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Abstract 

 

Operation management of underground passenger transport systems is associated 

with combinatorial optimization problems (known as crew and train scheduling and 

rostering) which belong to the np-hard class of problems. Therefore, their resolution in real 

situations is generally addressed using heuristic methods. This paper considers the duty 

generation problem, which consists of identifying an optimal trips set that the conductors 

should complete in a labor day. With regard to the operational and labor conditions, the 

trains should be driven with the lowest number of conductors and a minimized total idle 

time between trips. The problem is modeled and solved using a constructive hybrid 

approach, which has the advantage of visualizing a solution construction similar to the 

approach typically used by operators who manually solve the problem. This approach takes 

advantage of the benefits offered by evolutionary methods, which hardly store a candidate 

solutions population in each stage, controlling in this way the combinatorial explosion of 

possible solutions. The results that we obtained for problems with similar characteristics to 

those that are performed manually in the Santiago Metro System were compared with two 

alternative approaches based on tabu search and a greedy method. The hybrid method 
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produced similar results to those generated by the tabu search, and both found better results 

than the greedy method. 

 

 

Keywords: Graph search methods, Crew Scheduling Problem. 
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INTRODUCTION  

The conductor’s activities’ planning for passenger vehicles presents a complex 

decision-making scenario. Operations managers face the tough task of finding a feasible 

solution from the large number of possible combinations that should be considered. This 

type of operations is also related to combinatorial optimization and np-hardness, and 

consequently the search for efficient methods providing continuous resolution continues to 

be a challenge. Once efficient algorithmic methods are found, computational tools can be 

built which will allow managers to make rapid decisions with flexibility and efficacy.  

Additionally, they will be able to simulate new demand scenarios, new facilities, and 

changes in labor conditions. 

Crew scheduling problems emerge in the management of cargo and passenger 

transport, such as airlines, buses, and trains. These kind of problems typically have  been 

approached by reduction to three main steps (Caprara, Monaci and Toth, 2001): train 

movement programming, duty generation, and conductor service assignment (rostering). A 

complete operational programming is generated when these three steps are solved. 

The first step consists of timetable generation, which specifies train movement 

between the start and finish locations for each trip. This definition should consider the 

demand for trips that exist between the different network origins and destinations, the 

facilities available, and an adequate balance between service quality and operating cost.  

The result will be the generation of a set of trips that should be performed during the day. 

Each trip is defined by the train number, start time and location, and the finish time and 

location. 

Once the timetable is generated, the second step is to generate conductor duties, 

which are the feasible subsets of trips that can be performed by a single conductor. In the 
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third step, each generated duty is associated to a conductor, considering homogenous 

rotation of the conductors to the duties in a longer programming period as well as 

additional activities such as:  free days, vacations, weekends, training periods, etc. The final 

result is weekly or monthly programming. 

Since the seventies, the crew scheduling problem has been widely studied for the 

case of airlines. However, in the case of surface passenger transport, the majority of the 

studies have been concentrated in the last few years (Ernst, Jiang, Krishnamoorthy, Owens 

and Sier, 2004). Commonly, the study of these problems considers the three previously 

described steps separately.  Meanwhile, attempts have been made to address the problem 

using a single model and consequently, simultaneously solving it using a single method.  In 

this line of work, Freling, Wagelmans & Paixao (1999) and Freling et al. (2003) analyzed 

the benefits of the integrated versus the independent perspective for each problem.  

Although their proposal is applicable to real problems, leading towards a decision-making 

support system (Freling, Lentink and Wagelmans, 2004), the partial benefit that is obtained 

appears dependent on the flexibility to change the vehicles on duty. The authors have used 

the embedded column generation method in a branch-and-bound method to generate exact 

solutions (Friberg and Haase, 1999). However, the combinatorial degree of these problems 

requires the use of approximation in order to solve real large-size problems (Haase, 

Desaulniers and Desrosiers, 2001). The partial improvements of the integrated perspective 

versus independent perspective has also been verified by other authors: Gaffi & Nonato 

(1999) studied the problem that emerged in public transport using a heuristic method based 

on lagrangean relaxation. 

