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Abstract Shape matching should be invariant to the
typical intra-class deformations present in nature. The
majority of shape descriptors are quite complex and
not invariant to the deformation or articulation of ob-
ject parts. Geodesic distances computed over a 2D or
3D shape are articulation insensitive. The eccentricity
transform considers the length of the longest geodesics.

It is robust with respect to Salt and Pepper noise, and
minor segmentation errors, and is stable in the pres-
ence of holes. We present a method for 2D and 3D
shape matching based on the eccentricity transform.
Eccentricity histograms make up descriptors insensitive
to rotation, scaling, and articulation. The descriptor
is highly compact and the method is straight-forward.

Experimental results on established 2D and 3D bench-
marks show results comparable to more complex state
of the art methods. Properties and results are discussed
in detail.
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1 Introduction

The recent increase in available 3D models and acqui-
sition systems has seen the need for efficient retrieval
of stored models, making 3D shape matching gain at-
tention also outside the computer vision community.
Together with its 2D counterpart, 3D shape matching
is useful for identification and retrieval in classical vi-

sion tasks, but can also be found in Computer Aided
Design/Computer Aided Manufacturing (CAD/CAM),
virtual reality (VR), medicine, molecular biology, secu-

rity, and entertainment (Bustos et al, 2005).

Shape matching requires to set up a signature that
characterizes the properties of interest for the recogni-
tion (Veltkamp and Latecki, 2006). The invariance of
this signature to local deformations such as articula-

tions is important for the identification of 2D and 3D
shapes. Matching can then be carried out over this re-
duced space of signatures. Most shape descriptors are

computed over a transformed domain that amplifies the
important features of the object while throwing away
ambiguities such as translation, rotation or local defor-
mations.

For 2D shapes, the Fourier transform of the bound-

ary curve (Zahn and Roskies, 1972) is an example of
such a transformed domain descriptor adapted to
smooth shapes. Shape transformations computed with

geodesic distances (Bronstein et al, 2006) lead to signa-
tures invariant to isometric deformations such as bend-
ing or articulation. To capture salient features of 2D
objects, local quantities such as curvature (Mokhtar-
ian and Mackworth, 1992) or shape contexts (Belongie
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et al, 2002) can be computed. They can be extended to
bending invariant signatures using geodesic distances
(Ling and Jacobs, 2007). More global features include
the Laplace spectra (Reuter et al, 2005) and the skele-

ton (Siddiqi et al, 1999). Some transformations involve
the computation of a function defined on the shape, for
instance the solution to a linear partial differential equa-

tion (Gorelick et al, 2004) or geometric quantities (Os-
ada et al, 2002). Geodesic distance information such as
the mean-geodesic transform (Hamza and Krim, 2003)

could also be used.

Among appraoches matching 3D shapes, existing
approaches can be divided into (Bustos et al, 2005):
Statistical descriptors, like for example geometric 3D

moments employed by Elad et al (2001); Paquet et al
(2000), and the shape distribution (Osada et al, 2002; Ip

et al, 2003). Extension-based descriptors, which are cal-
culated from features sampled along certain directions
from a position within the object (Vranic and Saupe,
2002, 2001a). Volume-based descriptors use the volu-
metric representation of a 3D object to extract fea-
tures (examples are Shape histograms, Ankerst et al
(1999), Model Voxelization, Vranic and Saupe (2001b),

and point set methods, Tangelder and Veltkamp (2003)).
Descriptors using the surface geometry compute curva-
ture measures and/or the distribution of surface normal
vectors (Paquet and Rioux, 1999; Zaharia and Preux,
2001). Image-based descriptors reduce the problem of
3D shape matching to an image similarity problem by
comparing 2D projections of the 3D objects (Ansary

et al, 2004; Cyr and Kimia, 2004; Chen et al, 2003).
Methods matching the topology of two objects (for ex-
ample Reeb graphs, where the topology of the 3D object
is described by a graph structure, Hilaga et al (2001);
Shinagawa et al (1991)). Skeletons are intuitive object
descriptions and can be obtained from a 3D object by
applying a thinning algorithm on the voxelization of a
solid object like in Sundar et al (2003). Descriptors us-
ing spin images work with a set of 2D histograms of the
object geometry and a search for point-to-point corre-
spondences is done to match 3D objects (Johnson and
Hebert, May 1999).

The majority of shape descriptors is quite complex
and not invariant to the deformation or articulation of
object parts.

In Ling and Jacobs (2007) a model of articulated ob-

jects is presented. It is defined as a union of (rigid) parts
Oi and joints (named ’junctions’ by the authors). An
articulation is defined as a transformation that is rigid
when limited to any part Oi, but can be non-rigid on
the junctions. An articulated instance of an object is an
articulated object itself (actually the same object) that

can be articulated back to the original one. The term

articulated shape refers to the shape of an articulated
object in a certain pose. In the context of shape match-
ing it means that shapes that belong to articulations
of the same object, belong to the same class. Assuming

that the size of the junctions is very small compared to
the size of the parts Oi, it is shown that the relative
change of the geodesic distance1 during articulation is
small and that geodesic distances are articulation in-
sensitive.

