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A Numerical Exploration of Compressed Sampling Recovery

This paper explores numerically the efficiency of ℓ 1 minimization for the recovery of sparse signals from compressed sampling measurements in the noiseless case. Inspired by topological criteria for ℓ 1 -identifiability, a greedy algorithm computes sparse vectors that are difficult to recover by ℓ1minimization. We evaluate numerically the theoretical analysis without resorting to Monte-Carlo sampling, which tends to avoid worst case scenarios. This allows one to challenge sparse recovery conditions based on polytope projection and on the restricted isometry property.

I. COMPRESSED SAMPLING RECOVERY

Compressed sampling paradigm consists in acquiring a small number of linear measurements y = Ax, where x ∈ R N is the high resolution signal to recover, and y ∈ R P is the vector of measurements with P ≪ N .

The resolution of the ill-posed inverse problem y = Ax is stabilized by considering a matrix A = (a i ) N -1 i=0 ∈ R P ×N that is drawn from a proper random ensemble. This article considers the case where the entries of A are drawn independently from a Gaussian variable of variance 1/P .

For noiseless measurements y = Ax, the recovery of a sparse vector x is achieved by solving the convex program

x ⋆ = argmin x∈R N ||x|| 1 subj. to Ax = y, (1) 
where

||x|| 1 = i |x i |.
The vector x is said to be identifiable if x ⋆ = x.

One usually seeks simple constraints on x that ensure stability. Of particular interest are constraints on the sparsity ||x|| 0 = #I(x) where the support of x is

I(x) = {i \ x i = 0} .
With high probability on the sampling matrix A, compressed sampling theory [START_REF] Donoho | Compressed sensing[END_REF], [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF] shows that any vector satisfying

||x|| 0 ρ(P/N )P (2) 
is identifiable for ρ(η) > 0.

II. SPARSE RECOVERY CRITERIA

Generic recovery criteria. Precise criteria for identifiability are obtained by considering the locations and signs of non-zero entries of x indexed by the support I = I(x) of x. Such criteria use the interactions between the columns of A I = (a i ) i∈I and the other ones (a i ) i / ∈I . Fuchs [START_REF] Fuchs | On sparse representations in arbitrary redundant bases[END_REF] proved that a sufficient condition for x to be identifiable is

F (x) = max i / ∈I | a i , d(x) | < 1 (3) 
where

d(x) = A I (A * I A I ) -1 sign(x I ), (4) 
see also Tropp [4] for a related result.

Topological recovery criteria.

The centrosymmetric polytope A(B 1 ) is the image of the ℓ 1 ball

B 1 = {x \ ||x|| 1 1}
and is the convex hull of {±a i } i . The ||x|| 0dimensional facet f x ⊂ A(B 1 ) selected by x is the convex hull of {sign(x i )a i } i∈I . Donoho [START_REF] Donoho | High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension[END_REF] showed that

x is identifiable ⇐⇒ f x ∈ ∂A(B 1 ) (5) 
where ∂A(B 1 ) is the boundary of the polytope A(B 1 ). Dossal [START_REF]A necessary and sufficient condition for exact recovery by ℓ 1 minimization[END_REF] shows that this topological condition is equivalent to having x as the limit of x n where F (x n ) < 1. Using (5), Donoho [START_REF] Donoho | High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension[END_REF] determines, in the noiseless case y = Ax, a precise value for ρ(η) in [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF]. For instance ρ(1/2) ≈ 0.089 and ρ(1/4) ≈ 0.065.

Restricted isometry criteria. Original works of Donoho [START_REF] Donoho | Compressed sensing[END_REF], Candès, Romberg and Tao [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF] focus on the stability of the compressed sampling decoder. Towards this goal, these authors introduced the restricted isometry property (RIP), which imposes that it exists constants 0 < δ min s δ max s < 1 such that for any x ∈ R N with ||x|| 0 s,

(1 -δ min s )||x|| 2 ||Ax|| 2 (1 + δ max s )||x|| 2 . ( 6 
)
In the original work of Candès et al., the RIP is symmetric, and they require equal RIP constants, δ min s = δ max s = δ s . These authors proved that a small enough value of δ 2s ensures identifiability of all s-sparse vectors. This is achieved with high probability on A if s CP/ log(N/P ), which corresponds to condition (2) with ρ(η) C/ log(η -1 ).