 Several computational tools for the crew scheduling problem in large train systems 

have been developed.  The Italian (Caprara, Fischetti, Toth, Vigo and Guida, 1997; 1999)  
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and Australian (Ernst, Jiang, Krishnamoorthy, Nott and Sier, 2001) railway systems have 

been addressed using binary programming.  In the first case, the model also considered 

vehicle assignment using branch-and-cut as a solution method. In the second one, large size 

problems have been addressed incorporating rostering for each depot existing in the 

network. Heuristic column generation-based procedures have been proposed to 

solve the crew pairing problem in the large German railway system(Bengtsson, Galia, 

Gustafson, Hjorring and Kohl, 2004) The Portuguese and Dutch train systems have been 

studied with an interactive perspective based on artificial intelligence techniques (Morgado 

and Martins, 1992; 1998). The user can propose a solution or modify a generated solution 

following a set of heuristic rules.  To model the transport systems of Singapore and Hong 

Kong, an integration between graphic problem resolution and heuristic methods was used 

(Chew, Pang, Liu, Ou and Teo, 2001). 

 The problem has also been studied for mass transit and buses. For the case of buses, 

Lourenco et al. l (2001) and Dias, de Sousa, & Cunha (2002) developed decision support 

systems based in genetic and tabu search algorithms.  

 The real situation presented by subterranean metro train transport has unique 

characteristics that make it different from urban surface transport systems and from long-

distance cargo-and-passenger train systems. For example, in the subterranean transport of 

passengers, the exchanges of conductors is established in a way that they can only be 

carried out in some predefined stations and  adequately implemented to receive the 

conductors that should wait there to carry out their next work or their meal break.  In 

general, in the surface transport of passengers, the change of operators can be accomplished 

at any point on the route, thus in the transport of passengers by bus lines, it is possible to 

assign a unit operator-duty-bus which includes in addition to the trips, the reception and 
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delivery of the vehicle at the parking depot, as also for the suspensions of service for the 

resupply of fuel.  This type of assignment is not possible with subterranean passenger 

trains. From an algorithmic point of view, the underground passenger transport problem has 

been little explored. In a particular case, Cavique et al. (1999) propose the use of a heuristic 

search to minimize the number of necessary duties for a determined planning period in the 

Lisbon underground. They describe a constructive algorithm that, with less computer time, 

obtains slightly worse solutions than those generated manually for real-size problems; 

however, the two most elaborated methods based on tabu search find better results in terms 

of solution quality but require a higher computer time. 

In the situation above, as in many other problems in combinatorial optimization, 

constructive  methods have been used principally to generate initial solutions, and in a 

second stage the search is performed with another method. The advantage of these methods 

lies in the speed of solution generation, which is possible because they perform an 

important pruning in the space of possible combinations as they construct the solution.  

A constructive algorithm for a combinatorial optimization problem can be viewed as a 

graph search process in problem-solving (Russell and Norvig, 2002). In such an area, a 

graph representing all possible problem states (nodes) is used to systematically explore the 

search space. Several methods have been developed to find a goal when starting from an 

initial node (Pearl, 1984), looking to reduce the number of visited nodes by pruning part of 

the search space. If the domain that contains all the possible solutions of a combinatorial 

optimization problem is represented by a “space state graph” (Pearl, 1984), then the “search 

space methods” may be used to navigate the domain of the solutions of the optimization 

problem. Additionally, metaheuristic methods have been widely used in the last few  years 

to solve many combinatorial optimization problems. 
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 In this paper, we combine the two frameworks mentioned above generating a hybrid 

algorithm that gradually builds and stores only part of the total possible combinations in 

order to solve the crew scheduling problem (CSP) that emerges during the second step of 

the passenger transport operational programming.  In short, trips are gradually combined to 

build duties, and simultaneously duties are combined to produce a complete crew schedule. 

In Section 1 the problem is presented and in Section 2, three different approaches to 

solve the problem are described, while in Section 3 the results attained for real-size 

problems associated with the Santiago Metro are presented. Finally, the main conclusions 

and comments of the study are presented. 

 

1. DESCRIPTION OF THE PROBLEM  

The CSP considers the following characteristics in this study: 

• Relief facilities: Some of the stations in the network have the installations 

required by conductors who are waiting for their next trip, resting, or having a 

meal break. Typically, these are the last stations on each line; however, there 

can be intermediate stations with relief facilities. 

• Maximum conduction time. Each duty must respect the limiting value for the 

total amount of time that each conductor can drive a train each day excluding 

breaks. 