The eccentricity transform of a shape associates to
each of its points the distance to the point furthest

away. It is based on the computation of geodesic dis-
tances and thus robust with respect to articulation. It
is in addition robust with respect to Salt and Pepper
noise and minor segmentation errors (Kropatsch et al,
2006), and stable in the presence of holes. Normalized
histograms of the eccentricity transform are invariant to

changes in orientation, scale, and articulation. We pro-
pose eccentricity histograms as descriptors for 2D and
3D shape matching. They require only a simple repre-
sentation and can be efficiently matched. Initial results
have been presented for 2D in Ion et al (2007), and
for 3D (volumetric representation) in Ion et al (2008a).
This article presents a common framework with an in

dept analysis of the properties of the approach, sup-
ported by promising experimental results and detailed
discussion. Four variants of the descriptor are used, one
for 2D shapes and three for 3D shapes (volume, border
voxels, mesh) and compared to state of the art methods.
To the best of our knowledge, this is the first approach
applying eccentricity (furthest point distance) to the

problem of shape matching. The presented approach
could be fitted to either of the categories extension-

based or volume-based, and it is a transformation com-

puted with geodesic distances.
Like the method in (Ling and Jacobs, 2007), our

method does not involve any part models. The articu-
lation model is only for the analysis of the properties

of the geodesic distance. Finding the correspondences
between all the parts of two shapes is an NP -complete
problem in graph theory (known also as the ’matching’
of two graphs) which relies on the correct decomposi-
tion of the unknown object into parts. A one-to-one
mapping is not always possible as some parts might be

missing due to, for example, segmentation errors. De-
composition of the shapes into parts is not required by
our approach.

The paper is organized as follows: Section 2 recalls
the eccentricity transform and discusses used variants
and computation. Section 3 gives the proposed match-
ing method and discusses pros and cons of the descrip-

tor (Section 3.1). Section 4 presents details and dis-

1 Called ’inner-distance’ in Ling and Jacobs (2007).
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cusses the results of the experiments, followed by pa-
rameters and improvements in Section 5. Section 6 con-
cludes the paper.

2 Eccentricity Transform

The following definitions and properties follow Kropatsch
et al (2006); Ion et al (2008b), and are extended to n-

dimensional domains.
Let the shape S be a closed set in R

n. A path π
in S is the continuous mapping from the interval [0, 1]
to S. Let Π(p1,p2) be the set of all paths between
two points p1,p2 ∈ S within the set S. The geodesic
distance d(p1,p2) between two points p1,p2 ∈ S is
defined as the length λ(π) of the shortest path π ∈

Π(p1,p2)

d(p1,p2) = min{λ(π) | π ∈ Π(p1,p2)}, (1)

where the length λ(π) is

λ(π(t)) =

∫ 1

0

|π̇(t)|dt,

and π(t) is a parametrization of the path from p1 =
π(0) to p2 = π(1). Any shortest path ν ∈ Π(p1,p2),
λ(ν) = d(p1,p2) is called a geodesic (path).

The eccentricity transform of S can be defined as,
∀p ∈ S

ECC(S,p) = max{d(p,q) | q ∈ S}. (2)

To each point p it assigns the length of the geodesic
path(s) to the points farthest away from it.

The definition above accommodates n-dimensional

objects embedded in R
n as well as n-dimensional ob-

jects embedded in higher dimensional spaces (e.g. the
2D manifold given by the surface of a closed 3D ob-
ject). The distance between any two points whose con-

necting segment is contained in S, is computed us-
ing the ℓ2-norm i.e. distances are not computed on a
graph, but are a discretization of the continuous defini-

tion of length. For a definition of the ECC of a graph
see Kropatsch et al (2006).

The ECC is quasi-invariant to articulated motion
and robust against salt and pepper noise (which creates

holes in the shape) (Kropatsch et al, 2006). An analysis
of the variation of geodesic distance under articulation
can be found in Ling and Jacobs (2007).

An eccentric point is a point q that reaches a max-
imum in Equation 2, and for most shapes, all eccentric
points lie on the border of S (Kropatsch et al, 2006).
The center is the set of points that have the smallest
(minimum) eccentricity. The diameter of a shape S is

the maximum ECC, which is the length of the longest
geodesic path.

This paper considers the class of 2n-connected dis-
crete shapes S defined by points on a square grid Z

n,
n ∈ {2, 3}, as well as connected triangle meshes repre-
senting the surface of the 6-connected 3D shapes. Ta-
ble 1 shows the types of manifolds used in this article,
for which ECC is computed. For ECCobj2D, ECCobj,

and ECCborder, paths need to be contained in the area
of R

n defined by the union of the support squares/cubes
for the pixels/voxels of S. For ECCmesh, paths need to

be contained in the 2D manifold defined by the union
of the triangles of the mesh (including the interior of
the triangles). If increasing the resolution of the shapes,
ECCborder and ECCmesh converge to the same value.

2.1 Computation

One of the first attempts to deal with the problem
of furthest point is presented in Suri (1987), where
an algorithm for finding the eccentric/furthest vertices
for the vertices of a simple polygon is given in. Later
Maisonneuve and Schmitt (1989); Schmitt (1993) pro-
posed an efficient algorithm for simply connected shapes
on the hexagonal and dodecagonal grid. The concept
of eccentricity of a vertex can be found in classical
graph theory books (Harary, 1969; Diestel, 1997), and
the concept of eccentricity transform2 in recent discrete
geometry (Klette and Rosenfeld, 2004) and mathemat-
ical morphology books (Soille, 2002). Computation is
not discussed and no references to holes in a shape are
made.

The straight forward computation approach is: for
each point of S, compute the distance to all other points
and take the maximum. In Ion et al (2008b) faster
computation and efficient approximation algorithms are
presented. For this paper, the fastest one, algorithm

ECC06 (see Appendix), has been used.

