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Abstract—This paper explores numerically the ef-
ficiency of ℓ

1 minimization for the recovery of sparse
signals from compressed sampling measurements in
the noiseless case. Inspired by topological criteria
for ℓ

1-identifiability, a greedy algorithm computes
sparse vectors that are difficult to recover by ℓ1-
minimization. We evaluate numerically the theoretical
analysis without resorting to Monte-Carlo sampling,
which tends to avoid worst case scenarios. This allows
one to challenge sparse recovery conditions based on
polytope projection and on the restricted isometry
property.

I. COMPRESSED SAMPLING RECOVERY

Compressed sampling paradigm consists in ac-

quiring a small number of linear measurements

y = Ax, where x ∈ R
N is the high resolution

signal to recover, and y ∈ R
P is the vector of

measurements with P ≪ N .

The resolution of the ill-posed inverse problem

y = Ax is stabilized by considering a matrix

A = (ai)
N−1
i=0 ∈ R

P×N that is drawn from a proper

random ensemble. This article considers the case

where the entries of A are drawn independently

from a Gaussian variable of variance 1/P .

For noiseless measurements y = Ax, the recov-

ery of a sparse vector x is achieved by solving the

convex program

x⋆ = argmin
x̃∈RN

||x̃||1 subj. to Ax̃ = y, (1)

where

||x̃||1 =
∑

i

|x̃i|.

The vector x is said to be identifiable if x⋆ = x.

One usually seeks simple constraints on x that en-

sure stability. Of particular interest are constraints

on the sparsity ||x||0 = #I(x) where the support of

x is

I(x) = {i \ xi 6= 0} .

With high probability on the sampling matrix A,

compressed sampling theory [1], [2] shows that any

vector satisfying

||x||0 6 ρ(P/N)P (2)

is identifiable for ρ(η) > 0.

II. SPARSE RECOVERY CRITERIA

Generic recovery criteria. Precise criteria for

identifiability are obtained by considering the lo-

cations and signs of non-zero entries of x indexed

by the support I = I(x) of x. Such criteria use the

interactions between the columns of AI = (ai)i∈I

and the other ones (ai)i/∈I . Fuchs [3] proved that a

sufficient condition for x to be identifiable is

F (x) = max
i/∈I

|〈ai, d(x)〉| < 1 (3)

where d(x) = AI(A
∗
IAI)

−1 sign(xI), (4)

see also Tropp [4] for a related result.

Topological recovery criteria. The centro-

symmetric polytope A(B1) is the image of the ℓ1

ball

B1 = {x̃ \ ||x̃||1 6 1}

and is the convex hull of {±ai}i. The ||x||0-

dimensional facet fx ⊂ A(B1) selected by x is

the convex hull of {sign(xi)ai}i∈I . Donoho [5]

showed that

x is identifiable ⇐⇒ fx ∈ ∂A(B1) (5)

where ∂A(B1) is the boundary of the polytope

A(B1). Dossal [6] shows that this topological con-

dition is equivalent to having x as the limit of xn

where F (xn) < 1.

Using (5), Donoho [5] determines, in the noise-

less case y = Ax, a precise value for ρ(η) in (2).

For instance ρ(1/2) ≈ 0.089 and ρ(1/4) ≈ 0.065.

Restricted isometry criteria. Original works of

Donoho [1], Candès, Romberg and Tao [2] focus on

the stability of the compressed sampling decoder.

Towards this goal, these authors introduced the

restricted isometry property (RIP), which imposes

that it exists constants 0 < δmin
s 6 δmax

s < 1 such

that for any x ∈ R
N with ||x||0 6 s,

(1 − δmin
s )||x||2 6 ||Ax||2 6 (1 + δmax

s )||x||2. (6)