• Continuous conduction time. Each duty must consider a maximum value of 

continuous conduction time, i.e. the maximum amount of time a conductor can 

drive without stepping down from the train.  
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• Meal breaks. Each duty should contain a predefined time interval for meals.  

When considering all the duties, the meal breaks should be homogenously 

distributed in the duties.  

• Work shifts. In order to cover the service time of a work day, several work 

shifts are required.  These shifts are covered by a set of full-time and part-time 

conductors.  Full-time conductors should perform their duties until a certain 

time, after which the activities should be performed by part-time conductors. In 

this way, a set of duties should be generated for each group of workers, 

considering each shift’s start time as problem data. 

• Conductors as passengers. A conductor can begin a trip in a relief station 

different from where his/her last trip ended.  Therefore, the conductor can travel 

as a passenger in a train in order to arrive to another station before his/her next 

trip begins. 

• Routes. The transport network contains several different lines; however, trips of 

distinct lines cannot be assigned to a single duty. 

• Conduction interruptions. An interruption is the minimum interval of time that 

should exist between two consecutive trips in a duty. At the end of each trip and 

in certain relief stations, a conductor can make certain maneuvers in order to 

conduct the train to the first station of his/her next trip. A set of distinct 

interruptions are allowed during one day. For example, the interruption for the 

interval of 7:00-8:00 a.m. can be two minutes, while  the interruption for the 

time interval 13:00-14:00 can be one minute. If the time interval that occurs 

between two trips of a same duty surpasses a given interruption, then the extra 
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time of the interruption is considered as part of the rest or idle time. If not, it is 

considered as continuous conduction time. 

Then, the problem consists in finding a feasible solution that generates the lowest 

number of duties with least total idle time. 

 

 Let N = {τ1, τ3,…,τn} be a set of n trips that need to be completed during the 

programming period.  For each trip k, the vector (sk, ek, ok, dk ), denotes the start time, the 

finish time, the trip origin and trip destination.  Figure 1 visually describes the problem; in 

1a), the trips are organized around the x axis, which indicates the time of each 

programming day.  A feasible duty dk consists in a set of trips that can be made by a 

conductor satisfying all the problem constraints presented in the previous section. A 

solution x for the problem is identified by its set of duties N(x). A solution is feasible if it is 

composed by feasible duties (Figure 1b). A feasible duty contains trips, rest periods, a meal 

break, interruptions, and idle time. The total duty time is obtained by adding all the time 

periods of the duty. 

 

Insert Figure 1 about here 

 

 

2. MODEL AND SOLUTION WITH EVOLUTIONARY AND 

CONSTRUCTIVE METHOD  

 

State space representations, originally defined to represent problem solving in 

artificial intelligence, are useful tools to interpret search processes in combinatorial spaces 

such as those that typically emerge in combinatorial optimization. To represent a state 

space, a graph characterizes all the possible transitions (arcs) between the different problem 

states (nodes). With adequate use of a search method, a path between the initial given state 
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and a pre-defined goal state can be identified. Therefore, the problem solution is made up 

of the sequence of steps to reach the goal-state from the initial state, characterizing a path 

or a subgraph on the graph. To perform this process, several algorithms have been 

generated based in depth-first and breadth-first searches while using problem information 

to guide the process (Pearl, 1984). 

 

The heuristic resolution of a combinatorial optimization problem can be tackled 

with two types of methods: constructive and solution space. In evolutive methods, a 

solution is built step by step from a set of initial elements. During this process, partial 

solutions are added each time, producing more complex structures. In the second case, the 

search takes place directly in a space containing all the possible solutions. From an initial 

solution, a random or deterministic exploration strategy allows a feasible space exploration. 

The search process ends when the optimal or a good solution is found. Both constructive 

and solution space methods can be represented as a search graph similar to those that 

emerge in the problem-solving area. The main difficulty that both search methods in 

problem-solving and the combinatorial optimization methods have in solving np-hard 

problems is the large amount of computer time required to find a good solution. To avoid 

this difficulty, the natural, implicit pruning scheme embedded in an evolutionary method 

may be considered to reduce the number of generated structures that need to be stored 

during the evolutionary construction (Chaudhry and Luo, 2005). Thus, gradually building 

several solutions and storing them in populations allow us to propose an evolutionary, 

constructive algorithm to solve combinatorial optimization problems. In Parada et al. 