ECC06 relies on the computation of the shape bound-

ed single source distance transform3 DS(p) (Figure 1(b)),
which is computed for estimated eccentric point candi-

dates in an iterative manner. DS(p) associates to each
point q ∈ S the geodesic distance to p. DS can be
computed using Fast Marching (Sethian, 1999), which

allows for an efficient computation in O(N ∗ log(N))
steps, for N = |S| grid points. The complexity for com-
puting ECC(S) using ECC06 and Fast Marching is
O(K ∗ N ∗ log(N)) where K 6 |∂S| is adapted to the

shape.

2 Known in the mathematical morphology community as the

propagation function.
3 Also called geodesic distance function with marker set p.
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Table 1 Types of manifolds used in this article.

input shape computation on S in Equations 1 and 2

ECCobj2D 2D 2D: whole object 4-connected binary 2D shape

ECCobj 3D 3D: whole object 6-connected 3D voxel shape

ECCborder 3D 3D: border voxels
6 connected voxel surface in 3D, made out of voxels of the
object that are 26 connected to a background voxel

ECCmesh 3D 2D: triangle mesh connected triangle mesh of the surface of the 3D object

(a) (b)

p0 p0

Fig. 1 Euclidean (a) and geodesic (b) distance function, for
starting point p0. Gray values are distances modulo a constant.

Fig. 2 ECC of binary shape (point with smallest ECC marked).

Figure 1 shows a comparison of the geodesic and
Euclidean distances. Figures 2 and 3 show the eccen-
tricity transform of a 2D, respectively 3D, shape. For
the 3D shape, the eccentricity transform is presented
for the whole shape (ECCobj), for the border voxels

(ECCborder), and the surface mesh (ECCmesh). Fig-
ure 4 shows the difference between ECCobj and
ECCborder, both using distances computed in the 3D
volume.

3 Eccentricity Histogram Matching

To match two binary shapes/objects we first create a
shape descriptor for each of them and then match these
descriptors to obtain a similarity measure.

ECC histogram descriptor. The basic building block for
our shape descriptor is the histogram h of the eccentric-
ity transform ECC of the shape S. We use k bins for

the histogram. The histogram descriptor is the vector
h ∈ R

k defined by: ∀i = 1, . . . , k

h(i) =
1

|S|
#

{

p ∈ S |
i − 1

k
6

ECC(S,p) − m

M − m
<

i

k

}

,

where |S| is the number of pixels/voxels in S, and m

and M are the smallest, respectively largest eccentric-
ity values. The obtained histogram contains only bins

Fig. 5 Top: ECCobj2D for some 2D shapes. Bottom: corre-
sponding histograms.

Fig. 6 Top: example 3D shapes. Bottom: corresponding ECCobj

histograms.

for the values actually existing in the eccentricity trans-
form i.e. from minimum to maximum eccentricity, and

the sum of all bins is 1. Figures 5 and 6 and show exam-
ples of histograms for 2D and 3D shapes with different
geometric features. We note that the histogram h is
invariant under euclidean transformations, scaling and
isometric bending of S.

Comparison of histograms. To match the descriptors of
the two shapes S and S̃, it is necessary to compute a
meaningful distance between histograms. Let h, h̃ ∈ R

k

be the two histograms of S and S̃ computed as above.

We propose to use the simple ℓ2-norm defined by

δ(h, h̃)
def.

=

√

√

√

√

k
∑

i=1

(h(i) − h̃(i))2. (3)

One could use more elaborate metrics such as the
χ2 metric or those defined in Osada et al (2002), but we
found in numerical experiments that all these metrics

give results similar to δ, which is the easiest and fastest
to compute (discussion follows in Section 5).
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3D model:

ECCobj ECCborder ECCmesh

ECC

volume rendering volume rendering surface rendering

Fig. 3 Top: 3D model of an ant. Bottom: ECCobj, ECCborder, ECCmesh (darker = higher ECC value).

ECCobj ECCborder

cut: x=const.

cut: z=const.

Fig. 4 Comparison between the two volume computations of ECC: ECCobj and ECCborder.

The dissimilarity ∆(S, S̃) is computed between two
shapes S and S̃ as the distance of their histogram de-
scriptors:

∆(S, S̃)
def.

= δ(h, h̃). (4)

3.1 Characteristics of ECC Histograms.

The histogram of the ECC characterizes the compact-
ness of the shape (e.g. a flat histogram characterizes
a very elongated shape, a histogram with monotoni-
cally decreasing values characterizes a rather compact
shape). Figure 7 shows example eccentricity histograms
for basic shapes, with and without holes and articula-
tion.

The histogram of the ECC of a simple open curve4

Sa with length l = d(e1, e2) (Figure 8(a)), is flat with a

possibly smaller value in the first bin. The continuous

4 In this article, the term curve is used to denote a one di-
mensional and continuous object, and includes both straight and

non-straight lines.

formula is:

h(Sa, i) =
1

l

{

1 if i = min(ECC(S))

2 if i > min(ECC(S))
,

where min(ECC(Sa)) = d(e1, c) = d(e2, c).

Consider Sb obtained by adding to Sa a simple open

curve of length d(q1,q
′
3) < l/2 connected at the point

q1 (Figure 8(b)). Let q3 ∈ Sb s.t. d(q1,q3) = d(q1,q
′
3)

and d(q3, e1) = d(q′
3, e1). For the points with eccen-

tricity between d(e1,q1) and d(e1,q3), the eccentricity

histogram of Sb has increased by 50% (there is one ad-
ditional point having each of the values in the domain).
A shape without cycles (e.g. Sa, Sb, Sc) has only one

center point (ECC minimum) and the histogram value
for the center is always one. All other histogram values
can be changed by adding branches as above.

