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Best Basis Compressed Sensing
Gabriel Peyré, Member, IEEE

Abstract—This paper proposes an extension of compressed
sensing that allows to express the sparsity prior in a dictionary
of bases. This enables the use of a fixed set of non-adaptive
linear measurements and an adaptive recovery process. This
reconstruction optimizes the basis to the structure of the sensed
signal. An iterative thresholding algorithm is used in order to
perform both the recovery and the estimation of the best basis.
Numerical experiments on sounds and geometrical images show
that adaptivity is indeed crucial to capture the regularity of
complex natural signals.

Index Terms—Compressed sensing, best basis, wavelet packets,
cosine packets, bandlets.

I. INTRODUCTION

C
OMPRESSED sensing is a new sampling strategy that

uses a fixed set of linear measurements together with

a non-linear recovery process. In order for this scheme to

work with a low number of measurements, compressed sensing

theory requires the sensed signal to be sparse in a given

orthogonal basis and the sensing vectors to be incoherent with

this basis. This theory of compressed acquisition of data has

been proposed jointly by Candes, Tao and Romberg [1], [2]

and Donoho [3], [4].

This paper is focussed on enhancing the compressive sens-

ing technology by using a adaptive recovery process. While

the original theory uses a fixed basis to express the sparsity of

a given signal, we propose to use a more general dictionary

of bases. In this framework, the signal to recover is assumed

to be sparse in at least one basis of the whole dictionary.

A. Compressed Sensing and Sparsity

In a series of papers, Candes, Tao and Romberg [1], [2]

and Donoho [3], [4] have proposed the idea of directly

acquiring signal in a compressed form. Instead of performing

the acquisition with a high sampling rate and then compressing

the data in an orthogonal basis, the signal is simply projected

on a reduced set of linear vectors. The compressibility of the

signal is only exploited during the reconstruction phase, where

one needs to use the sparsity of the signal in an orthogonal

basis.

Compressed sensing acquisition of data might have an

important impact for the design of imaging devices where

data acquisition is expensive. Takhar et al. [5] detail a single

pixel camera that acquires random projections from the visual

scene through a digital micromirror array. A similar acquisition

strategy can be used in MRI imaging [6] to reduce the

acquisition time and increase the spatial resolution.
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B. Previous Works

In order for the compressed sensing approach to be efficient,

one needs to focus on the recovery phase and exploit the

structure of the signal to recover.

Redundancy to increase sparsity. Fixed orthogonal bases

are not flexible enough to capture the complex regularity of

sounds or natural images. For instance the orthogonal wavelet

transform lacks of translation and rotation invariance and a

fixed local cosine basis fail to capture transient part of musical

sounds [7].

A first way to increase the sparsity of the representation

is to increase the redundancy of the basis. One can can for

instance use a frame of translation invariant wavelets which

has proven useful for image denoising. The curvelet frame [8]

allows to better represent edges in images than wavelets. The

resulting lack of orthogonality might however deteriorate the

coherence of the basis with the sensing vectors. Incoherence

in the case of union of orthogonal bases is studied in [9] and

more general frame are studied in [10].

Best basis to increase sparsity. These fixed bases or frames

are however not efficient enough to compress optimally com-

plex geometric images or musical sounds. Instead of increasing

the redundancy of a single set of vectors, one can consider

several orthogonal bases that compose a large dictionary of

atoms. In this framework, one has to choose a best basis

adapted to the signal to process.

Local cosine bases [7] divide the time axis in segments that

are adapted to the local frequency content of the sound. Other

kinds of dictionaries of 1D bases have been proposed, such as

the wavelet packets dictionary [11] and non stationary wavelet

packets [12].

The set of cartoon images is a simple model that captures the

sketch content of natural images. The curvelet frame of Candès

and Donoho [8] can deal with such a regularity and enjoys a

better approximation rate than traditional isotropic wavelets.

This result can be enhanced using a dictionary of locally

elongated functions that follow the image geometry. Bandlets

bases of Le Pennec and Mallat [13] provide such a geometric

dictionary together with a fast optimization procedure to

compute a basis adapted to a given image.

All these dictionaries allow to increase the sparsity of com-

plex signals and have direct applications in data compression

and denoising. They have however not yet been used to solve

inverse problems such as compressed sensing reconstruction,

since such problems make the estimation of the best basis

a difficult task. This paper shows how to actually do this

estimation using an iterative method which allows to extend

compressed sensing to a best basis framework.

Enhancing compressed sensing. Other approaches to enhance



2

compressed sensing reconstruction consist in imposing further

constraints beyond sparsity. For instance, wavelets coefficients

can be optimized in a scale-by-scale fashion [14] and positivity

or low total variation can be enforced as well [15]. One can

also use more advanced signals models not based on sparsity

but rather on low dimensional smooth manifolds [16]. All

these ideas can be incorporated in our framework as additional

constraints that helps the recovery process.

C. Contributions

The first contribution of this paper is the extension of the

compressed sensing to the setting of a dictionary of bases.

This implies considering an energy to optimize both on the

signal to recover and on the basis that sparsifies this signal.

The exploration of both the set of signals and the set of bases

is however not tractable numerically. The second contribution

of this paper is a fast iterative algorithm that progressively

estimates the best basis. This algorithm is derived using a

relaxed variational energy that approximates the true energy

by a series of surrogate functionals easy to optimize using

thresholdings and fast best basis searches.

II. COMPRESSED SENSING

Sparsity and incoherence. In the following, the original

signal f to be recovered is assumed to be finite dimensional

f ∈ R
N with N ≫ n. The compressed sensing acquisition

scenario uses a fixed set of n linear measurements

y = Φf = (〈f, ϕi〉)n
i=1 ∈ R

n with ϕi ∈ R
N .