In the original work of Candès et al., the RIP is

symmetric, and they require equal RIP constants,

δmin
s = δmax

s = δs. These authors proved that a

small enough value of δ2s ensures identifiability

of all s-sparse vectors. This is achieved with high

probability on A if s 6 CP/ log(N/P ), which cor-

responds to condition (2) with ρ(η) 6 C/ log(η−1).
It turns out that the largest and smallest eigenval-

ues of the Gram matrix A∗
IAI do not deviate from 1

at the same rate. Using asymmetric RIP constants,

Foucart and Lai [7] show that

(4
√

2 − 3)δmin
2s + δmax

2s < 4(
√

2 − 1) (7)

ensures identifiability of all s-sparse vector. Blan-

chard et al. [8] determine ρ0 such that with high

probability on A

||x||0 6 ρ0(P/N)P (8)

ensures that condition (7) is in force. One necessar-

ily has ρ0(η) 6 ρ(η) since condition (8) guarantees

identifiability, but it also ensures a strong robustness

to noisy measurements. This causes the constant ρ0

to be quite small, and for instance ρ0(1/2) = 0.003
and ρ0(1/4) = 0.0027.

III. INTERIOR FACETS AND

NON-IDENTIFIABLE VECTORS

An heuristic for identifiability based on 1/||d(x)||.
From (5) we deduce that a non identifiable vector x
corresponds to a facet fx belonging to the interior

of the polytope A(B1). The following property

allows one to compute the distance of fx to the

center of the polytope.

Proposition 1. For any vector x such that

rank(AI) = |I|, the distance from the facet fx to

0 is 1
||d(x)|| , where d(x) is defined in (4).

Proof: The distance of fx to the 0 is the

maximum of the distance between any hyper-

plan H containing fx and 0. The definition d(x)
leads to A∗

Id(x) = sign(xI) which implies that

〈d(x), (signxi)ai〉 = 1 for all i ∈ I . The hyper-

plane

Hx = {u \ 〈d(x), u〉 = 1}

is such that for all i ∈ I , (signxi)ai ∈ Hx and

thus fx ⊂ Hx. The distance between Hx and 0 is

1/||d(x)||.
Let H1 = {u \ 〈c, u〉} be another hyperplan such

that (signxi)ai ∈ H1, for all i ∈ I . The distance

between H1 and 0 is 1
||c|| . For all i ∈ I , we have

〈c, ai〉 = 〈d(x), ai〉 and thus 〈c − d(x), ai〉 = 0.

Since d(x) ∈ span(ai)i∈I , 〈c − d(x), d(x)〉 = 0
and then ||c||2 = ||c − d(x)||2 + ||d(x)||2 > ||d(x)||2,

which completes the proof.

Figure 1. Geometry of ℓ1 recovery, for N = 3 and P = 2. The

vector x1 = (2,−3, 0) is not identifiable because fx1
is inside

the polytope A(B1), and has a large ||d(x1)||. On the contrary,

x2 = (−5, 0, 3) is identifiable because fx1
∈ ∂A(B1), and it

has a small ||d(x1)||.
Figure 1 illustrates this proposition for P = 2

dimensions. This property, together with condition

(5), suggests that a vector x having a small value

of 1/||d(x)|| is more likely to be non identifiable.

Figure 2 estimates with a Monte-Carlo sampling

the ratio of vectors that are identifiable, according

to the sparsity ||x||0 and to a quantized value of

||d(x)||. The curve parameterized by ||d(x)|| exhibits

a phase transition that is even sharper than the

curve parameterized by sparsity (each dot on the

curves accounts for 1000 random realizations of the

signal).

The numerical evidence provided by Figure 2

suggests that non-identifiable vectors might be

found not just by increasing the sparsity of a

given vector, but also by decreasing the value of

1/||d(x)||.
An heuristic for sub-matrices conditioning based

on 1/||d(x)||. The following proposition shows that

1/||d(x)||, where d(x) is defined in (4), is not only

suitable to locate non-identifiable vectors, it is also

a good proxy to extract sub-matrices of A that are

ill-conditionned.

Proposition 2. For any vector x such that

rank(AI) = |I|, one has

{

δmin
s > 1 − s/||d(x)||2,

δmax
s > s/||d(x)||2 − 1.