(2002), we defined the corresponding operators and numerically tested several of these 

ideas by solving a cutting stock problem.  
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In each stage, our method updates a population of partial constructions A(t) to 

generate A(t+1) as occurs in the evolutionary methods (Figure 2 ). With equation (1) a set 

A’(t) is obtained, formed of the best individuals m which constitute A(t), denoted by cj, 

where j=1,2,…, m. The partial constructions obtained are submitted to three crossover 

operations. The first follows the constructive approach, allowing the elements of A’(t) to 

combine with the original elements, which in this case correspond to the original trips 

represented in Figure 2 as set E. In the second, the combinations between the actual 

constructions are allowed; while in the third, following the evolutionary approach, the 

individuals of A’(t) are combined with the best structures that are found during the search 

process, i.e., with the elite set B(t).  Subsequently, the mutation is performed (modules M in 

Figure 2), generating a set of partial constructions (C). Following the roulette method, the 

best solutions from C are selected to finally form the population A(t+1). B(t) is updated by 

deterministically selecting individuals from C (Algorithm 1). 

 

A’(t) = {cj; f(cj) = min f(ci); ∀ i ∈ A(t);  j = 1,2,…, m}   (1) 

 

The fitness of the partial constructions is evaluated using the evaluation function 

(2), where g(node) is a measure of the cost to generate the construction node and h(node) is 

an estimate of the cost that needs to be paid in the search constructive process until the 

solution of minimum f is obtained. The manner in which g(node) and h(node)are calculated 

will be discussed in detail in this paper.  

 

f(node) = g(node) + h(node)        (2) 

 

In Algorithm 1, the pruning produced by the evolutionary components of the 

algorithm does not guarantee beforehand an optimal solution. However, when the random 
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components of the  algorithm are removed, and without considering a limit for population 

and set size, the procedure becomes an intelligent problem-solving search algorithm like 

the best first search algorithm described in Pearl (1984). On the other hand, once a 

population A(t) has been obtained with its individuals being solutions of the problem, that is 

to say solutions that contain all of the trips, the algorithm transforms into a genetic 

algorithm.   

 

 

Algorithm 1: Evolutive Method 

Input: Set of initial trips, parameters and restrictions 

Output: Duties. 

Begin 

E ← Set of initial trips of the problem {p1, p2, ... , pn}; 

Evaluate elements of E according to f(ei) = g(ei) + h(ei) Eei ∈∀ ; 

A(0) ← Probabilistic Selection of elements of E according to f(ei); 

B(0) ← ∅; t = 0; 

Repeat 

t = t+1; C ← ∅; 

A’(t) ← Selection from A(t) according to (1);  

C ← crossover and mutation between elements of  

 A’(t) and A(t), A’(t) and B(t), A’(t) and E; 

Apply mutation to elements of C; 

Evaluate f(ci) = g(ci) + h(ci) ∀ ci ∈ C; 

Update B(t); 

A(t+1) ← probabilistic selection of best individuals of C; 

Until a termination criterion is satisfied; 

End. 

 

Algorithm 1 requires the definition of some parameters such as: the number of 

elements of A’(t) which is determined as a fraction (fs) of the number of elements in A(t) 

and denoted as na; the size of B(t) denoted as nb; and the mutation probability pm. 

 

Insert Figure 2  about here 

 

Representation of the crew scheduling problem requires the definition of a 

construction and an operator in order to generate a new construction based on a pair of 
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given constructions. A construction is defined by the set of duties, where a duty is defined 

by a combination of trips.  

Let’s consider a partial construction x = {d1,…,dk} defined as a set of duties. Two 

constructions xa and xb are combined to generate two new constructions x’a and x’b (Figure  

3 ). Initially x’a is obtained copying the duties of xa. Then, all feasible trip insertions from xb 

into x’a are performed. When no other feasible insertion is possible, new empty duties are 

sequentially generated in x’a in order to fit all the remaining trips of xb into xa. The process 

is complete when all the trips of xa and xb are contained in the duties of x’a. A similar stage 

sequence gives x’b. The feasible insertion of a trip into a duty takes into account all the 

problem constraints, with the exception that all of the trips are being considered.  

In figure 3 , an example of the crossover operator considering 3 duties with 9 

different trips in each one is represented. In this example, trips 10 and 15 are inserted in the 

third duty of x’a, while trip 12 is inserted in the second duty of x’a. Two other new duties 

for x’a are generated with the remaining trips. Similarly, the second child x’b is obtained.  