The price to pay for this compressed sampling strategy is

a non-linear reconstruction procedure to recover f from the

compressed representation y = Φf . This recovery process

makes use of an orthogonal basis Ψ = (ψm)N−1
m=0 of R

N and

is defined as

f⋆ = argmin
g∈RN

||ΨTg||ℓ1 subject to Φg = y, (1)

where ΨTg = (〈g, ψm〉)m and ||x||ℓ1 =
∑

m |xm|.
In order for this recovery to be efficient, the compressed

sensing theory requires two constraints:

Sparsity: the signal f should be sparse in the basis Ψ. It

means that f can be represented using only a small number

s≪ N of atoms from Ψ

||ΨTf ||ℓ0 def.

= # {m \ 〈f, ψm〉 6= 0} 6 s. (2)

Incoherence: the sensing vectors (ϕi)i should be as different

as possible from the sparsity vector (ψm)m. This is ensured

by monitoring the s-restricted isometry constant δs, which

is the smallest 0 < δ < 1 such that

(1− δ)||c||2ℓ2 6 ||(ΦΨ)T c||2ℓ2 6 (1 + δ)||c||2ℓ2 . (3)

for all subsets T such that #T 6 s and for all coefficients

(cm)m∈T , where AT is the sub-matrix extracted from A by

selecting the columns in T .

One should note that although the sparity assumption (2)

constraints the ℓ0 norm of ΨTf , the actual recovery process

(1) optimizes the ℓ1 norm. This is important since the ℓ1 norm

is convex, which leads to a tractable optimization problem with

fast algorithms, see [17].

The following recovery theorem allows to assess the perfect

recovery using the ℓ1 minimization.

Theorem 1. ([1], [2]) If f is s-sparse in Ψ as defined in (2)

and if the sensing matrix Φ satisfies δ2s + δ3s < 1, where δs
is defined in (3), then the solution of (1) satisfies f⋆ = f .

Random sensing matrices. The allowable sparsity s for which

δ2s + δ3s < 1 needs to be large enough for theorem 1 to be

useful. Hopefully, one can exhibit sets of matrices for which

s can be taken of the order of n, up to logarithmic factors.

These sets of matrices include

Gaussian matrices: the entries of Φ are drawn independently

from a gaussian distribution of variance 1/N .

Fourier sub-matrices: Φ is obtained by selecting n rows at

random from the Fourier matrix (exp(2iπ/nkℓ)k,ℓ.

For these matrix ensembles, the following theorem holds.

Theorem 2. ([1], [2], [3], [4], [18]) If the sparsity obeys

s 6 Cn/ log(N)κ,

where C is a constant and with κ = 1 for gaussian and κ = 4
for Fourier matrices, then Φ satisfies δ2s + δ3s < 1 with a

probability that increases toward 1 exponentially fast with N .

The logarithmic factor is actually 1/ log(N/s) for the

gaussian ensemble [4]. Other matrices ensembles have been

shown to exhibit similar behaviors, see the review [19].

Robust Compressed Sensing. To deal with noisy measure-

ments y = Φf+w, where w is a Gaussian noise of variance t2,

one can turn the constrained formulations (1) into a penalized

variational problem

f⋆ = argmin
g∈RN

E(g,B, t) where (4)

E(g,B, t) def.

=
1

2
||Φg − y||2ℓ2 + t||ΨTg||ℓ1 . (5)

The Lagrange multiplier t accounts both for stabilization

against noise and approximate sparsity, which is common in

practical applications.

Compressed sensing theory has been extended to this noisy

setting [20], [4], where it is proved that the recovery error

||f − f⋆|| is of the order of the noise level t.
An other interest of the formulation 4 is that during an

iterative algorithm, the Lagrange multiplier t can be decreased

toward 0 (or to a positive value in the noisy case). Indeed the

solution of (4) approaches the noiseless solution of (1) when

t → 0. We use such Lagrange multiplier formulation in the

fast recovery algorithm detailed in section III-B.

III. BEST BASIS COMPRESSED SENSING

The recovery theorem 1 holds for a fixed orthogonal basis of

R
N . In order to deal with complex natural sounds and images,

a fixed basis is not enough and one needs more basis elements.

This paper thus proposes to extend the recovery process (4)

to a library of orthogonal bases, the union of which contains

a large collection of atoms.
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A. Dictionaries and Lagrangian

Dictionaries of Orthogonal bases. A dictionary is a set DΛ =
{B(λ)}λ∈Λ of orthogonal bases B(λ) = {ψλ

m}m of R
N . The

parameter λ ∈ Λ is an index that needs to use in order to

process some function f using B(λ). Instead of using an a

priori fixed basis such as the wavelet or Fourier basis, one can

freely use any basis from the dictionary.

An alternative to this dictionary of orthogonal basis DΛ

consists in using directly the union of all basis vectors D =
{

ψλ
m \ λ ∈ Λ,m

}

. Such non-orthogonal dictionaries can be

used in conjunction with sparse decomposition solvers such

as matching pursuit [7] or basis pursuit [17]. This method is

however intractable in real applications where D is too large.

In contrast, the dictionaries of orthogonal bases we consider

all come with fast algorithms to compute a basis adapted to

the function to process.

Lagrangian and adapted basis. A best basis B(λ⋆) adapted

to a signal or an image f ∈ R
N should lead to a good approxi-

mation of f with a small number of atoms, as measured by the

ℓ1 norm. Such an adapted basis minimizes the Lagrangian E
λ⋆ = argmin

λ∈Λ
E(f,B(λ), t) (6)

E(f,B(λ), t)
def.

= min
g∈RN

1

2
||f − g||2 + t||ΨλT

g||ℓ1
and where Ψλ = (ψλ

0 , . . . , ψ
λ
N−1) ∈ R

N×N is the orthogonal

transform matrix defined by B(λ). The variable t is a Lagrange

multiplier that weights the quality of approximation in the

chosen basis with the sparsity of the expansion. One can add

a penalty term to E that depends on the complexity of λ in

order to avoid using too complicated bases. We do not consider

such penalty in this article.

The following lemma characterize the best basis together

with the best ℓ1-penalized approximation in this basis.