A possibility to change the histogram value for the
center is to introduce cycles. Consider Sd obtained by
adding a simple open curve of length (q1,q2) to Sa

(Figure 8(d)). The length d(e1, e2) is kept the same
and q1q2 has the same length if going over c or c′. Also
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S ECCobj2D h(S)

(a) line

(b) disk

(c) many short eccentric paths

(d) many long eccentric paths

(e) many long + cut

(f) many long + articulation

(g) with holes

(h) with holes and articulation

Fig. 7 Basic shapes and their eccentricity histograms.

d(e1, c) = d(e1, c
′) = d(e1, e2)/2. Two center points ex-

ist (c and c′), and for the eccentricity values
[d(c, e1), d(q2, e1)) there are two additional points. If
q1 → c, q1 6= c, only one additional point will exist for

the eccentricity values [d(c, e1), d(q2, e1)).
For a given histogram, the steps used to create Sb

and Sd, can be iterated to grow the continuous shape
(for geodesics computed along thin lines). For discrete
shapes, the number of points is finite5, which limits the
number of curves that can be put close to each other
and not intersect. With the maximum shape size (num-

ber of pixels/voxels) and the number of bins k fixed,

5 Depends on the discretization and maximum shape size.

not all (real valued) histograms can result as ECC his-

tograms (it can also be seen as a discretization problem,
the lower the resolution/maximum size, the higher the
dependence between neighboring histogram bins).

A histogram has a smaller dimension (1D) than the
shape and a whole class of shapes is projected into the
same histogram. Two shapes S and S̃ with the same ec-
centricity histograms satisfy ∆(S, S̃) = 0, and are thus

considered to be the same according to our recognition
algorithm. Consider Sc in Figure 8(c) obtained from
Sa, similar to Sb, but with two curves s.t. d(q1,q

′
2) =

d(q1,q2), d(q2,q
′
3) = d(q2,q3), and d(q1,q3) is equal

in both Sb and Sc. The two shapes Sb and Sc have the
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S ECC(S) h(S)

(a)

e1 e2c

ECC

Sc e2

h(i, S)

i

(b)

e1 e2c q1 q3

q′
3

ECC

Sc q1

h(i, S)

i

d(e1,q1) d(e1,q3)

(c)

e1 e2c q1 q2 q3

q′
2

q′
3

ECC

Sc q1 q2

h(i, S)

i

d(e1,q1) d(e1,q3)

(d)

e1 e2
c

c′

q1 q2

ECC

Sc, c′q1 q2

h(i, S)

i

d(e1,q2)

Fig. 8 Behavior of ECC histogram for basic changes in the shape. Column S: where possible, straight lines where used for illustration,

but only the length of the curves is relevant, not if straight or not.

same eccentricity histogram and cannot be differenti-
ated using only that. One could say that eccentricity
histograms are influenced by the structure of shapes
(as new branches change the histogram), but they are
not optimal for characterizing it.

On the other side, the descriptor is highly compact,

which is an advantage for real time retrieving and low
memory devices, it is invariant under many natural de-
formations, it can handle shapes without as well as with
holes (Figure 7 (g) and (h)), and gives good results com-
parable to many state of the art methods (Section 4).

4 Matching Experiments in 2D & 3D

This section shows results on popular benchmarks and
comparison with state of the art methods. When com-
paring the results, keep in mind that the proposed method

is simple and matching is fast. An approximation of the
ECC can be computed for many shapes with as few as
50 distance propagations (e.g. the average number for
the ECCmesh on the McGill database is 54), and deter-
mining δ between two computed descriptors (ℓ2-norm)

has practically no CPU time consumption. A single,
fixed-length vector as a descriptor can be a very efficient
indexing method. The approaches compared with, are
more complicated requiring decomposition of shapes,
alignment/correspondences of features, etc.

4.1 2D Shape Matching

For the experiments we have used three shape databases:
Kimia 25 (Sharvit et al, 1998), Kimia 99 (Sebastian
et al, 2004) and MPEG7 CE-Shape-1 (Latecki et al,
2000).
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A shape database is composed of q shapes {Si}
q
i=1

and each shape Si has a label L(i) ∈ {1, . . . , lmax}. Each
label value 1 ≤ l ≤ lmax defines a class of shapes Q(l) =
{Si | L(i) = l}. The first columns of the three blocks of

Figure 9 show the shapes from the Kimia 25 database,
ordered by classes (such as fish, planes, rabbits, etc.).
Any shape matching algorithm α assigns to each shape
Si a vector of best matches Φi, where Φi(1) is the shape
the most similar to Si, Φi(2) is the second hit, and so
on. Depending on the benchmark, Φi contains all shapes

including the query shape Si (all 2D benchmarks in this
article), or leave Si out, i.e. the shape Si is not matched
to itself and Φi has q − 1 elements (all 3D benchmarks
in this article).

For the Kimia 25 database lmax = 6 and q = 25, and
for the Kimia 99 database, lmax = 9 and q = 99. We
measure the efficiency of various matching algorithms
on Kimia databases by the number of correct matches
for each ranking position k:

Matchk(Φ)
def.

=

q
∑

i=1

1L(Φi(k))=L(i) 6 q.

Tables 2 and 3 give the value of Matchk for various
shape matching algorithms.

In the case of the MPEG7 database, which contains
lmax = 70 classes with 20 images each (q = 70 × 20 =

1400), the efficiency of matching algorithms is com-
puted using the standard Bullseye test:

Bullseye(Φ)
def.

=
1

20q

40
∑

k=1

q
∑

i=1

1L(Φi(k))=L(i)

=
1

20q

40
∑

k=1

Matchk(Φ).

This test counts the number of correct hits (same class)

in the first 40 hits. For each image there can be at most
20 correct hits and a maximum of 20×1400 hits can be
obtained during the benchmark and thus Bullseye(Φ) ≤
1. Table 4 gives the value of Bullseye for various shape
matching algorithms.