(9)

Proof: One has d(x) = (A+
I )∗ sign(xI), where

A+
I is the pseudo-inverse of AI , and hence

λmin((A+
I )∗) 6

||d(x)||2
|| sign(xI)||2

6 λmax((A
+
I )∗)

where λmin(B) and λmax(B) are the smallest and

largest eigenvalues of B∗B. Since the eigenvalues

of A∗
IAI are the inverse of those of A+

I (A+
I )∗ and
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Figure 2. Left: ratio of identifiable vectors as a function of

||x||0, for (P, N) = (250, 1000). Right: ratio of identifiable

vectors as a function of ||d(x)||.
since || sign(xI)||2 = s,

1 − δmin
s 6 λmin(AI) 6

s

||d(x)||2
s

||d(x)||2 6 λmax(AI) 6 1 + δmax
s ,

which completes the proof.

Estimating a sharp lower bound on δmax
s (resp.

δmin
s ) can thus be achieved by computing a vector

x with ||x||0 = s that maximizes (resp. minimizes)

1/||d(x)||.

IV. SPARSE EXTENSIONS

To build a vector x that is not identifiable, or

a ill-conditionned sub-matrix AI , we progressively

increase the sparsity ||x||0 by extending it with

additional non-zero entries. We consider a signed

support extension x̃ of x, written as x̃ = x + σ∆i,

where σ ∈ {+1,−1}, i /∈ I(x) and ∆i is a Dirac

vector. The extension of x to obtain x̃ increases

by one the sparsity ||x||0, and we select carefully

i and σ to maximize or minimize the variation of

1/||d(x)||, where d(x) is defined in (4).

Approximate minimal and maximal worst ex-

tensions. Since d(x) ∈ span(aj)j∈I(x) and I(x) ⊂

I(x̃), we have

〈d(x) − d(x̃), d(x)〉 = 0,

hence

||d(x̃)||2 = ||d(x)||2 + ||d(x) − d(x̃)||2.

Finding an extension that maximizes (resp. mini-

mizes) 1/||d(x̃)|| is thus equivalent to minimizing

(resp. maximizing) ||d(x) − d(x̃)||.
Introducing the dual vector

ãi ∈ span((aj)j∈I(x) ∪ ai)

such that

∀ j ∈ I(x), 〈ãi, aj〉 = 0 and 〈ãi, ai〉 = 1,

we have

d(x̃) − d(x) = −ãj(〈d(x), aj〉 − σ),

which implies

||d(x) − d(x̃)|| = ||ãj |||〈d(x), aj〉 − σ| .

Computing ||ãj || for all possible j /∈ I(x) is com-

putationally demanding since it requires to solve an

over-determined system of linear equations for each

j. We thus select an approximately optimal exten-

sion by maximizing or minimizing |〈d(x), aj〉−σ|
instead of ||ãj |||〈d(x), aj〉 − σ|.

The maximization (resp. minimization) of

1/||d(x)|| is thus obtained through the extensions

E+(x) = x+σ+∆i+ and E−(x) = x+σ−∆i−

where











i+ = argmin
j /∈I(x)

|1 − |〈d(x), aj〉||

i− = argmax
j /∈I(x)

|〈d(x), aj〉| (10)

and

{

σ+ = sign(〈d(x), ai−〉),
σ− = − sign(〈d(x), ai+〉).

(11)

Greedy minimal and maximal worst extensions.

For each location j ∈ {0, . . . , N−1}, starting from

the initial 1-sparse vector x±
j,0 = ∆j , we compute

iteratively two s-sparse worst case extensions as
{

x+
j,s = E+(x+

j,s−1)

x−
j,s = E−(x−

j,s−1).
(12)

V. GREEDY SEARCH FOR

NON-IDENTIFIABLE VECTORS

Proposition 1 suggests that the greedy extensions

x−
j,s for varying j defined in (12) is likely to be

difficult to identify.

Given η = P/N 6 1, we use a dichotomy search

on s to compute

s⋆(η, P ) = min
{

s \ ∃j, x−
j,s is not identifiable

}

,



which is an empirical upper bound on the maximal

allowable sparsity that guarantees identifiability.

