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We analyse in this paper the Lyapunov trajectory tracking of the Schrödinger equation for a second order coupling operator. We present a theoretical convergence result; for situations not covered by the theoretical result we propose a numerical approach that is tested and works well in practice.

Introduction

Controllability of a finite dimensional quantum system, i d dt Ψ(t) = (H 0 + u(t)H 1 + u 2 (t)H 2 )Ψ(t), where H 0 , H 1 and H 2 are n × n Hermitian matrices with complex coefficients and u(t) ∈ R is the control, can be studied via the general accessibility criteria proposed in [START_REF] Brockett | Lie theory and control systems defined on spheres[END_REF][START_REF] Sussmann | Controllability of nonlinear systems[END_REF] and based on Lie brackets; more specific results can be found in [START_REF] Turinici | Beyond bilinear controllability: applications to quantum control[END_REF]. However, such characterization does not provide in general a simple and efficient way for open-loop trajectory generation. Optimal control techniques (see, e.g., [START_REF] Maday | New formulations of monotonically convergent quantum control algorithms[END_REF] and [START_REF] Shi | Optimal control of selective vibrational excitation in harmonic linear chain molecules[END_REF] and the references herein) provide a first set of methods. Another set consists in using feedback to generate trajectories and open-loop steering control. The original references on such feedback strategy to find open-loop controls are [START_REF] Chen | Competitive tracking of molecular objectives described by quantum mechanics[END_REF][START_REF] Gross | Inverse quantum-mechanical control: A means for design and a test of intuition[END_REF][START_REF] Kosloff | Wavepacket dancing: Achieving chemical selectivity by shaping light pulses[END_REF]. More recent results can be found in [START_REF] Rabitz | Quantum control design via adaptive tracking[END_REF] for decoupling techniques, in [START_REF] Ferrante | Control of quantum systems using model-based feedback strategies[END_REF][START_REF] Grivopoulos | Lyapunov-based control of quantum systems[END_REF][START_REF] Sugawara | General formulation of locally designed coherent control theory for quantum systems[END_REF][START_REF] Vaidya | Control of heisenberg spin systems; lie algebraic decompositions and action-angle variables[END_REF][START_REF] Vettori | On the convergence of a feedback control strategy for multilevel quantum systems[END_REF] for Lyapunovbased techniques and in [START_REF] Altafini | Controllability of quantum mechanical systems by root space decomposition of su(n)[END_REF][START_REF] Constantinescu | Parametrizing quantum states and channels[END_REF][START_REF] Ramakrishna | Control of a coupled two-spin system without hard pulses[END_REF] for factorizations techniques of the unitary group.

In order to study systems with Hamiltonian H = H 0 + uH 1 + u 2 H 2 we adapt the corresponding analysis initially proposed for bilinear quantum systems i.e H = H 0 + uH 1 (see [START_REF] Jurdjevic | Controllability and stability[END_REF][START_REF] Mirrahimi | Lyapunov control of bilinear Schrödinger equations[END_REF]). We use here a fictitious control ω (see [START_REF] Mirrahimi | Lyapunov control of bilinear Schrödinger equations[END_REF]) to take into account the physically meaningless global phase and to simplify convergence analysis. Our method is valid to track any eigen-state trajectory of a Schrödinger equation for a second order coupling operator.

The balance of the paper is as follows: in Section 2 we introduce the main notations and the Lyapunov tracking feedback for a particular case. Section 3 contains a convergence analysis followed in Section 4 by numerical results and the presentation of a new type of feedback for all types of second order coupling operators.

Tracking feedback design

Dynamics and global phase

We consider a n-level quantum system ( = 1) evolving under the equation:

i d dt Ψ(t) = (H 0 + u(t)H 1 + u 2 (t)H 2 )Ψ(t), (1) 
where H 0 , H 1 and H 2 are n × n Hermitian matrices with complex coefficients and u(t) ∈ R is the control. The matrix H 0 is the internal Hamiltonian, H 1 and H 2 are operators that couple the system with the laser field u. The wave function Ψ = (Ψ i ) n i=1 is a vector in C n , verifying n i=1 |Ψ i | 2 = 1 thus it lives on the unit sphere of C n , Ψ ∈ S 2n-1 . Physically, Ψ and e ıθ(t) Ψ describe the same physical state for any global phase t → θ(t) ∈ R, i.e Ψ 1 and Ψ 2 are identified when exists θ ∈ R such that Ψ 1 = exp(ıθ)Ψ 2 . To take into account such non trivial geometry we add a second control ω corresponding to θ (see also [START_REF] Mirrahimi | Lyapunov control of bilinear Schrödinger equations[END_REF]). Thus we consider the following control system