Lemma 1. The minimizer

(f⋆, λ⋆) = argmin
(g,λ)∈∈RN×Λ

1

2
||f − g||2 + t||ΨλT

g||ℓ1

is given by

{

λ⋆ = argmin
λ∈Λ

E(f,B(λ), t),

f⋆ = St(f,B(λ⋆)),

where the soft thresholding operator is defined as

St(f,B) =
∑

m

st(〈f, ψm〉)ψm (7)

where st(x) =

{

x+ sign(x)t if |x| > t,
0 if |x| 6 t.

Proof: The best basis parameter solves

λ⋆ = argmin
λ∈Λ

min
g∈RN

1

2
||f − g||2 + t||ΨλT

g||ℓ1

= argmin
λ∈Λ

E(f,B(λ), t).

The best ℓ1 approximation f⋆ is found by using the following

standard optimization result, see for instance [21]

argmin
g

1

2
||f − g||2 + t||ΨTg||ℓ1 = St(f,B). (8)

As noted in equation (8), the thresholding St introduced

in (7) solves the best ℓ1 approximation of a function f . The

Lagrangian E(f,B(λ), t) can thus be written as a sum over

the atoms (ψλ
m)m of B(λ)

E(f,B(λ), t) =
∑

m

γ(|〈f, ψλ
m〉|) (9)

where γ(x) =

{

x2/2 if |x| 6 t,
t|x| − t2/2 otherwise.

B. Best Basis Compressed Sensing Reconstruction

Best basis energy. The compressed sensing machinery is

extended to a dictionary of bases DΛ by imposing that the

recovered signal is sparse in at least one basis of DΛ. The

original recovery procedure (4) is replaced by

(f⋆, λ⋆)
def.

= argmin
(g,λ)∈RN×Λ

E(g,B(λ), t), (10)

where the energy E is defined in equation (4).

Surrogate functional. Searching in the whole dictionary DΛ

for the best basis parameter λ⋆ ∈ Λ that minimizes (10) is not

feasible for large dictionaries, which typically contain of the

order of 2N bases. Furthermore, the under-determinancy of Φ
creates coupling in the non-linear set of equations involved in

the minimization of E.

To solve these issues, one can relax the energy minimization

(10) and use an approximate energy that is simpler to mini-

mize. If one has some estimate h of the solution f⋆, the energy

E can be replaced by the following surrogate functional that

depends on h

Eh(g,B(λ), t)
def.

= E(g,B, t) +
µ

2
||g − h||2 − 1

2
||Φg − Φh||2.

where the constant µ > 0 is chosen to ensure ||Φg||2 6 µ||g||2
for all g ∈ R

N .

If the estimate h is fixed, one can replace the optimization

(10) by

(f⋆(h), λ⋆(h))
def.

= argmin
(g,λ)∈RN×Λ

Eh(g,B(λ), t). (11)

The following theorem, which is the main theoretical result of

this paper, ensures that the minimization (11) is indeed easy

to solve.

Theorem 3. The minimization (11) has a global minimum

which is given by

{

λ⋆(h) = argmin
λ∈Λ

E(h̃,B(λ), t),

f⋆(h) = St/µ(h̃,B(λ⋆(h))),
(12)

where h̃
def.

= h + 1
µΦT(y − Φh), where the Lagrangian E is

defined in equation (6) and the soft thresholding operator is

defined in equation (7).

Proof: The definition of µ makes the energy Eh strictly

convex, it thus has a single global minimum. The energy Eh
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is expanded as follow

Eh(g,B(λ), f) =
µ

2
||g||2 + 〈Φg, y〉+ 〈Φg, Φh〉 − µ〈g, h〉

+ t||ΨλT
g||ℓ1 + C

=
µ

2
||g||2 − 〈g, µh+ ΦT(y − Φh)〉

+ t||ΨλT
g||ℓ1 + C

where C is a constant independent of λ and g. Up to a

multiplicative and additive constant, one can thus write as

Eh(g,B(λ), t) ∝ 1

2
||h+

1

µ
ΦT(y − Φh)− g||2 + t||ΨλT

g||ℓ1 .

The result of the theorem follows from lemma 1.

Equation (12) shows that the best basis parameter λ⋆(h)
corresponds to the best basis associated to the modified guess

h̃. It also shows that f⋆(h) is obtained by thresholding h̃ in

that basis. The main interest of this theorem is that the best

parameter λ⋆(h) is found by optimizing a Lagrangian E , which

can be achieved with a fast algorithm, as explained in the

section IV.

C. Best Basis Recovery Algorithm

In order to minimize E(g,B(λ), t) over (g, λ), one can

minimize a set of surrogate functionals Egs
(g,B(λ), t) where

gs is the current estimate of the solution at iteration s. Instead

of using a fixed multiplier t, one decreases this threshold

through iterations, which results in faster convergence.

Listing 1 Best-basis compressed sensing algorithm.

Initialization. Set s = 0, f0 = 0 and t0 = tmax.

Step 1: Updating the estimate. Set

f̃s = fs +
1

µ
ΦT(y − Φ fs).

Step 2: Update best basis. Compute the best basis parameter

λs = argmin
λ∈Λ

E(f̃s,B(λ), ts).

This minimization is carried out with a fast procedure, as

detailed in section IV. Step 3: Denoising the estimate.

Compute

fs+1 = Sts/µ(f̃s,B(λs)),

where Sts
is the threshold operator defined in (7).

Stopping criterion. If s < smax, set ts+1 = ts − (tmax −
tµ)/smax, s← s+1 and go to step 1, otherwise stop iterations.

The steps of the algorithm are detailed in pseudo-code 1.

Similar iterative thresholding algorithms have been proposed

to solve inverse problems such as (4), see for instance [22]

and the references therein. Our procedure extends this kind of

methods to a dictionary of bases and require, at each step, the

estimation of a best basis.

In contrast to the fixed basis setting, the iterations with a

best basis search are difficult to analyze. In particular, there

is no recovery results such as theorem 1for the output of

the algorithm. We thus rely on the numerical experiments of

sections V-B, VI-B and VII-B to access the efficiency of this

recovery process on both synthetic and natural signals and

images.