The results of the presented approach over both
Kimia 25 and Kimia 99, and over MPEG 7 are slightly
bellow the state of the art.

Case Study - Kimia 25. Figure 9 shows the retrieval

results for Kimia 25. The first column shows the 25
shapes Si. The following set of shapes forms an array,
where the shape at row i and column k is Φi(k), the
rank-k shape associated to Si.

The Kimia 25 database has shapes from 6 classes: 5
classes with 4 images each, and one (hands) with 5 im-
ages (1 simulating a segmentation error). The class with

Table 2 The value of Matchk(Φ) for various algorithms on the
Kimia 25 database. See Ling and Jacobs (2007) for a description

of these algorithms.

Algorithm α k=1 2 3

Sharvit et. al 23 21 20

ECCobj2D 25 20 16

Gdalyahu and Weinshall 25 21 19

Belongie et. al 25 24 22

ID-Shape Context 25 24 25

Fig. 10 Histograms for: top: greebles, bottom: unoccluded

hands.

the best results are rabbits, followed by tools, hands,
fishes, airplanes and greebles (the shapes that do not
look like anything we know). Two questions immedi-

ately rise when looking at these results:

1. Why are the greebles considered to be more similar
to the hands than to other greebles?

2. Why does a rabbit appear in so many cases when

the matching has failed?

For the first question, consider the histograms of the
greebles and the unoccluded hands (Figure 10). The
histograms are very similar even though the shapes are
of different classes, e.g. the histogram of the first greeble

(Figure 10 top-left) looks more similar to the hands,
than the second and third greeble. This is due to the
abstraction of a 2D shape to a 1D histogram, which,
in our case, disregards certain structural properties of
distances/paths (studied in detail in Section 3.1).

For the second question, consider the shapes in Fig-

ure 11 (a rabbit - S19, and two tools - S25 and S22), and
the results, Φ25, in row 25 of Figure 9. When match-
ing S25, the rabbit has a better score than S22, even
though one might say that the histograms of S25 and
S22 reveal more similar distance characteristics than

Table 4 The value of Bullseye(Φ) for various algorithms on the

MPEG 7 databases.

Algorithm α Bullseye(Φ)

random 2.86%

ECCobj2D 44.28%

Shape Context 64.59%

ID-Shape Context 68.83%
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Table 3 The value of Matchk(Φ) for various algorithms on the Kimia 99 database. See Ling and Jacobs (2007) for a description of
these algorithms

Algorithm α k=1 2 3 4 5 6 7 8 9 10

Shape Context 97 91 88 85 84 77 75 66 56 37

ECCobj2D 99 87 74 67 64 49 52 45 38 33

Gen. Model 99 97 99 98 96 96 94 83 75 48

Shock Edit 99 99 99 98 98 97 96 95 93 82

ID-Shape Context Belongie et al (2002) 99 99 99 98 98 97 97 98 94 79

Fig. 9 Retrieval results for the single scale descriptor on the Kimia 25 database.

S19 S25 S22

Fig. 11 Three shapes from the Kimia 25 database and their
eccentricity histograms.

the histogram of S19 (see Figure 11). Both S25 and S22

have more long distances than medium, and short, while

S19 has a peak in the medium. This is due to typical
histogram matching methods, which are inherently low
level and fail to capture the high level context of the
task. Discussion follows in Section 5.

Geometrical properties of the shapes are well cap-
tured by our low-dimensional descriptors. For instance,
elongated shapes are well separated from more compact
shapes. However, more advanced geometrical features,
such as intricate structural properties are thrown away
by our signature extraction. This is for instance why

the class ’greebles’ is not separated enough from the
class ’hands’.

4.2 3D Shape Matching

One of the most widely used 3D object retrieval data-
bases is the Princeton Shape Benchmark (Shilane et al,
2004). It contains 1,814 3D object models organized by

class and is effective for comparing the performance of a
variety of methods. However, the majority of the mod-
els corresponds to rigid, man-made objects. Only a lim-
ited number of shapes in the database have articulated
parts. As one of the main advantages of using eccentric-
ity is its robustness with respect to articulation, we have
turned to the McGill Shape Benchmark (Zhang et al,
2005). It contains several models from the Princeton
repository and others added by the authors. The main
advantage of this benchmark is that from its 455 3D
shapes, 255 have significant part articulation. This ar-
ticle shows the results on the q = 255 shapes grouped
into the lmax = 10 classes of articulated shapes (Fig-

ure 12). Shapes are not matched to themselves and so
Φi contains q − 1 shapes. See Siddiqi et al (2007) for
results of other methods for the same benchmark.

Three ECC based descriptors where used (Figure 3):

1. ECCobj - eccentricity of the whole object;

2. ECCborder - eccentricity of the border voxels;
3. ECCmesh - eccentricity of the triangle mesh of the

surface of the object.

ECCborder is obtained by computing ECC(∂6S),
where ∂6S is the 6 connected voxel boundary of S.
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Fig. 13 Recall for several rank thresholds
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Fig. 14 Average ranks for each class. The first tree letters of each class name are printed.

Ants (ant) Crabs (cra)

Spectacles (spe) Hands (han)

Humans (hum) Octopuses (oct)

Pliers (pli) Snakes (sna)

Spiders (spi) Teddy (ted)

Fig. 12 The object classes from the McGill 3D shape database
having significant part articulation.