 

Insert Figure 3  about here 

 

The mutation of a new trip is performed as well with a feasible insertion of a trip not 

yet contained in the construction, but following a mutation probability pm. A random 

number between 0 and 1 is generated for each construction, and if this number is smaller 

than pm, then a feasible insertion of a new trip proceeds. 

The constructive and evolutionary procedure continues until all of trips are included 

in the set of duties. Note that different work shifts can be easily considered by first 

separating the set of trips according to each trip’s start time and then independently 

executing the algorithm. 
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The evolutionary process is conducted by the fitness function f(x), as defined in (2). 

Both terms should fundamentally minimize idle time and the number of duties, noting that 

while the lower the idle time between each pair of trips, the higher the available time to fit 

another trip in the duty. On the other hand, a lower number of duties does not necessarily 

mean lower idle time. The objective is to minimize the number of duties so that each duty is 

as complete as possible with respect to the conductor’s work day.  In short, the duties must 

have the greatest number of possible trips, and consequently the smallest amount of idle 

time between each pair of trips. Therefore, idle time between tasks should also be 

minimized. Optimizing only the number of duties favors the generation of duties with high 

intermediate idle times, creating conductor discomfort. However, the exclusive 

minimization of idle time can generate an extreme case: lots of duties but some with only a 

few trips.  

Two types of idle time were identified: internal idle time (tin) consists of time 

between trips and external idle time (tex) corresponds to the interval between the end time of 

the duty’s last trip and that work day’s end time. Thus, total idle time of a duty is given by 

ti = tin + tex. Therefore the total idle time t(x), of a construction x, is given by:  

∑= itxt )(                                                           (3) 

The generation cost g(x) of a construction x is related to idle time t(x) and the 

number of duties N(x) belonging to it according to (4). Parameter α produces unit 

homogenization and weighting of both objectives. The algorithm’s goal should be to 

contain all the trips grouped into the smallest number of duties and with the least amount of 

idle time possible. According to the construction operator’s structure, the goal can be 

constructed from any construction x. 

g(x) = t(x) + α N(x)       (4) 
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 Let t’(x) be an estimate of the idle time still to be considered to reach the goal node. 

Let N’(x) be an estimate of the number of duties in the goal construction. Thus, h(x) is 

defined according to (5), which represents an approximation of the total cost of the goal 

construction reachable from x.  

h(x) = t’(x) + α N’(x)       (5) 

Where: 

TMD: maximum conduction time for a conductor, 

Tj: Duration of trip j, 

T: Duration a conductor’s work day. 

Thus, N’(x) is obtained considering the number of trips still to be assigned to any duty of 

the construction x as an estimate of the number of trips that can be contained in duty (4, 5). 
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In the same way, t’(x) is obtained from N’(x) and the minimum idle time that can be 

obtained in a duty,  i.e. the difference between the length of a conductor’s work day and the 

time effectively used in conduction (8). 
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In an evolutionary algorithm, the complexity is determined multiplying the number 

of elemental operations required by the algorithm in each stage by the number of 

generations, which will depend on the solution precision required. However, the 

constructive nature of algorithm 1 provides prior information on the limit for the number of 
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generations. Indeed, in the worst case, each new construction contains at least one trip more 

than were contained in the preceding constructions. In other words, the algorithm evolves 

constructing more complete solutions each time, until generating a population of complete 

constructions, which requires at most n generations, which requires at most n2  elementary 

operations. Consequently a “good” heuristics solution requires around n
3 elementary 

operations. 

 

3. SOLUTION USING OTHER TWO METHODS 

 

3.1 Tabu Search Method (TSM). 

The tabu search method (TSM) is a metaheuristic method that has been widely used 

in combinatorial optimization. The technique consists of a set of tools that facilitate the 

search for the optimal solution to the problem. In each stage, the neighborhood of the 

current solution is visited to search for a solution that lets the process continue advancing. 

The history of the path followed is considered to be an important source of information to 

proceed in the most effective and economic direction.  

A detailed description of this methodology is found in Glover & Laguna (1997). To 

use this technique in a given problem, the following elements need to be identified:  the 

structure that represents a problem solution, the rule that locates a neighbor solution in the 

actual solution, the way to measure the objective to be optimized, and an initial solution. 