IV. BEST BASIS EXTRACTION

This section reviews a best basis framework common to

all the dictionaries used in the numerical experiments of this

paper. In order to have a fast algorithm for the best basis

extraction, one has to impose some hierarchical structure

on the set of bases. This can be done by using trees that

parameterize the dictionary.

A. Tree structured dictionaries

This paper focusses on dictionaries DΛ having a multiscale

structure in order to have fast decomposition procedures. In

particular, we suppose that each λ ∈ Λ that parameterizes

a basis B(λ) ∈ DΛ is a binary tree (for mono-dimensional

signals, where d = 1) or a quad-tree (for bi-dimensional

images, where d = 2). The set of nodes is denoted as

N (λ) and each node pj
i ∈ N (λ) is located at some level

0 6 j < J
def.

= log2(N)/d and position 0 6 i < 2dj . A node

pj
i is thus located in the jth row and the ith column of the

tree. Each interior node pj
i ∈ I(λ) ⊂ N (λ) has 2d children

{nj+1
2di

, . . . , nj+1
2d(i+1)−1

}. The leaves nodes pj
i ∈ L(λ) have no

child.

In order to incorporate additional information, each node

pj
i ∈ N (λ) is tagged with a token ℓ(pj

i ) ∈ {0, . . . , κ− 1}∪ ∅.
The special token ∅ indicates that no information is defined

for this node. This token is used in the non-stationary wavelet

packets to select a filter at each scale and in the bandlets

dictionary to describe the local direction of an edge. The value

of κ indicates the number of such tokens (for instance the

number of edges directions in the bandlet framework). Figure

1 shows an example of such a tagged binary tree λ.

p
j

i

p
j+1

2i p
j+1

2i+1

(pj

i ) = ∅

(pj+1

2i ) = ∅

j = 0

j = 1

j = 2

j = 3

Fig. 1. Examples of binary tree λ.

The vectors of a basis B(λ) are grouped in the leaves of

the tree λ so that one can write

B(λ) =
{

ψj
i,s \ ∀ pj

i ∈ L(λ) and 0 6 s < 2dj
}

.

The variable s indexes the atoms of the basis that are clustered

in the node pj
i of the tree. When one does not care about the

location of the basis elements in the tree, the basis is written
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as B(λ) = {ψm}m where the index is m = (j, i, s) with

pj
i ∈ L(λ) and 0 6 s < 2dj .

Examples of dictionaries for sounds and geometrical

images. The following sections V, VI and VII detail three

kinds of dictionaries adapted to various signals and images

structures.

The local cosine dictionary [11], [7] is used to process

highly oscillating signals (d = 1) such as music and speech

audio data. The binary tree λ segments the time axis in order

to match the variations of the local frequencies in the sound.

In this case ℓ(pj
i ) = ∅ for all nodes since there is no need

for additional information beside the spatial segmentation.

The non-stationary wavelet packets dictionary [12] is

used to process signals (d = 1) that require an arbitrary tiling

of the scale axis. The non-stationary cascade of filterings

also allows to adapt the basis functions through the scales.

In this case, ℓ(pj
i ) ∈ {0, . . . , κ − 1} indicates the index of

a wavelet filter that is used to subdivide the frequency axis.

The particular case of wavelet packets [11] is obtained for

κ = 1.

The bandlet dictionary [13], [23] is used to process images

(d = 2) with geometric features such as edges or directional

textures. The quad-tree λ segments the square [0, 1]2 into

sub-squares Sj
i ⊂ [0, 1]2 of size 2−j×2−j . An interior node

pj
i ∈ I(λ) caries no information beside spatial segmentation

and thus ℓ(pj
i ) = ∅ for these nodes. A leaf node pj

i ∈ L(λ)
defines the local bandlet transform and caries a geometrical

information ℓ(pj
i ) ∈ [0, π[∪∅. A token ℓ(pj

i ) ∈ [0, π[
is define over geometrical square in which the bandlet

vector are elongated and follow the direction ℓ(pj
i ). A token

ℓ(pj
i ) = ∅ is defined in isotropic square that corresponds to

regions where the image is uniformly regular.

Other classes of dictionaries include bases composed of atoms

with rapidly varying oscillations such as the modulated bases

of Coifman et al. [24] and the chirplets dictionary of Candès

[25].

B. Dynamic programming for Best-basis Computation

Fast best basis search algorithms exploit the tree structure

of the dictionaries of interest. The corresponding algorithm in

the local cosine dictionary is explained in [11], [7], the search

in the non-stationary wavelet packet dictionary is explained in

[26] and the search in the bandlet dictionary in [13], [23].

All these algorithms correspond to particular instances of

the Classification and Regression Tree (CART) algorithm of

Breidman et al. [27] as explained by Donoho [28].

In order to give the details of this optimization algorithm,

we restrict ourself to dictionaries DΛ where ℓ(pj
i ) = ∅ for

any interior node pj
i ∈ I(λ) and λ ∈ Λ. This does not cover

the case of non-stationary wavelet packets, which requires a

more complex optimization procedure described in [26]. In the

following, the dependency of the Lagrangian E on both f and

t is made implicit and we write E(B)
def.

= E(f,B, t).
Equation (9) shows that for a tree-structured basis B(λ) =

{

ψj
i,s \ pj

i ∈ L(λ)
}

, the Lagrangian is decomposed as a sum

over the Lagrangians associated to each leaf

E(B(λ)) =
∑

pj

i
∈L(λ)

E(B(pj
i , ℓ(p

j
i )))

B(pj
i , ℓ(p

j
i ))

def.

=
{

ψj
i,s \ s = 0, . . . , 2dj − 1

}

Since we consider bases such that ℓ(pj
i ) = ∅ on interior nodes

pj
i ∈ I(λ), it means that each set of vectors B(pj

i , ℓ(p
j
i )) ⊂

B(λ) is parameterized by pj
i ∈ L(λ) and ℓ(pj

i ) ∈ {0, . . . , κ−
1} ∪ ∅.