ECCmesh is computed on the 2D manifold defined by
the boundary of the 3D objects. ECCborder uses dis-
tance computation in the 3D volume, ECCmesh in the
2D surface. If the resolution of the shapes is increased,

ECCborder and ECCmesh converge to the same value.
For a similar resolution, ECCmesh needs less memory,
as cells not part of the border do not have to be stored
(e.g. interior of the object), and it can be more accurate
when approximating the eccentricity of the surface, as

the computation is done on the surface itself, not on an
approximation volume.

Figure 13 shows the recall for several rank thresh-
olds (t = 10, 20, . . . ). The ratio of models in the database
in the same category as the query, with indexing rank
≤ t, to the total number of objects in the same cat-
egory (never including the query itself) is given (see

Section 4.1 for the notation):

Recall(Φi, t) =
1

|Q(L(i))| − 1

t
∑

k=1

1L(Φi(k))=L(i).

The average results and standard deviation, over all
classes, are given (Figure 13).

Figure 14 shows the average and the standard devia-
tion of the ranks for each class (lower average is better).
For all queries in a class, the average of the ranks of all
other objects in that class are computed:

AvgRank(Φi) =
1

|Q(L(i))| − 1

q−1
∑

k=1

kL(Φi(k))=L(i).

Table 5 shows the average score for all pairs of classes.
Each shape in the database is matched against all other
shapes and each cell shows the average of the score
(Equation 4) between all combinations of shapes of the
two classes defined by the row and column.
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Figure 15 shows the precision-recall curves for each
of the 10 classes. Precision and recall are common in in-
formation retrieval for evaluating retrieval performance.
They are usually used where static document sets can

be assumed. However, they are also used in dynamic en-
vironments such as web page retrieval (Fawcett, 2006).
Precision refers to the ratio of the relevant shapes re-
trieved, to the total number retrieved:

Precision(Φi, t) =
1

t

t
∑

k=1

1L(Φi(k))=L(i).

Precision-recall curves are produced by varying the pa-
rameter t. Better results are characterized by curves
closer to the top, i.e. recall = 1 for all values of preci-

sion.
As can be seen in Figures 13, 14, and 15, and Ta-

ble 5, ECCobj does in most cases a better job than EC-

Cborder and ECCmesh. The recall of the three meth-
ods is comparable, with slightly better results from EC-
Cobj. With respect to the average ranks, ECCobj does
better with the hands, octopus, pliers, snakes, spiders,
teddy, is worse then one of ECCborder and ECCmesh
with the ants, crabs, humans, and slightly worse than
both other methods with the spectacles. None of the
three variants produces an average class rank higher
than 50%. All three methods have the smallest average
class distance (highest similarity) correct for 8 out of
10 classes, with ECCobj having the correct class as the
second smallest one for the other two, the humans and
octopus (see Table 5).

Figure 15 shows comparative precision-recall results
of ECCobj, ECCborder and ECCmesh, and three other
methods:

– medial surfaces (MS) (Siddiqi et al, 2007);
– harmonic spheres (HS) (Kazhdan et al, 2003);
– shape distributions (SD) (Osada et al, 2002).

ECCobj, ECCborder, and ECCmesh are compara-

ble, except for the teddy bears, where ECCobj is supe-
rior to the other two. The best results (higher precision
vs. recall) are reached by the ECC variants for the

snakes, by MS for the ants, and HS and SD for teddy.
For these best results the MS has the best precision-
recall followed by the ECC based methods, followed
by HS and SD. The worst results are achieved by EC-
Cobj, ECCborder, and ECCmesh for the octopus, MS
for the pliers, and HS and SD for the hands. The results
of MS for the pliers are superior to ECCobj, ECCbor-
der and ECCmesh for the octopus, which are in turn
superior to the HS and SD for the hands. In comparison
to all other three methods (MS, HS, SD), the eccentric-
ity based methods score better on the pliers, spectacles
and snakes.

oct spe pli hum

Fig. 16 Similar ECCobj histograms corresponding to 3D objects

of different classes.

4.3 Discussion

The computed shape similarities are robust with re-
spect to scaling, rotation, and part articulation. The
matching results are good, especially when consider-
ing the straightforward approach. In contrast, the most

efficient shape matching algorithms (Ling and Jacobs,
2007; Siddiqi et al, 2007) are more complicated and re-
quire extraction of salient features and local signatures
that need to be aligned or registered.

The major current limitations of our approach in-
clude: (1) Eccentricity histograms do not capture the

topology of the shape and thus histograms of differ-
ent shapes can be very similar. (2) Histogram ’match-
ing’ (whether using the ℓ2-norm or more sophisticated
methods) is inherently low level and does not consider

the higher level context in which it is applied.

As in the 2D case, connectivity of the isoheight
lines/surfaces of the eccentricity transform does cap-
ture the part structure of a shape (Ion et al, 2008c),
but the histograms ’throw away’ this information. Fig-
ure 16 shows two pairs of similar histograms belonging
to 3D objects of different classes.

In the case of 2D shapes the eccentricity of the

boundary is a constant. In 3D it manages to capture
some of the properties of the shape, but it looks more
unstable. The eccentricity transform of a simply con-
nected volume has in most of the cases a single stable

center (minimum), while the eccentricity transform of
its border will have a disconnected center or at least
one with a more complex structure. The fact that EC-

Cobj produced different results than ECCborder and
ECCmesh for the teddy can be related to the compact-
ness of the shapes and their parts.

Compared to other approaches (e.g. Siddiqi et al
(2007)), one can identify the aspects discussed above
(see Figure 15 and Table 5). For classes with simple
topology (e.g. snakes and spectacles), the results are
very good. For classes where part decomposition and
structure play an important role (e.g. octopus v.s. spi-

ders and crabs), the discrimination capabilities are re-
duced.
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Table 5 Average matching results multiplied by 100 (smaller means more similar). For each row, the first and second smallest value
are printed in bold.