i d dt Ψ(t) = (H 0 + u(t)H 1 + u 2 (t)H 2 + ω(t))Ψ(t), (2) 
where ω ∈ R is a new control playing the role of a gauge degree of freedom. We can choose it arbitrarily without changing the physical quantities attached to Ψ. With such additional fictitious control ω, we will assume in the sequel that the state space is S 2n-1 and the dynamics given by (2) admits two independent controls u and ω.

Lyapunov control design

Take a reference trajectory t → (Ψ r (t), u r (t), ω r (t)), i.e., a smooth solution of (2):

ı d dt Ψ r = (H 0 + u r H 1 + u 2 r H 2 + ω r )Ψ r .
Take the following time varying function V (Ψ, t):

V (Ψ, t) = Ψ -Ψ r |Ψ -Ψ r (3) 
where .|. denotes the Hermitian product. The fonction V is positive for all t > 0 and all Ψ ∈ S 2n-1 and vanishes when Ψ = Ψ r . Simple computations show that V is a control Lyapunov function when Ψ satisfies (2). The derivative of V is given by:

dV dt = 2(u -u r )Im( H 1 Ψ(t)|Ψ r ) + 2(u 2 -u 2 r )Im( H 2 Ψ(t)|Ψ r ) + (4) 2(ω -ω r )Im( Ψ(t) | Ψ r )
where Im denotes the imaginary part.

For simplicity reasons we note:

I 1 = Im( H 1 Ψ(t)|Ψ r ) and I 2 = Im( H 2 Ψ(t)|Ψ r ).
When for instance we take:

u = u r (t) -k(I 1 + 2u r I 2 )/(1 + kI 2 ) ω = ω r (t) -cIm( Ψ(t) | Ψ r ), (5) 
with k and c strictly positive parameters, we ensure dV /dt ≤ 0, i.e. V is decreasing.

Let us focus on the important case when the reference trajectory corresponds to an equilibrium: u r = 0, ω r = -λ and Ψ r = φ where φ is an eigen-vector of H 0 associated to the eigenvalue λ ∈ R (H 0 φ = λφ, φ = 1). We note: 5) becomes a static-state feedback:

I 1 = Im( H 1 Ψ(t)|φ) and I 2 = Im( H 2 Ψ(t)|φ). Then (
u = -kI 1 /(1 + kI 2 ) ω = -λ -cIm( Ψ(t) | φ ). ( 6 
)

Convergence analysis

The goal of this section is to prove a convergence result for the feedback in equation ( 6) . We denote by λ i , with i = 1, ..., N the eigenvalues of the matrix H 0 . We say that H 0 has non degenerate spectrum if for all (i, j), with i = j, i, j = 1, ..., N , λ i = λ j .

Theorem 3.1 Consider (2) with Ψ ∈ S 2n-1 and an eigenstate φ ∈ S 2n-1 of H 0 associated to the eigenvalue λ. Take the static feedback (6) with c, k > 0. Then the two following propositions are true:

1. If the spectrum of H 0 is not degenerate, the Ω-limit set of the closed loop system is the intersection of S 2n-1 with the vector space E = Rφ α CΦ α where Φ α is any eigenvector of H 0 not co-linear to φ such that

Φ α |H 1 |φ = 0.
2. If H 0 is not degenerate and E = Rφ, the Ω-limit set reduces to {φ, -φ}.

Proof of Theorem 3.1

The proof follows the same ideas as in [START_REF] Mirrahimi | Lyapunov control of bilinear Schrödinger equations[END_REF] and needs only a small adaptation to take into account this second order control situation. We give however for completeness the full proof below.