One does not need to explore all the bases B(λ) for λ ∈ Λ
to compute the best basis B(λ⋆). It is enough to compute the

decomposition of f on the elementary bases B(pj
i , ℓ) for all

possible choices of pj
i and ℓ. The best basis algorithm process

as follow.

Initialization. Set λ as the full tree of depth J =
log2(N)/d. Set j=J.

Best token selection. For each 0 6 i < 2jd and ℓ ∈
{0, . . . , κ − 1} ∪ ∅ compute the Lagrangian E(B(pj

i , ℓ))
associated to the basis vectors corresponding to (pj

i , ℓ). The

best token is defined as

ℓ⋆(pj
i ) = argmin

ℓ=0,...,κ−1
E(B(pj

i , ℓ)).

Split/merge decision. Compute the Lagrangian of the sub-

tree as the sum of the Lagrangians of the children nodes of

pj
i : if j < J ,

Ẽ(B(λj
i ))

def.

=
2d

−1
∑

ε=0

E(f,B(λj+1
2di+ε

), t),

with the convention that Ẽ(B(λj
i )) = +∞ for j = J .

Split: If Ẽ(B(λj
i )) 6 E(B(pj

i , ℓ
⋆(pj

i ))) then the node pj
i is

declared as an interior node pj
i ∈ I(λ) and ℓ(pj

i )
def.

= ∅.
Merge: If Ẽ(B(λj

i )) > E(B(pj
i , ℓ

⋆(pj
i ))) then the node pj

i is

declared as an leaf node pj
i ∈ L(λ) and ℓ(pj

i )
def.

= ℓ⋆(pj
i ). The

2d sub-trees starting below pj
i are removed from λ.

The Lagrangian E(B(λj
i )) is set to

min
(

Ẽ(B(λj
i )), E(B(pj

i , ℓ
⋆(pj

i )))
)

.

Stopping criterion. If j > 0, set j ← j − 1 and repeat the

previous two steps.

This algorithm requires the decomposition of f onto each ele-

mentary basis B(pj
i , ℓ) for all values of (pj

i , ℓ). The complexity

of this best basis search is thus O(κC(N) log2(N)) where

C(N) is the cost of transforming a signal of size N . One has

C(N) = N for the wavelet packet and bandlet dictionaries

and C(N) = N log2(N) for the cosine packet dictionary.

C. Settings for the Numerical Results

The following sections detail several dictionaries of orthog-

onal bases. The performance of these dictionaries is illustrated

for compressed sensing recovery using the same numerical

experiments. The recovery success is measured using

PSNR(f, f⋆) = −20 log10(||f − f⋆||),
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where the signals are assumed to take values in [0, 1]. This

recovery error is measured for various values of the sensing

rate n/N ∈ [0, 1]. Three kinds of recoveries are compared:

Recovery using a fixed basis (for instance fixed local DCT

or fixed orthogonal basis) using the original optimization (1).

Recovery using the oracle best-basis B(λ⋆(f)) estimated

from the original signal f⋆. This is an upper-bound for the

performance of our method since in this basis is not available

in practice.

Recovery using the algorithm of section III-C, that estimates

iteratively the best basis.

The numerical experiments are done in the noiseless setting, so

the final threshold is set to tmin = 0 in the iterative algorithm.

V. BEST LOCAL COSINE BASIS COMPRESSED SENSING

A. Adapted Local Cosine Transform

A local cosine basis B(λ) is parameterized with a binary tree

λ that segments the time axis in dyadic intervals, see [11], [7].

Each leaf node pj
i ∈ L(λ) corresponds to a selected interval

[xj
i , x

j
i+1], where xj

i
def.

= 2−jNi− 1/2. For each of these leave

node, the local cosine basis vectors are defined as

∀ pj
i ∈ L(λ), ∀ k, ψj

i,s[k] =

b
(

2j(k − xj
i )

)

√

2

2−jN
cos

[

π
(

s+
1

2

)k − xj
i

2−jN

]

,

where b is a smooth windowing function that satisfies some

compatibility conditions [7].

The decomposition of a signal f on the vectors of some

basis B(λ) is computed in O(N log(N)) using several fast

Fourier transforms. A best basis B(λ⋆) that minimizes (6) can

be extracted by a tree pruning procedure in O(N log(N)2)
time, see [11], [7]. Figure 2 shows some examples of basis

vectors.

j = 0

j = 1

j = 2

i = 0

i = 0 1

0 1
2 3

Fig. 2. A dyadic tree λ defining a spatial segmentation (left) ; some local

cosine basis functions ψj

i,s
of the basis B(λ) (right).

B. Numerical Results

A synthetic sparse signal f = (Ψλ)−1h is generated using a

random local cosine basis B(λ) and a random signal of spikes

h with ||h||ℓ0 = # {k \ h(k) 6= 0} = 30, see figure 3, (a). The

signal recovered by the non-adaptative algorithm of section

III-C in an uniform cosine basis B(λ0) is significantly different

from the original, figure 3, (b). This is due to the fact that f is

less sparse in B(λ0), since ||Ψλ0f ||ℓ0 = 512 and ||Ψλ0f ||ℓ1 ≈
2.8||Ψλf ||ℓ1 . During the iterations of the algorithm presented

in subsection III-B, the estimated best basis B(λs) evolves in

order to match the best basis B(λ), see figure 3, (c1–c3). The

recovered signal (c3) is nearly identical to f .

On figure 4 one can see a sound of a tiger howling, together

with the signals recovered using a fixed fully subdivided

local DCT basis and the best basis recovery algorithm of

section III-B. Although the final adapted basis is not the same

as the best basis of the original signal, it still provides an

improvement of 2dB with respect to a fixed spatial subdivision.

Figure 5 shows for various rates of sensing the recovery error,

confirming that the iterative algorithm does not perform as

good as the oracle best best basis computed from f .

