 (QBCR17)
Similarly to BCR17, QBCR17 is defined by the following forraul

mmpcmr(XI) =an(X) - [asp+ 3 TER e X annk @)
WeDyUDs3 ¢ WeDsUD3
Xcw xcw, Xis k-largest
aS(W)#0 qS(W)=0

where "X is k-largest” means thaX is thek-largest (with respect to inclusion) set includedihand

g$SW)Y= Y gm(Y)

YeD,YCW

> qm(Z)

Z€D17
orZeDy |y eDywithY CZ

ZY6D1 qm(Y)

Naturally, all operators (summation, product, divisiott)énvolved in the formula[(36) are the operators
defined in FLARL working on linguistic labels. It is worth tote that the formula[(36) requires also the divi-
sion of the labelm (W) by a scalak. This division is defined as follows:

A
Sp, =

Letr € R,r # 0. Then the label division by a scalar is defined by
& = La/?" (37)

T
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7.4.2 A simple example for QBCR17

Let's considerL, = {Ly, L1, Lo, L3, L4, L5, L¢} a set of ordered linguistic labels. For examgle, Lo, L3, Ly
andLs may represent the values; = very poot L, £ poor, Ls £ medium L, £ goodandL; £ very good
Let's consider also the fram@ = {A, B, C, D} with the hybrid model corresponding to the Venn diagram on

Figure[b.
A\ B

C

Fig. 6: Venn Diagram for the hybrid model for this example.

We assume that the prior qualitative bpa(.) is given by:
gm(A) = L1, qm(C) =Ly, qm(D)=Ly

and the qualitative masses of all other elemeni§®ftake the minimal/zero valug,. This qualitative mass is
quasi-normalized sincBy + L1 + Ly = L13114 = Lg = Linax-

If we assume that the conditioning event is the proposition B, i.e. the absolute truth is id U B, the
hyper-power set decomposition (HPSD) is obtained as falldw is formed by all parts oA U B, Ds is the
set generated b{(C, D),u,N}\ 0 ={C,D,CuD,CnD},andD3 ={AUC,AUD,BUC,BUD, AU
BUC,AU(CnND,),...}. Because the truth is id U B, gm(D) = L, is transferred in a prudent way to
(AU B)Nn D = Bn D according to our hybrid model, becauBen D is the 1-largest element fromd U B
which is included inD. While ¢gm(C) = L, is transferred ta4 only, since it is the only element iA U B
whose qualitative masgn(A) is different fromL, (zero); hence:

gmqpceri7(A) = gm(A) + qgm(C) = L1 + Ly = L141 = Lo.
Therefore, one finally gets:

gmqpcriT(A|[AUB) = Ly gmoperir(ClAUB) = Ly
qm@pcr17(D|AU B) = Lo qmopcri7(BND|AUB) = Ly

which is a normalized qualitative bba.

More complicated examples based on other QBCR’s can be fiold]].

8 Conclusion

A general presentation of the foundations of DSmT has beeposed in this introduction. DSmT proposes
new quantitative and qualitative rules of combination focertain, imprecise and highly conflicting sources
of information. Several applications of DSmT have been psegd recently in the literature and show the
potential and the efficiency of this new theory. DSmMT offdéns possibility to work in different fusion spaces
depending on the nature of problem under consideration.s,Téne can work either ia® = (©,U) (i.e. in

the classical power set as in DST framework),[®® = (0,U,N) (the hyper-power set — also known as
Dedekind’s lattice) or in the super-power s&? = (0,U,N,¢(.)), which includes2® and D® and which
represents the power set of the minimal refi nement of thedi@mwhen the refinement is possible (because
for vague elements whose frontiers are not well known theeefent is not possible). We have enriched the
DSmT with a subjective probability/{Sm P.) that gets the best Probabilistic Information Content jHIC
comparison with other existing subjective probabilitiégdso, we have defined and developed the DSm Field
and Linear Algebra of Refined Labels that permit the trams&iion of any fusion rule to a corresponding
qualitative fusion rule which gives an exact qualitativeule (i.e. a refined label), so far the best in literature.

39



References

[1] J. Bolanos, L.M. De Campos, S. Mor&ropagation of linguistic labels in causal netwoylroc. of 2nd
IEEE Int. Conf. on Fuzzy Systems, Vol. 2, pp. 863—-870, 28 MatcApril 1993.

[2] L. Cholvy Using logic to understand relations between DSmMT and Desmy®tafer Theoryin pp. 312—
317 of the Proceedings of the Rencontres francophones sungigue Floue et ses Applications (LFA
2008), Lens, France, October 16-17, 2008.

[3] L. Comtet, Sperner SystemSec.7.2 in Advanced Combinatorics: The Art of Finite anfthite Expan-
sions, D. Reidel Publ. Co., pp. 271-273, 1974.

[4] R. Dedekind,Uber Zerlegungen von Zahlen durch ihredgsten gemeinsammen Tejler Gesammelte
Werke, Bd. 1. pp. 103-148, 1897.