1. Up to a shift on ω and H 0 , we can assume that λ = 0. LaSalle's principle (see, e.g., theorem 3.4, page 115 of [START_REF] Khalil | Nonlinear Systems[END_REF]) says that the trajectories of the closed-loop system converge to the largest invariant set contained in dV /dt = 0 where V is defined by [START_REF] Chen | Competitive tracking of molecular objectives described by quantum mechanics[END_REF]. The equation dV /dt = 0 means that Similarly

I 1 = Im( H 1 Ψ|φ ) = Im( Ψ|φ ) =
d dt Re( [H 0 , H 1 ]Ψ|φ ) = 0 implies: Im( [H 0 , [H 0 , H 1 ]]Ψ|φ ) = 0.
And so on. Finally, the largest invariant set is characterized by Im( Ψ|φ ) = 0 with the following conditions:

Im( H 1 Ψ|φ ) = 0 Re( [H 0 , H 1 ]Ψ|φ ) = 0 Im( [H 0 , [H 0 , H 1 ]]Ψ|φ ) = 0, ...
that corresponds to the "ad-conditions" obtained in [START_REF] Jurdjevic | Controllability and stability[END_REF]. At each step, we have the Lie bracket of the Hamiltonian H 0 with the Hamiltonian of the last step.

We can always assume that H 0 is diagonal. Then we can easily compute the commutator [H 0 , B], where

B = (B ij ) is a n dimensional matrix. With H 0 = diag(λ 1 , ..., λ n ), we have [H 0 , B] i,j = (λ i -λ j )B ij .
Let us take B = H 1 in order to simplify the notations. We obtain the following system:

[H 0 , B] = ((λ i -λ j )B ij ), [H 0 , [H 0 , B]] = ((λ i -λ j ) 2 B ij ), . . . ( 7 
) [H 0 , ..., [H 0 k times , B]]...] = ((λ i -λ j ) k B ij ),
After simple computations the system (7) reads:

Im(Σ j B 1j Ψ j ) = 0, Re(Σ j (λ 1 -λ j )B 1j Ψ j ) = 0, . . . Im(Σ j (λ 1 -λ j ) 2k B 1j Ψ j ) = 0, Re(Σ j (λ 1 -λ j ) 2k+1 B 1j Ψ j ) = 0, . . . (8) 
Using the Vandermonde structure and the property of non-degenerate spectrum of H 0 , we obtain that the wave function Ψ is in the Ω-limit set if and only if

B 1j Ψ j = 0, ∀j ∈ {2, ..., n},
and Im(Ψ 1 ) = 0.

2. Note first that in any case the Ω-limit set contains φ and -φ, because both are stationary points.

If H 0 has a non-degenerate spectrum and E = Rφ then proposition (1) implies that the Ω-limit set contains the states λφ with λ ∈ R and λφ L 2 = 1 which reduces to {±φ}.

Remark 3.1

The theorem above shows that tracking e.g to φ 1 works when all states φ 2 , ....φ n are coupled to φ 1 by H 1 . However we do not know what happens when some of the coupling are realized by H 2 instead (the theorem does not apply but the system is still controllable cf. [START_REF] Turinici | Beyond bilinear controllability: applications to quantum control[END_REF]). We analyze such a case in section 4.

Examples and Simulations

Numerical simulations have been performed for a threedimensional test system with H 0 , H 1 and H 2 given by:

H 0 =   0 0 0 0 1 0 0 0 3 2   , H 1 =   0 1 0 1 0 0 0 0 0   , (9) 
H 2 =   0 0 1 0 0 0 1 0 0   .
In this case the wave function is Ψ = (Ψ 1 , Ψ 2 , Ψ 3 ) T . We use the previous Lyapunov control in order to reach the first eigen-state φ = (1, 0, 0) of energy λ = 0, at the final time T . The equation ( 2) is solved with the numerical scheme: Population |Ψ 1 | 2 (solid line) and control u (dashed line); initial condition

ψ((m + 1)∆t) = exp(-i∆t(H 0 + u(m∆t)H 1 +u 2 (m∆t)H 2 ))ψ(m∆t), (10) 
Ψ(t = 0) = (0, 1/ √ 2, 1/ √ 2)
; system defined by ( 9) with feedback (6). The feedback (6) fails to reach the target (quality is only 30%). 9) with feedback [START_REF] Grivopoulos | Lyapunov-based control of quantum systems[END_REF]. We note that I 1 converges to zero. where m is the index of the time step and ∆t = T /m is the discretization time step. The control u is defined by [START_REF] Grivopoulos | Lyapunov-based control of quantum systems[END_REF] with k = c = 1/2 .