It turns out that the largest and smallest eigenvalues of the Gram matrix A * I A I do not deviate from 1 at the same rate. Using asymmetric RIP constants, Foucart and Lai [START_REF] Foucart | Sparsest solutions of underdetermined linear systems via via ℓq-minimization for 0 < q 1[END_REF] show that

(4 √ 2 -3)δ min 2s + δ max 2s < 4( √ 2 -1) (7) 
ensures identifiability of all s-sparse vector. Blanchard et al. [START_REF] Blanchard | The restricted isometry property and ℓ q -regularization: Phase transitions for sparse approximation[END_REF] determine ρ 0 such that with high probability on A ||x|| 0 ρ 0 (P/N )P

ensures that condition ( 7) is in force. One necessarily has ρ 0 (η) ρ(η) since condition (8) guarantees identifiability, but it also ensures a strong robustness to noisy measurements. This causes the constant ρ 0 to be quite small, and for instance ρ 0 (1/2) = 0.003 and ρ 0 (1/4) = 0.0027.

III. INTERIOR FACETS AND NON-IDENTIFIABLE VECTORS

An heuristic for identifiability based on 1/||d(x)||. From (5) we deduce that a non identifiable vector x corresponds to a facet f x belonging to the interior of the polytope A(B 1 ). The following property allows one to compute the distance of f x to the center of the polytope. Proposition 1. For any vector x such that rank(A I ) = |I|, the distance from the facet f x to 0 is 1 ||d(x)|| , where d(x) is defined in [START_REF] Tropp | Just relax: convex programming methods for identifying sparse signals in noise[END_REF].

Proof: The distance of f x to the 0 is the maximum of the distance between any hyperplan H containing f x and 0. The definition d(x)

leads to A * I d(x) = sign(x I ) which implies that d(x), (sign x i )a i = 1 for all i ∈ I. The hyper- plane H x = {u \ d(x), u = 1}
is such that for all i ∈ I, (sign x i )a i ∈ H x and thus f x ⊂ H x . The distance between H x and 0 is 1/||d(x)||.

Let H 1 = {u \ c, u } be another hyperplan such that (sign x i )a i ∈ H 1 , for all i ∈ I. The distance between H 1 and 0 is 1 ||c|| . For all i ∈ I, we have c, a i = d(x), a i and thus c -d(x), a i = 0. 2 , which completes the proof. dimensions. This property, together with condition (5), suggests that a vector x having a small value of 1/||d(x)|| is more likely to be non identifiable.

Since d(x) ∈ span(a i ) i∈I , c -d(x), d(x) = 0 and then ||c|| 2 = ||c -d(x)|| 2 + ||d(x)|| 2 > ||d(x)||
Figure 2 estimates with a Monte-Carlo sampling the ratio of vectors that are identifiable, according to the sparsity ||x|| 0 and to a quantized value of ||d(x)||. The curve parameterized by ||d(x)|| exhibits a phase transition that is even sharper than the curve parameterized by sparsity (each dot on the curves accounts for 1000 random realizations of the signal).

The numerical evidence provided by Figure 2 suggests that non-identifiable vectors might be found not just by increasing the sparsity of a given vector, but also by decreasing the value of 1/||d(x)||.

An heuristic for sub-matrices conditioning based on 1/||d(x)||. The following proposition shows that 1/||d(x)||, where d(x) is defined in (4), is not only suitable to locate non-identifiable vectors, it is also a good proxy to extract sub-matrices of A that are ill-conditionned. 

IV. SPARSE EXTENSIONS

To build a vector x that is not identifiable, or a ill-conditionned sub-matrix A I , we progressively increase the sparsity ||x|| 0 by extending it with additional non-zero entries. We consider a signed support extension x of x, written as x = x + σ∆ i , where σ ∈ {+1, -1}, i / ∈ I(x) and ∆ i is a Dirac vector. The extension of x to obtain x increases by one the sparsity ||x|| 0 , and we select carefully i and σ to maximize or minimize the variation of 1/||d(x)||, where d(x) is defined in (4).