(a)

(c1)

(c2)

(c3)

(b)

Fig. 3. (a) synthetic sound signal with 30 random cosine atoms N = 4096 ;

(b) recovery using a fixed cosine basis ; (c1) first iteration of the best basis

recovery algorithm, n = N/3 ; (c2) iteration s = 5 ; (c3) iteration s = 20.

(a)

(b)

(c)

Fig. 4. (a) sound signal of a tiger howling, together with the best spatial

segmentation, N = 32768 ; (b) recovery using fixed local cosine basis,

n = N/3 (PSNR=19.24dB) ; (c) recovery using best cosine basis, n = N/3
(PSNR=21.32dB)

VI. BEST NON-STATIONARY WAVELET PACKET

COMPRESSED SENSING

A. Adapted Non-stationary Wavelet Packet Transform

The non stationary wavelet transform and its extension

to wavelet packets was introduced by Cohen et al. [12].

We give the definition of a non-stationary wavelet transform

which corresponds to the decomposition in an orthogonal

basis parameterized by a tagged binary tree λ. The best basis

algorithm is detailed in [26].

Quadrature mirror filters. The decomposition in a non-

stationary (NS) wavelet packet basis is defined though a
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22

18

14
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0.2 0.4 0.5 0.60.3
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Oracle local-DCT

Fixed-DCT Local-DCT

Fig. 5. Recovery results for the signal of figure 4 for various rate of sensing

n/N .

cascade of filterings. In contrast to a traditional wavelet packet

basis, these filterings might vary through the scales. A finite

set H = {h0, . . . , hκ−1} of low pass filters is used together

with the corresponding quadrature mirror filters

∀ ℓ ∈ {0, . . . , κ− 1}, gℓ[k] = (−1)khℓ[1− k].
In this article, we restrict ourselves to orthogonal bases and

each filter hℓ thus satisfies

|ĥℓ(ω)|2 + |ĥℓ(ω + π)|2 = 2 and hℓ(0) =
√

2. (13)

where the discrete Fourier transform of a vector f ∈ R
n is

defined as

∀ω ∈ R/(2πZ), f̂(ω)
def.

=
∑

k

f [k] exp(−ikπω).

Discrete algorithm. The decomposition of a discrete signal

f ∈ R
N in a NS wavelet packet basis B(λ) is defined through

an iterative process that traverse the tree λ starting from the

root p0
0 of λ until reaching the set of leaves L(λ). This process

is as follow.

Initialization. Set f0
0 = f on the root node.

Filtering. For each scale j = 1, . . . , J −1, for each interior

node pj
i ∈ I(λ), the signals on the children nodes are

defined as

f j+1
2i = (f j

i ∗ hℓ) ↓ 2 and f j+1
2i+1 = (f j

i ∗ gℓ) ↓ 2 (14)

where ℓ
def.

= ℓ(pj
i ) and ∗ denote the convolution modulo N/2j .

The down sampling operator g ↓ 2 ∈ R
N/2j+1

of a vector

g ∈ R
N/2j

is defined as (g ↓ 2)[k]
def.

= g(2k).

Output. The transformed coefficients are gathered from the

the leaves

Ψλ(f)
def.

=
{

f j
i \ pj

i ∈ L(λ)
}

∈ R
N .

Thanks to the quadrature equation (13), the NS wavelet packet

transform f 7→ Ψλ(f) can be inverted by traversing the tree

from the leaf to the node. This leads to the iterations

Initialization. Let f j
i be the entries of Ψλ(f) for the leaves

pj
i ∈ L(λ).

Filtering. For each scale j = J −1, . . . , 1, for each interior

node pj
i ∈ I(λ), the signal is recovered using

f j
i = (f j+1

2i ↑ 2) ∗ h̃ℓ + (f j+1
2i+1 ↑ 2) ∗ g̃ℓ

where ℓ
def.

= ℓ(pj
i ) and where h̃ℓ[k] = hℓ[−k]. The up-

sampling operator g ↑ 2 ∈ R
N/2j

of a vector g ∈ R
N/2j+1

is defined as (g ↑ 2)[k] = g[k/2] for k = 0 mod 2 and

(g ↑ 2)[k] = 0 otherwise.

Output. The signal is recovered as f = f0
0 .

Both the forward transform f 7→ Ψλ(f) and the reverse

transform are computed in O(N) operations for a signal

f ∈ R
N .

NS wavelet packet basis. Due to the quadrature property

(13), the NS wavelet packet transform Ψλ is an orthogonal

transforms. The transform Ψλ is thus equivalent to the de-

composition on set of orthogonal vectors

∀ pj
i ∈ L(λ), ∀ 0 6 s < n/2j , f j

i [s] = 〈f, ψj
i,s〉.

These vectors defines an orthogonal NS wavelet packet basis

B(λ) of R
N

B(λ)
def.

=
{

ψj
i,s \ pj

i ∈ L(λ) and 0 6 s < n/2j
}

.

In order to compute the basis B(λ⋆) defined by (6) adapted to

some function f , a fast best-basis search is introduced by Peyré

and Ouarti [26]. The complexity algorithm is O(N log2(N))
for κ = 1 (which corresponds to the traditional wavelet

packets) and O(N log2(2κ)) for κ > 1.

B. Numerical Results

In our tests, the non-stationary wavelet packet dictionary is

built using the family HD = {hi}κ−1
i=0 where κ = 5 and where

hℓ is the Daubechies orthogonal filter with ℓ + 1 vanishing

moments. Figure 6 (c,d,e) shows a comparison of the recov-

ery using the Daubechies wavelets corresponding to h3, the

wavelet packets dictionary which corresponds to H = {h3}
and the non-stationary wavelet packets dictionary which cor-

responds to H = HD. The signal f(x) = f0(x)+ε sin(ωx) is

the superposition of a piecewise-regular signal and a sinusoid

with high frequency ω. Figure 6 (a) shows the index ℓ(pj
i ) of

the best NS wavelet packets basis, which is able to capture

both the high frequency content of sin(ωx) while minimizing

the number of large coefficients created by the singularities of

f0.