ECCobj ants crabs hands humans octopus pliers snakes spectacles spiders teddy

ants 1.75 5.33 3.72 3.53 7.20 2.95 2.91 7.25 5.43 3.72

crabs 5.33 1.55 3.73 3.50 3.67 3.02 4.36 3.99 3.43 2.53

hands 3.72 3.73 2.30 3.04 5.60 2.71 3.76 6.19 4.53 2.51

humans 3.53 3.50 3.04 2.19 5.03 2.13 3.15 5.04 3.52 2.62

octopus 7.20 3.67 5.60 5.03 3.90 5.02 6.22 4.04 4.06 4.58

pliers 2.95 3.02 2.71 2.13 5.02 0.55 1.82 4.97 3.64 2.11

snakes 2.91 4.36 3.76 3.15 6.22 1.82 0.80 5.73 4.83 3.55

spectacles 7.25 3.99 6.19 5.04 4.04 4.97 5.73 2.24 3.97 5.13

spiders 5.43 3.43 4.53 3.52 4.06 3.64 4.83 3.97 2.25 3.50

teddy 3.72 2.53 2.51 2.62 4.58 2.11 3.55 5.13 3.50 1.46

ECCborder ants crabs hands humans octopus pliers snakes spectacles spiders teddy

ants 1.00 2.45 2.16 1.60 3.09 1.61 2.42 5.62 2.47 1.66

crabs 2.45 1.41 2.30 3.01 3.42 2.88 3.64 6.92 3.08 2.38

hands 2.16 2.30 1.94 2.65 2.98 2.48 3.49 6.05 2.78 2.29

humans 1.60 3.01 2.65 1.57 3.19 1.54 2.16 5.12 2.54 1.93

octopus 3.09 3.42 2.98 3.19 2.97 2.72 3.82 4.80 2.69 2.80

pliers 1.61 2.88 2.48 1.54 2.72 0.65 1.75 4.51 2.00 1.47

snakes 2.42 3.64 3.49 2.16 3.82 1.75 0.85 4.86 3.21 2.44

spectacles 5.62 6.92 6.05 5.12 4.80 4.51 4.86 1.67 4.69 5.26

spiders 2.47 3.08 2.78 2.54 2.69 2.00 3.21 4.69 1.76 2.07

teddy 1.66 2.38 2.29 1.93 2.80 1.47 2.44 5.26 2.07 1.45

ECCmesh ants crabs hands humans octopus pliers snakes spectacles spiders teddy

ants 0.97 2.34 1.94 1.66 2.46 1.40 2.36 4.78 1.93 1.47

crabs 2.34 1.47 2.52 3.05 3.09 2.88 3.67 6.41 2.75 2.34

hands 1.94 2.52 1.98 2.69 2.62 2.34 3.40 5.30 2.40 2.17

humans 1.66 3.05 2.69 1.48 3.03 1.60 1.91 4.56 2.48 2.07

octopus 2.46 3.09 2.62 3.03 2.61 2.39 3.54 4.65 2.33 2.34

pliers 1.40 2.88 2.34 1.60 2.39 0.70 1.78 3.92 1.71 1.44

snakes 2.36 3.67 3.40 1.91 3.54 1.78 0.98 4.00 2.95 2.56

spectacles 4.78 6.41 5.30 4.56 4.65 3.92 4.00 1.66 4.49 4.71

spiders 1.93 2.75 2.40 2.48 2.33 1.71 2.95 4.49 1.50 1.68

teddy 1.47 2.34 2.17 2.07 2.34 1.44 2.56 4.71 1.68 1.37

5 Parameters and Improvements

The number of bins for the histogram: The approach
has one parameter, the number of bins k, of the his-
tograms h. In experiments, we used k = 200, which
was chosen based on a few initial trials on a smaller set
of shapes.

As the shapes are discrete, the number of distance
values of the ECC is finite. Let hc be the ordered set of

eccentricity values computed for a shape S, i.e. each dis-
tinct value that exists in the ECC of the discrete shape
S. We have min(hc) equal to the ECC value of the cen-
ter (minimum ECC) and greater or equal to half the
diameter of the shape (max(hc) = max(ECC)). The
largest distance between two neighboring (grid) points
is equal to one (shapes are required to be 4 respectively

6 connected). For the ECC histogram of a shape not
to contain any empty bins, the number of bins k has to

satisfy:

k 6 max(ECC(S)) − min(ECC(S)).

Depending on the shape, k could be much higher and
still have no empty bins in h, e.g. for S a disc with ra-
dius r in Z

2 and the Euclidean distance, there are more
distinct values than r (consider the discrete approxima-
tion of the Euclidean circle). An absolute upper bound
is k = |S|. If this number is exceeded, there will be

empty bins in h.
As k decreases, the description capability of the his-

togram also decreases. In the extreme case, a single

bin would just contain |S|, and for the normalized his-
togram it would contain the value 1. Two bins can give
the equivalent of a simple compactness measure (simi-
lar to the circularity ratio, which relates the area of the

shape to the area of the circle with the same diameter).
Three bins could be considered as a relative measure
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ECCobj ECCborder ECCmesh MS SD HS

Fig. 15 Precision-recall for the ten classes. Left two columns: ECCobj, ECCborder, ECCmesh. Right two columns (image taken

from Siddiqi et al (2007), with kind permission of Springer Science and Business Media): results of three other methods on the same

database: medial surfaces (MS) (Siddiqi et al, 2007), harmonic spheres (HS) (Kazhdan et al, 2003), and shape distributions (SD) (Osada
et al, 2002). Precision: horizontal axis, recall: vertical axis. (Best visualized in color.)

for short/long/medium distances and can characterize
more than the simple compactness measure. A higher
number of bins increases the dimension of the space in
which distances are computed and gives more flexibil-
ity in the relations, e.g. in 2D there can be maximum 3
points s.t. they are pairwise at the same distance (equi-

lateral triangle), and this number increases to 4 in 3D
(regular tetrahedron).