Approximate minimal and maximal worst extensions. Since d(x) ∈ span(a j ) j∈I(x) and I(x) ⊂ I(x), we have

d(x) -d(x), d(x) = 0, hence ||d(x)|| 2 = ||d(x)|| 2 + ||d(x) -d(x)|| 2 .
Finding an extension that maximizes (resp. minimizes) 1/||d(x)|| is thus equivalent to minimizing (resp. maximizing) ||d(x) -d(x)||.

Introducing the dual vector ãi ∈ span((a j ) j∈I(x) ∪ a i ) such that ∀ j ∈ I(x), ãi , a j = 0 and ãi , a i = 1, we have

d(x) -d(x) = -ã j ( d(x), a j -σ), which implies ||d(x) -d(x)|| = ||ã j ||| d(x), a j -σ| .
Computing ||ã j || for all possible j / ∈ I(x) is computationally demanding since it requires to solve an over-determined system of linear equations for each j. We thus select an approximately optimal extension by maximizing or minimizing | d(x), a j -σ| instead of ||ã j ||| d(x), a j -σ|.

The maximization (resp. minimization) of 1/||d(x)|| is thus obtained through the extensions

E + (x) = x + σ + ∆ i + and E -(x) = x + σ -∆ i - where      i + = argmin j / ∈I(x) |1 -| d(x), a j || i -= argmax j / ∈I(x) | d(x), a j | (10) 
and

σ + = sign( d(x), a i -), σ -= -sign( d(x), a i + ). ( 11 
)
Greedy minimal and maximal worst extensions.

For each location j ∈ {0, . . . , N -1}, starting from the initial 1-sparse vector x ± j,0 = ∆ j , we compute iteratively two s-sparse worst case extensions as

x + j,s = E + (x + j,s-1 ) x - j,s = E -(x - j,s-1 ). (12) 
V. GREEDY SEARCH FOR NON-IDENTIFIABLE VECTORS Proposition 1 suggests that the greedy extensions x - j,s for varying j defined in ( 12) is likely to be difficult to identify.

Given η = P/N 1, we use a dichotomy search on s to compute s ⋆ (η, P ) = min s \ ∃j, x - j,s is not identifiable , which is an empirical upper bound on the maximal allowable sparsity that guarantees identifiability.

The following table reports our numerical findings for η = 1/4, and compares this numerical evidence with the sharp theoretical bound of Donoho [START_REF] Donoho | High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension[END_REF] ρ(1/4) ∼ 0.065. For instance, with N = 1000 and P = 250, we are able to find a 20-sparse vector that is nonidentifiable. In contrast, Monte Carlo sampling with 1000 random vectors for each sparsity s does not reveal any non-identifiable vector for s < 54, as shown in Figure 2.

VI. GREEDY SEARCH FOR ILL-CONDITIONED SUB-MATRICES

Empirical restricted isometry bounds. The extension x - j,s defined in ( 12) is an s-sparse vector with a small value of 1/||d(x)||. Proposition 2 suggests that its support I = I(x - j,s ) selects a Gram matrix A * I A I with a low smallest eigenvalue λ min (A I ). Similarly, I = I(x + j,s ) can be used to find a sub-matrix A * I A I with a big largest eigenvalue λ max (A I ).

We define empirical lower bounds on restricted isometry constants as (

) 13 
where λ min (B) and λ max (B) are the minimum and maximum eigenvalues of B * B. Figure 3 shows the numerical values of δmin s and δmax s , and compare these bounds with more naive ones, obtained as follows.

Random sampling: we use K = 10 4 sets {I k } K-1 k=0 of #I k = s indexes, and use

δmin s,rand = max k 1 -λ min (A I k ), δmax s,rand = max k λ max (A I k ) -1,
as empirical lower bounds for δ min s and δ max s . Cone sampling: for each 0 j < N , we select the s columns (a i ) i∈Ij of A that maximize a i , a j . We use

δmin s,cone = max j 1 -λ min (A Ij ), δmax s,cone = max j λ max (A Ij ) -1,
as empirical lower bounds for δ min s and δ max s . This shows that our greedy algorithm is able to find ill-conditioned sub-matrices consistently better than simpler schemes.