Simulations of Figure 1 start with (0, 1/ √ 2, 1/ √ 2) as initial condition for Ψ. We clearly see that such a feedback reduces the distance to the first state but does not ensure its convergence to φ = (1, 0, 0). This is not due to a lack of controllability. This system is controllable since the Lie algebra spanned by (H 0 )/i, H 1 /i and H 2 /i coincides with u(3), (see [START_REF] Mirrahimi | Lyapunov control of bilinear Schrödinger equations[END_REF]). As explained in Remark 3.1, such convergence deficiency comes from the fact that operator H 1 couples φ only with the state Ψ 2 . We plot the evolution of |Ψ 1 | 2 , I 1 and I 2 , corresponding to system defined by [START_REF] Khalil | Nonlinear Systems[END_REF] with feedback [START_REF] Grivopoulos | Lyapunov-based control of quantum systems[END_REF], in Figure1, Figure 2 and Figure 3.

In order to overcome the lack of convergence for cases similar to that presented above, we consider the feedback:

u(I 1 , I 2 ) =    kI 2 , if |I 1 | < δ and I 2 < -δ 0 , if |I 1 | < δ and I 2 > δ -kI 1 /(1 + kI 2 )
, in any other case.

ω = -λ -cIm( Ψ(t) | φ ). (11) 
We plot in Figure 7 the function u(I 1 , I 2 ) for δ = 0.5. Note that with c > 0, k > 0 and δ > 0 we ensure: dV /dt ≤ 0, i.e V is decreasing. Population |Ψ 1 | 2 (solid line) and control u (dashed line); initial condition: Ψ(t = 0) = (0, 1/ √ 2, 1/ √ 2); system defined by ( 9) with feedback [START_REF] Maday | New formulations of monotonically convergent quantum control algorithms[END_REF].

Simulations of Figure 4 describe the evolution of population

|Ψ 1 | 2 for the initial state Ψ(t = 0) = (0, 1/ √ 2, 1/ √ 2)
. We take k = c = 0.8 and δ = e -t/b , with b = 1000. We can observe that the trajectories converge to φ. It appears that the new type of feedback is quite efficient for system [START_REF] Khalil | Nonlinear Systems[END_REF]. We present the evolution of I 1 and I 2 corresponding to system defined by [START_REF] Khalil | Nonlinear Systems[END_REF] with feedback [START_REF] Maday | New formulations of monotonically convergent quantum control algorithms[END_REF], in Figure 5 and Figure 6. 

Conclusions

We analyze in this paper the feedback control of a Schrödinger equation with Hamiltonian H = H 0 + uH 1 + u 2 H 2 . When the linearized system is controllable we prove a theoretical result concerning the convergence of a standard Lyapunov algorithm [START_REF] Mirrahimi | Lyapunov control of bilinear Schrödinger equations[END_REF]. We show numerically that this algorithm does not converge when some couplings are realized by H 2 instead of H 1 . For these situations we propose a new algorithm that is tested numerically and gives good results.

We are curently working on a convergence proof for this situation too. 
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  Figure 1.Population |Ψ 1 | 2 (solid line) and control u (dashed line); initial conditionΨ(t = 0) = (0, 1/ √ 2, 1/ √ 2); system defined by (9) with feedback (6). The feedback (6) fails to reach the target (quality is only 30%).
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 2 Figure 2. Time evolution of I 1 ; system defined by (9) with feedback[START_REF] Grivopoulos | Lyapunov-based control of quantum systems[END_REF]. We note that I 1 converges to zero.
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 3 Figure 3. Time evolution of I 2 ; system defined by (9) with feedback[START_REF] Grivopoulos | Lyapunov-based control of quantum systems[END_REF]. Contrary to I 1 , I 2 does not converge to zero.

  Figure 4.Population |Ψ 1 | 2 (solid line) and control u (dashed line); initial condition:Ψ(t = 0) = (0, 1/ √ 2, 1/ √ 2); system defined by (9) with feedback[START_REF] Maday | New formulations of monotonically convergent quantum control algorithms[END_REF].
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 5 Figure 5. Time evolution of I 1 ; system defined by[START_REF] Khalil | Nonlinear Systems[END_REF] with feedback (11); I 1 oscilates and its absolute value converges to zero.
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 6 Figure 6. Time evolution of I 2 ; system defined by[START_REF] Khalil | Nonlinear Systems[END_REF] with feedback (11); I 2 oscillates ans its absolute values converges to zero.

Figure 7 .

 7 Figure 7. u(I 1 , I 2 ), u defined by (11), for δ = 0.5.