[5] T. Denceux,Reasoning with imprecise belief structurdgchnical Report Heudiasys 97/44, available at
http://www.hds.utc.fr/ tdenoeux/

[6] T. DenceuxReasoning with imprecise belief structurégernational Journal of Approximate Reasoning,
20, pp. 79-111, 1999.

[7] J. Dezert J., F. Smarandach®gnel Discussion on DSmTusion 2004 International Conference, Stock-
holm, Sweden (and also in Tutorials on DSmT given in Fusiobb2B008 Conferences).

[8] J. Dezert J., F. SmarandachHe@SmT: A New Paradigm Shift for Information Fusjon Proceedings of
Cogis ' 06 Conference, Paris, March 2006.

[9] J. Dezert, A. Tchamova, F. Smarandache, P. Konstardiriarget Type Tracking with PCR5 and Demp-
ster’s rules: A Comparative Analysign Proceedings of Fusion 2006 International conferencenfor-
mation Fusion, Fusion 2006, Firenze, Italy, July 10-13,6200

[10] J. Dezert, F. Smarandachienew probabilistic transformation of belief mass assignin@ Proceedings
of Fusion 2008 Conference, Cologne, Germany, July 2008.

[11] D. Dubois, H. Prade®n the unicity of Dempster rule of combinatjdnternational Journal of Intelligent
Systems, Vol. 1, pp 133-142, 1986.

[12] D. Dubois, H. PradeRepresentation and combination of uncertainty with bdliattions and possibility
measuresComputational Intelligence, 4, pp. 244-264, 1988.

[13] M.C. FloreaCombinaison d’informationsé#€rogenes dans le cadre unificateur des ensembleataires
: Approximations et robustesseh.D. Thesis, Laval University, Canada, July 2007.

[14] J.W. Guan, D.A. BellGeneralizing the Dempster-Shafer rule of combination tol&an algebrasProc.
of IEEE/ACM Int. Conf. on Developing and Managing Projed#ashington, March, pp. 229-236, 1993.

[15] T. Inagaki, Interdependence between safety-control policy and nhedipnsor schemes via Dempster-
Shafer theorylEEE Trans. on reliability, Vol. 40, no. 2, pp. 182-188, 199

[16] M. Lamata, S. MoralCalculus with linguistic probabilities and beliefth R. R. Yager, M. Fedrizzi, and
J. Kacprzyk, editors, Advances in Dempster-Shafer ThebBrvaence, pp. 133-152, Wiley.

[17] E. Lefevre, O. Colot, P. VannoorenbergliBglief functions combination and conflict manageméanrfor-
mation Fusion Journal, Elsevier Publisher, Vol. 3, No. 2,1{9-162, 2002.

[18] E. Lefevre, O. Colot, P. VannoorenbergtReply to the Comments of R. Haenni on the paper "Belief
functions combination and conflict managememtiformation Fusion Journal, Elsevier Publisher, Vol. 4,
pp. 63-65, 2003.

40



[19] C.K. MurphyCombining belief functions when evidence confli@ecision Support Systems, Elsevier
Publisher, Vol. 29, pp. 1-9, 2000.

[20] J.B. ParisThe uncertain reasoner’'s companion, a mathematical petspge Cambridge University Press,
1994.

[21] J. PearlProbabilistic reasoning in Intelligent Systems: Netwodk$lausible InferenceMorgan Kauf-
mann Publishers, San Mateo, CA, 1988.

[22] A. RobinsonNon-Standard AnalysisNorth-Holland Publ. Co., 1966.

[23] K. Sentz, S. FersonCombination of evidence in Dempster-Shafer The@jNDIA Tech. Report,
SAND2002-0835, 96 pages, April 2002.

[24] G. ShaferA Mathematical Theory of Evidend@rinceton Univ. Press, Princeton, NJ, 1976.

[25] C.E. ShannonA Mathematical Theory of CommunicatidBell Syst. Tech. J., 27, pp. 379-423 and 623-
656, 1948.

[26] N.J.A. SloaneThe On-line Encyclopedia of Integer Sequences 2(®8quence No. A014466),
http://www.research.att.com/ njas/sequences/

[27] F. Smarandaché Unifying Field in Logics: Neutrosophic Logic. Neutrosgphleutrosophic Set, Proba-
bility, and Statistics(4th Ed.), Amer. Research Press, Rehoboth, 2005.

[28] F. Smarandaché Unifying Field in Logics: Neutrosophic LogiMultiple-valued logic, An international
journal, Vol. 8, No. 3, pp. 385-438, 2002.

[29] F. Smarandach&eutrosophy: A new branch of philosopiultiple-valued logic, An international jour-
nal, Vol. 8, No. 3, pp. 297-384, 2002.

[30] F. Smarandache (Editorfproceedings of the First International Conference on Nesdphics Univ. of
New Mexico, Gallup Campus, NM, USA, 1-3 Dec. 2001, Xiquano&tix, 2002.