We denote as x - s the vector reaching the empirical bounds (13), δmin s = 1 -λ min (A I(x - s ) ). Figure 4 shows that the values of 1-s/||d(x - s )|| 2 are close to the empirical restricted isometry constants δmin s . The same is true for the estimation of δmax s using s/||d(x + s )|| 2 -1. This proves numerically that our heuristic (9) is accurate in practice. Empirical sparsity bounds for restricted isometry condition. Given η = P/N 1, we compute s ⋆ 0 (η, P ), the minimum s for which our empirical estimates invalidate condition [START_REF] Foucart | Sparsest solutions of underdetermined linear systems via via ℓq-minimization for 0 < q 1[END_REF],

(4 √ 2 -3) δmin 2s + δmax 2s 4( √ 2 -1)
Figure 5 shows our numerical estimation of the bound (7) for a varying s. The following table reports our numerical findings for η = 1/4, and compares this numerical evidence with the theoretical bound of Blanchard et al. [START_REF] Blanchard | The restricted isometry property and ℓ q -regularization: Phase transitions for sparse approximation[END_REF] 
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 1 Figure1. Geometry of ℓ 1 recovery, for N = 3 and P = 2. The vector x 1 = (2, -3, 0) is not identifiable because fx 1 is inside the polytope A(B 1 ), and has a large ||d(x 1 )||. On the contrary, x 2 = (-5, 0, 3) is identifiable because fx 1 ∈ ∂A(B 1 ), and it has a small ||d(x 1 )||.
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 1 Figure1illustrates this proposition for P = 2 dimensions. This property, together with condition (5), suggests that a vector x having a small value of 1/||d(x)|| is more likely to be non identifiable.Figure2estimates with a Monte-Carlo sampling the ratio of vectors that are identifiable, according to the sparsity ||x|| 0 and to a quantized value of ||d(x)||. The curve parameterized by ||d(x)|| exhibits a phase transition that is even sharper than the curve parameterized by sparsity (each dot on the curves accounts for 1000 random realizations of the signal).The numerical evidence provided by Figure2suggests that non-identifiable vectors might be found not just by increasing the sparsity of a given vector, but also by decreasing the value of 1/||d(x)||.
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 22 Figure 2. Left: ratio of identifiable vectors as a function of ||x|| 0 , for (P, N ) = (250, 1000). Right: ratio of identifiable vectors as a function of ||d(x)||. since || sign(x I )|| 2 = s, 1 -δ min s λ min (A I ) s ||d(x)|| 2 s ||d(x)|| 2 λ max (A I ) 1 + δ max s ,

1 -

 1 λ min (A I(x - j,s ) ) δmax s = max 0 j<N λ max (A I(x + j,s ) ) -1.

Figure 4 .

 4 Figure 4. Plain curves: values of δmin s and δmax s as a function of s. Dashed curves: values of 1 -s/||d(x - s )|| 2 and s/||d(x + s )|| 2 -1.

Figure 5 .

 5 Figure 5.Lower bound on condition[START_REF] Foucart | Sparsest solutions of underdetermined linear systems via via ℓq-minimization for 0 < q 1[END_REF], for (N, P ) = (4000, 1000), the dashed line corresponds to y = 4( √ 2 -1).

  ρ 0 (1/4) ∼ 0.0027.CONCLUSIONWe have proposed in this paper new greedy algorithm to find sparse vectors that are not identifiable and sub-matrices with a small number of columns that are ill-conditionned. This allows us to check numerically sparsity-based criteria for compressed sampling recovery based either on polytope projection or on restricted isometry constants. Empirical Restricted isometry constants lower bounds, for (N, P ) = (4000, 1000). The dashed curves shows 1 -s/||d(x - s )|| 2 on the left and s/||d(x + s )|| 2 -1 on the right.
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