The following table reports our numerical find-

ings for η = 1/4, and compares this numerical ev-

idence with the sharp theoretical bound of Donoho

[5] ρ(1/4) ∼ 0.065.

P 125 250 500 1000

s⋆(1/4, P ) 10 20 42 79

⌈ρ(1/4)P ⌉ 9 17 33 65

For instance, with N = 1000 and P = 250, we

are able to find a 20-sparse vector that is non-

identifiable. In contrast, Monte Carlo sampling with

1000 random vectors for each sparsity s does not

reveal any non-identifiable vector for s < 54, as

shown in Figure 2.

VI. GREEDY SEARCH FOR

ILL-CONDITIONED SUB-MATRICES

Empirical restricted isometry bounds. The ex-

tension x−
j,s defined in (12) is an s-sparse vector

with a small value of 1/||d(x)||. Proposition 2

suggests that its support I = I(x−
j,s) selects a

Gram matrix A∗
IAI with a low smallest eigenvalue

λmin(AI). Similarly, I = I(x+
j,s) can be used to

find a sub-matrix A∗
IAI with a big largest eigen-

value λmax(AI).
We define empirical lower bounds on restricted

isometry constants as






δ̃min
s = min

06j<N
1 − λmin(AI(x−

j,s
))

δ̃max
s = max

06j<N
λmax(AI(x+

j,s
)) − 1.

(13)

where λmin(B) and λmax(B) are the minimum and

maximum eigenvalues of B∗B.

Figure 3 shows the numerical values of δ̃min
s and

δ̃max
s , and compare these bounds with more naive

ones, obtained as follows.

Random sampling: we use K = 104 sets

{Ik}K−1
k=0 of #Ik = s indexes, and use

{

δ̃min
s,rand = maxk 1 − λmin(AIk

),

δ̃max
s,rand = maxk λmax(AIk

) − 1,

as empirical lower bounds for δmin
s and δmax

s .

Cone sampling: for each 0 6 j < N , we

select the s columns (ai)i∈Ij
of A that maximize

〈ai, aj〉. We use

{

δ̃min
s,cone = maxj 1 − λmin(AIj

),

δ̃max
s,cone = maxj λmax(AIj

) − 1,

as empirical lower bounds for δmin
s and δmax

s .

This shows that our greedy algorithm is able to find

ill-conditioned sub-matrices consistently better than

simpler schemes.

We denote as x−
s the vector reaching the empir-

ical bounds (13), δ̃min
s = 1−λmin(AI(x−

s )). Figure

4 shows that the values of 1−s/||d(x−
s )||2 are close

to the empirical restricted isometry constants δ̃min
s .

The same is true for the estimation of δ̃max
s using

s/||d(x+
s )||2 − 1. This proves numerically that our

heuristic (9) is accurate in practice.
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Figure 4. Plain curves: values of δ̃min
s

and δ̃max
s

as a

function of s. Dashed curves: values of 1 − s/||d(x−

s )||2 and

s/||d(x+
s )||2 − 1.

Empirical sparsity bounds for restricted isome-

try condition. Given η = P/N 6 1, we compute

s⋆
0(η, P ), the minimum s for which our empirical

estimates invalidate condition (7),

(4
√

2 − 3)δ̃min
2s + δ̃max

2s > 4(
√

2 − 1)

Figure 5 shows our numerical estimation of the

bound (7) for a varying s. The following table

reports our numerical findings for η = 1/4, and

compares this numerical evidence with the theoreti-

cal bound of Blanchard et al. [8] ρ0(1/4) ∼ 0.0027.

P 250 500 1000 2000

s⋆
0(1/4, P ) 2 3 5 8

⌈ρ0(1/4)P ⌉ 1 2 3 6

CONCLUSION

We have proposed in this paper new greedy algo-

rithm to find sparse vectors that are not identifiable

and sub-matrices with a small number of columns

that are ill-conditionned. This allows us to check

numerically sparsity-based criteria for compressed

sampling recovery based either on polytope projec-

tion or on restricted isometry constants.
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