Figure 7 shows another example of recovery using wavelets,

the wavelet packets and the NS wavelet packets dictionaries.

The signal f(x) = cos(ω1x
2) + cos(ω2x) is the superposition

of a quadratic chirp and a high frequency sinusoid.

VII. BEST BANDLET BASIS COMPRESSED SENSING

A. Adapted Bandlet Transform

The bandelet bases dictionary was introduced by Le Pennec

and Mallat [13], [29] to perform adaptive approximation of

images with geometric singularities, such as the cartoon image

in figure 9, (a). This transform has been refined by Mallat and

Peyré [23] in order to have a dictionary of regular and orthogo-

nal basis functions. We present a simple implementation of the

bandelet transform inspired from [30]. This implementation

results in a decomposition similar to the wedgelets of Donoho

[31] but within the framework of a dictionary of orthogonal

bases.
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(c)

(d)

(e)

(f)

(a) (b) = 2
2

4

5 5

4

3

4 4

3 3

Fig. 6. (c) original signal, N = 4096 ; (d) recovery using orthogonal

wavelets, n = N/3 (PSNR=23.77dB) ; (e) recovery using best wavelet

packets basis, n = N/3 (PSNR=26.50dB), the corresponding dictionary tree

is shown in (a) ; (e) recovery using best non-stationary wavelet packets basis,

n = N/3 (PSNR=29.42dB), the corresponding dictionary tree is shown in

(b).

(a)

(b)

(c)

(d)

Fig. 7. (a) original signal, N = 4096 ; (b) recovery using orthogonal

wavelets, n = N/3 (PSNR=17.59dB) ; (c) recovery using best wavelet

packets basis, n = N/3 (PSNR=20.46dB) ; (d) recovery using best non-

stationary wavelet packets basis, n = N/3 (PSNR=21.66dB).

Quad-tree dyadic subdivision. A bandelet basis B(λ) is

parameterized by a quadtree λ that defines a segmentation

of the image plane [0, 1]2 =
⋃

{

Sj
i \ pj

i ∈ L(λ)
}

where

Sj
i = [i12

−j , (i1 + 1)2−j ] × [i22
−j , (i2 + 1)2−j ] for any

index i = i1 + 2ji2 with 0 6 i1, i2 < 2j . Each leave is

also tagged with a token ℓ(pj
i ) ∈ {0, . . . , κ− 1} ∪ ∅. A token

ℓ(pj
i ) 6= ∅ defines a direction θ(pj

i ) = πℓ(pj
i )/κ ∈ [0, π) that

parameterizes locally the direction of the bandlet basis vectors

in Sj
i . Figure 9, (a) shows an example of such a tagged quad-

tree. The bandelet transform corresponding to this basis applies

independently over each square Sj
i of the image either

if ℓ(pj
i ) = ∅: a 2D isotropic wavelet transform,

if ℓ(pj
i ) 6= ∅: a 1D wavelet transform along the direction

defined by the angle ℓ(pj
i ).

Figure 8 (a,b) shows an example of quad-tree λ together with

the corresponding subdivision of [0, 1]2.

Fast bandlet transform. We now detail the forward transform

algorithm, that applies a local orthogonal transform on each

square of the segmentation defined by λ.

Segmentation of the pixels. For each leaf pj
i ∈ L(λ), the

Edge square

(a)
(b)

(c)

(pj

i ) = ∅

Regular square

(pj

i ) = ∅

S
j

i

S
j

i

S1

1

S1

1

S1

2

S1

2

S2

0

S2

0

S2

1

S2

1

S2

3

S2

3

S2

2

S2

2
S12

1 S12

1

S14

1

S14

1

S15

1

S15

1

Fig. 8. (a) example of dyadic subdivision of [0, 1]2 in squares Sj

i
, (b)

corresponding quad-tree λ, (c) example of subdivision λ⋆ adapted to a

geometrically regular function f . The basis B(λ⋆) minimizes E(f,B(λ), t).

corresponding square in the segmentation is denoted as Sj
i .

The pixel values of f located in Sj
i are stored in f j

i

∀ 0 6 k1, k2 < 2j , f j
i [k1, k2] = f [k1 + i1, k2 + i2].

for any index i = i1 + 2ji2 with 0 6 i1, i2 < 2j

Squares without geometry. If ℓ(pj
i ) = ∅, a 2D isotropic

wavelet transform is applied to f j
i ∈ R

N/22j

in order to get

the bandlet transform coefficients Ψλ(f)j
i ∈ R

N/22j

over

Sj
i .

Square with geometry. If ℓ(pj
i ) 6= ∅, the points k =

(k1, k2) are projected along the direction θ(pj
i ) = πℓ(pj

i )/κ,

∀ 0 6 k1, k2 < N/2j ,

π(k)
def.

= sin(θ(pj
i ))k1 − cos(θ(pj

i ))k2 ∈ R.

These projected values are sorted

π(ϕ(0)) 6 π(ϕ(1)) 6 . . . 6 π(ϕ(N/22j − 1)).

The one-to-one mapping

ϕ : {0, . . . , N/22j − 1} → {0, . . . , N/2j − 1}2

orders the discrete 2D points (k1, k2) along a 1D discrete

axis. This allows to define a 1D vector f̃ j
i obtained by

reordering the values of f j
i as

∀ k ∈ {0, . . . , N/22j − 1}, f̃ j
i [k]

def.

= f j
i [ϕ(k)].

Figure 9 (c) shows an example of such a 1D reordering

when the direction ℓ(pj
i ) follow closely an edge. In this

case the resulting vector f̃ j
i is regular. The bandlet transform

coefficients Ψλ(f)j
i ∈ R

N/22j

over Sj
i are the 1D wavelet

transform coefficients of f̃ j
i in a 1D Haar basis

Ψλ(f)j
i [s] = 〈f̃ j

i , βs〉

where {βs}N/22j
−1

s=0 is the 1D orthogonal Haar basis.

Output. The transformed coefficients are

Ψλ(f)
def.