[31] F. Smarandache, J. Dezert (Editorspplications and Advances of DSmT for Information Fusiam.
Res. Press, Rehoboth, 2004.
http://www.gallup.unm.edu/"smarandache/DSmT-book1.p df

[32] F. Smarandachéd/nification of Fusion Theories (UFTPresented at NATO Advanced Study Institute,

Albena, Bulgaria, 16-27 May 2005 also in International daliof Applied Mathematics & Statistics,
Vol. 2, 1-14, 2004 and ohttp://arxiv.org/abs/cs/0409040

[33] F. Smarandache, J. Dezdrtformation Fusion Based on New Proportional Conflict Reiiation Rules
Proceedings of Fusion 2005 Conf., Philadelphia, July 262095.

[34] F. Smarandache, J. Dezert (Editoispplications and Advances of DSmT for Information Fusidi. 2,
American Research Press, Rehoboth, August 2006.

http://www.gallup.unm.edu/"smarandache/DSmT-book2.p df

[35] F. Smarandache, J. DezeQualitative Belief Conditioning Rule$roceedings of Fusion 2007 Conf.,
Québec, Canada, July 2007.

[36] F. Smarandache, J. Dezert (Editosspplications and Advances of DSmT for Information Fusidai. 3,
American Research Press, Rehoboth, 2009 (in preparation).

[37] Ph. Smets,Combining non distinct evidencd’roc. North American Fuzzy Information Processing
(NAFIP 1986), New Orleans, LA, 1986.

41



[38] Ph. Smets, E.H. Mamdani, D. Dubois, H. Prade (EditoMgh-Standard Logics for Automated Reasoning
Academic Press, 1988.

[39] Smets Ph., Kennes Rhe transferable belief modertif. Intel., 66(2), pp. 191-234, 1994.

[40] Ph. SmetsData Fusion in the Transferable Belief ModBroceedings of the 3rd International Conference
on Information Fusion, Fusion 2000, Paris, July 10-13, 2@@0PS21-PS33.

[41] J. Sudano, “Pignistic Probability Transforms for Méxef Low- and High-Probability EventsRroc. of
Fusion 2001 Montreal, August 2001.

[42] J. Sudano, “The system probability information comt@iC) ... ", Proc. of Fusion 2002Annapolis, July
2002.

[43] J. Sudano, “Equivalence Between Belief Theories andéNBayesian Fusion for Systems with Indepen-
dent Evidential Data - Part I, The Theoryroc. of Fusion 2003 Cairns, July 2003.

[44] J. Sudano, “Yet Another Paradigm lllustrating Eviderteusion (YAPIEF)”,Proc. of Fusion 2006Flo-
rence, July 2006.

[45] M. Tombak, A. Isotamm, T. Tamm&n logical method for counting Dedekind numbdrect. Notes on
Comp.Sci., 2138, p. 424-427, Springer-Verlag, 2001.

[46] F. VoorbraakOn the justification of Dempster’s rule of combinatidutificial Intelligence, 48, pp. 171-
197, 1991.

http://turing.wins.uva.nl/"fransv/#pub

[47] Y.-M. Wang, J.-B. Yang, D.-L. Xu, K.-S. ChirQn the combination and normalization of interval-valued
belief structuresinformation Sciences 177, pp. 1230-1247, 2007.

[48] R. R. YagerHedging in the combination of evidenclmurnal of Information and Optimization Science,
Vol. 4, No. 1, pp. 73-81, 1983.

[49] R. R. Yager,On the relationships of methods of aggregation of evidenaexpert system<ybernetics
and Systems, Vol. 16, pp. 1-21, 1985.

[50] R. R. YagerOn the Dempster-Shafer framework and new combination rudéasrmation Sciences, Vol.
41, pp. 93-138, 1987.

[51] L. Zadeh,Fuzzy setsinform. and Control 8, pp. 338-353, 1965.
[52] L. Zadeh,Fuzzy Logic and Approximate Reasonigynthese, 30, 407-428, 1975.

[53] L. Zadeh,On the validity of Dempster’s rule of combinatidlemo M 79/24, Univ. of California, Berke-
ley, 1979.

[54] L. Zadeh,Review of Mathematical theory of evidence, by Glenn ShaleMagazine, Vol. 5, No. 3, pp.
81-83, 1984.

[55] L. Zadeh,A simple view of the Dempster-Shafer theory of evidence tanichplications for the rule of
combination Berkeley Cognitive Science Report No. 33, University ofifGmia, Berkeley, CA, 1985.

[56] L. Zadeh,A simple view of the Dempster-Shafer theory of evidence anichplication for the rule of
combination Al Magazine 7, No.2, pp. 85-90, 1986.

[57] L. Zhang,Representation, independence, and combination of ewedienthe Dempster-Shafer Theory
Advances in the Dempster-Shafer Theory of Evidence, R.Belal. Kacprzyk and M. Fedrizzi, Eds.,
John Wiley and Sons, Inc., New York, pp. 51-69, 1994.

42