Assuming that shapes from the same class have sim-
ilar histograms, given the number of classes (vertices)
and the required relations (weighted edges), a lower
bound for the number of bins is equal to the smallest
dimension in which the classes can be embedded s.t.
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the weights of the edges corresponding to the distance
between the vertices. If the variation inside classes in-
creases the number of classes that can be discriminated
will decrease.

Describing topology: One of the problems identified in
Section 3.1 and during the experiments (Sections 4.1
and 4.2) is that the histograms do not capture the ex-
act structure of the shape. Classical methods to de-
scribe the topology of a shape (e.g. Reeb graphs, Reeb
(1964), and homology generators, Munkres (1993)) fail

to capture the geometrical aspects. An approach to deal
with this problem is presented in Aouada et al (2008).
To describe a shape, two descriptors are used: a geomet-
ric one, based on the Global Geodesic Function(GCF),
which is defined for a point as the sum of the geodesic
distances to all points of the shape multiplied by a fac-
tor, and a topological one, the Reeb graph of the shape

using the GCF as the Morse function.

Initial steps in combining the eccentricity transform
with Reeb graphs have been presented in Ion et al

(2008c).

A better histogram matching: The problem of having a

descriptor matching function that is aware of the con-
text in which it is applied can be approached in two
ways: use expert knowledge about the context to create
an algorithm that considers the proper features, or learn

the important features by giving a set of representative
examples. In Yang and Jin (2006); Yang et al (2006),
a survey of current distance metric learning methods

is given. The purpose of distance metric learning is to
learn a distance metric for a space, from a given collec-
tion of pairs of similar/dissimilar points. The learned
distance is supposed to preserve the distance relation

among the training data. Example training data would
be: S1 is more similar to S2 than to S3. The result is
a distance function that would replace the ℓ2-norm in
Equation 3 with a new measure which is adapted to the
task of eccentricity histogram distance computation as
given by the training examples.

Higher dimensional data: 4D data has started to be
available in the medical image processing community
(e.g. 3D scans of a beating heart, over time). The pre-
sented method is general and should be able to discrim-
inate between any metric space. This includes 4D, but
also gray scale images (e.g. gray values can determine
the distance propagation speed in the respective cells).

A study in this direction is planned.

6 Conclusion

We have presented a novel method for matching 2D

and 3D shapes. The method is based on the eccentric-
ity transform, which uses maximal geodesic distances,
and is insensitive to articulation, Salt and Pepper noise,
and robust with respect to minor segmentation errors.
Descriptors are normalized histograms of the eccentric-
ity transform, compact, and easy to match. The method
is straight-forward but still efficient, with experimental

results comparable to more complex state of the art
methods. Experimental results on popular 2D and 3D
shape matching benchmarks are given, with computa-
tion on binary 2D images, binary 3D voxel objects, and
3D triangle meshes. The experiments are preceded by a
detailed analysis of the properties of the descriptor and
followed by in depth discussion of results, parameters,
and improvement possibilities.

Appendix

Algorithm 1 ECC06(S) - Estimate eccentricity trans-
form by progressive refinement.
Input: Discrete shape S.

1: for all q ∈ S, ECC(q)← 0 /*initialize distance matrix*/

2: p← random point of S /*find a starting point*/
3:

4: /*Phase 1: find a diameter*/

5: while p not computed do

6: ECC ← max{ECC, DS(p)} /*accumulate & mark p as

computed*/

7: p ← arg max{ECC(p)|p ∈ S} /*highest current ECC
(farthest away)*/

8: end while

9:
10: /*Phase 2: find center points and local maxima*/

11: pECC ← 0 /*make sure we enter the loop*/
12: while pECC 6= ECC do

13: pECC ← ECC

14: C ← arg min{ECC(p)|p ∈ S} /*points with min. ECC*/
15: for all c ∈ C, c not computed do

16: D ← DS(c) /*compute distances from the center*/

17: ECC ← max{ECC, D} /*accumulate & mark c as
computed*/

18:

19: M← {q ∈ S | D(q) local max. in S & q not computed}
20: for all m ∈M, m not computed do

21: ECC ← max{ECC, DS(m)} /*accumulate & mark

m as computed*/
22: end for

23: end for

24: end while

Output: Distances ECC.

For completeness, the algorithm ECC06 (Kropatsch
et al, 2006) used to compute the eccentricity transform
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for the shapes in our experiments is included (see Ion
et al (2008b) for an analysis of the speed/error perfor-
mance). ECC06 (Algorithm 1) tries to identify points
of the geodesic center (minimum ECC) and use those

to find eccentric point candidates. Computing DS(c)
for a center point c ∈ C(S) is expected to create lo-
cal maxima where eccentric points lie. In a first phase,
the algorithm identifies at least two diameter ends by
repeatedly ’jumping’ (computing DS(p)) for the point
that had the highest value in the previous estimation.

In the second phase, the center points ci are estimated
as the points with the minimum eccentricity and all lo-
cal maxima m of DS(c) are marked as eccentric point
candidates. For all m, DS(m) is computed and accu-
mulated. When no new local maxima are found (i.e.
with DS(m) not previously computed), the algorithm
stops.
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