=
{

Ψλ(f)j
i [s] \ pj

i ∈ L(λ), 0 6 s < 22j
}

.
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Both the 2D wavelet transform applied to f i
j if ℓ(pj

i ) = ∅
and the 1D wavelet transform applied to f̃ j

i if ℓ(pj
i ) 6= ∅ are

orthogonal transforms. The resulting bandlet transform f 7→
Ψλf is thus an orthogonal transform and the coefficients are

the decomposition of f on a set of orthogonal bandlet basis

vectors that compose the bandlet basis B(λ)

∀ pj
i ∈ L(λ), ∀ s < N/22j , Ψλ(f)j

i [s] = 〈f, ψj
i,s〉.

(b)

(a)
(c)

(d)

(e)

(f)S

θ

f

(pj

i )

j

i

f

Fig. 9. (a) a geometric image together with some adapted dyadic

segmentation Q ; (b) a square Sj

i
together with its adapted direction θ(pj

i
) ;

(c) the 1D signal fj

i
obtained by mapping the pixels values f(x(i)) on a 1D

axis ; (d) the 1D Haar coefficients of fj

i
; (e) the 1D approximation obtained

by reconstruction from the 20 largest Haar coefficients ; (f) the corresponding

square approximated in bandelet.

Fast inverse bandlet transform. The backward reconstruction

algorithm is obtained by reversing the steps of the bandlet

decomposition process.

Retrieve the segmented coefficients. Each dyadic square

Sj
i for pj

i ∈ L(λ) in the segmentation is treated indepen-

dently. A set of bandlet coefficients Ψλ(f)j
i is associated to

each of those leaves.

Squares without geometry. If ℓ(pj
i ) = ∅, a 2D inverse

isotropic wavelet transform is applied to Ψλ(f)j
i in order to

recover f j
i .

Squares with geometry. If ℓ(pj
i ) = ∅, a 1D inverse Haar

wavelet transform is applied to Ψλ(f)j
i [s] in order to recover

the 1D vector f̃ j
i ∈ R

N/22j

∀ k < N/22j , f̃ j
i [k] =

N22j
−1

∑

s=0

Ψλ(f)j
i [s]βs[k].

The original coefficients are obtained by reordering this 1D

vector

∀ k1, k2 < N/2j , f j
i [k1, k2] = f̃ j

i [ϕ−1(k1, k2)].

where ϕ−1 is the reverse mapping of ϕ.

Keeping only a few bandelet coefficients and setting the others

to zero performs an approximation of the original image that

follows the local direction ℓ(pj
i ), see figure 9 (f).

In order to find the best basis B(λ⋆) adapted to some

function f as defined in (6), a fast algorithm is introduced

in [23]. This algorithm is a particular instance of the dynamic

programming algorithm exposed in section IV-B. This algo-

rithm tests, for all the dyadic squares Sj
i , a finite number κ

of evenly sampled directions θ(pj
i ) ∈ [0, π). This fast best

basis search defines the quad-tree segmentation λ and the set

of directions {ℓ(pj
i )}pj

i
∈L(λ) adapted to a given image f that

minimizes (6). This process segments the image f into squares

Sj
i over which f is smooth, thus setting ℓ(pj

i ) = ∅ and squares

containing an edge, where ℓ(pj
i ) closely matches the direction

of this singularity. Figure 8 (c) shows an example of such a

segmentation adapted to a geometric image.

44
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Fig. 10. Recovery results for various rate of sensing n/N .

B. Numerical Results

The geometric image f depicted in figure 11 (a), (a) is used

to compare the performance of the original compressed sens-

ing algorithm in a wavelet basis to the adaptative algorithm

in a best bandlet basis. We use a translation invariant wavelet

tight frame, which is more efficient for inverse problems than

orthogonal wavelets. Since the wavelet basis is not adapted to

the geometric singularities of such an image, reconstruction (b)

has ringing artifacts. The adapted reconstruction (c) exhibits

fewer such artifacts since the bandlet basis functions are elon-

gated and follow the geometry. The segmentation is depicted

after the last iteration, together with the chosen directions

θ(pj
i ) that closely match the direction of the edges of f .

Figure 11, (a’,b’,c’) shows the recovery results for a natural

image containing complex geometric structures such as edges,

junctions and sharp line features. The best bandlet recovery is

able to resolve these features efficiently.

Figure 10 shows the recovery error for various sensing rate.

For low rate (n/N close to 0), the basis estimated by the

iterative algorithm is not as good as the oracle basis estimated

from f . For higher rates, the algorithm is able to find the
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(a) (b) (c)

(a’) (b’) (c’)

Fig. 11. (a,a’) original image ; (b) compressed sensing reconstruction using the translation invariant wavelet frame, n = N/6 (PSNR=37.1dB) ; (c)

reconstruction using iteration in a best bandlet basis (PSNR=39.3dB). (b’) wavelet frame, PSNR=22.1dB, (c’) bandlet basis, PSNR=23.9dB.

underlying geometry efficiently and the algorithm performs as

good as the oracle basis.

VIII. CONCLUSION

This paper has developed an adaptive reconstruction scheme

for compressed sensing. This best basis framework allows

to recover signals with complex structures from compressed

measurements. This approach is successful for natural sounds

and geometric images that contain a broad range of sharp

transitions.
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[26] G. Peyré and N. Ouarti, “Best basis search in a non-stationary wavelet
packets dictionary,” Preprint, 2007.

[27] L. Breiman, J. H. Friedman, R. A. Olshen, , and C. J. Stone, Classifi-

cation and Regression Trees. Wadsworth, Belmont, CA, 1984.
[28] D. L. Donoho, “Cart and best-ortho-basis: A connection,” Ann. Stat.,

vol. 25, no. 5, pp. 1870–1911, 1997.
[29] E. Le Pennec and S. Mallat, “Sparse geometric image representations

with bandelets,” IEEE Transactions on Image Processing, vol. 14, no. 4,
pp. 423–438, 2005.
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