For the CSP, we represent a solution in the manner presented in section 2, with the 

modification that all the trips are contained in each solution x visited.  Its evaluation is 

performed according to (4). To represent the neighborhood, an exchange operation needs to 

be defined. Let two duties be di and dj such as in (9) and (10) with number of trips u and v, 

respectively. 
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di = {τi1, τi2,..., τil, τi,l+1,..., τiu}     (9) 

dj = {τj1, τj2,..., τjm, τj,m+1,..., τjv }     (10) 

 

An exchange operation is defined between two duties di and dj as the feasible 

exchange between some of the trips. To this end, the trips τil of duty di and the trips τjm of 

duty dj are identified, generating two new duties (11) and (12), di’ and dj’. The exchange is 

identified by: m(di, dj, τil, τjm).  

di’ = {τi1, τi2,..., τil, τj,m+1,..., τjv }     (11) 

  dj’ = {τj1, τj2,..., τjm, τi,l+1,..., τiu }    (12) 

To obtain a solution x’, neighbor of the current solution, we apply an exchange 

operation to a pair of duties of x. Thus, considering all the pairs of duties for a solution, a 

maximum of n
3
(n-1) neighbor solutions can be generated. We consider the 

best_neighbor(x) procedure that determines the best solution x’ reviewing all the possible 

exchanges.  The last q exchanges made m1, m2,…,mq are stored in a tabu list in order to 

avoid the return of already visited solutions.  Therefore, best_neighbor(x) considers feasible 

exchanges that do not imply the return to already visited solutions. A tabu move is 

considered applicable, except when it leads effectively to a solution that has yet to be 

visited. The tabu list is fifo (first in, first out), and consequently as the search process 

advances, the moves that entered first are the first ones eliminated. The tabu status of a 

move is always removed when the value of the new generated solution is better than the 

best values found up to that iteration in the search. 

 To generate an initial solution x
0
 from an ordered list of n trips, n duties are 

constructed, where each one contains one of the n trips. Let tsi and tei be the start and finish 

time for each duty. Then tsi = si and tei = ei, i = 1,…,n. We define a feasible concatenation 

operation as the incorporation into a duty of the only trip that contains another duty. In this 
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way, if di = {τi1, ...,τiu} and dj = {τj1}, then di Θ dj generates di = {τi1, ...,τiu, τj1}. In 

algorithm 2, x0 is generated, concatenating as many duties as possible. A concatenation is 

considered feasible when it satisfies problem constraints. 

Algorithm 2: Concatenation. 

Input: trip list, parameters, and constraints. 

Output: x
0
. 

Begin 

L ← {τ1, τ2, ...,τn} in ascending order of sk; 

di = {τi } ∀ i = 1,…,n; x =(di) ∀ i ; 

tsi = si ; ∀ i = 1,…,n; 

tei = ei ; ∀ i = 1,…,n; i = 1; l = i+1; 

Repeat 

Repeat 

 Determine k; tsk = min{( tsj – tei), j = l, n} 

 ∆i = tsk – tei; 

 If ∆i ≥ h then  

  di  = di Θ dk; Eliminate dk; 

  tei = ek;  l = k +1;  

 Else l = l +1; 

Until l = n; 

i = i +1; 

Until i = n; 

x
0
 ← reordered list of duties. 

End.  

 

In the TS, the intensification strategy is used to review promising regions that had 

already been partially visited by periodically updating a list of solutions considered to be 

promising.  These are solutions from which a continuous drop of the objective function can 

be obtained during a set number of iterations (5 in this case). The list of promising solutions 

acts with a FIFO order and have a pre-defined size.  The function Intensify (L, xf) found a 

new solution xf from which the normal search continued.  The intensification is activated 

after Ti iterations have occurred without the modifying best solution obtained until then. 

 Diversification is a strategy that permits a tabu search to visit a previously 

unconsidered region.  With this objective, a new solution is configured based on the actual 
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solution, increasing the number of duties. To do this, a set that contains the duties with the 

largest number of trips is selected.  Each of these duties is separated in the middle point, 

generating two new duties. This increase is performed after Td iterations have occurred 

without finding a better solution. Algorithm 3 describes the resulting complete tabu search 

procedure. 

Algorithm 3: Tabu Search Method. 

Input: Trip list, parameters and constraints. 

Output: Duties. 

Begin 

Generate x
0
; 

Define Ti and Td ; t1 = 0; tlch = 0; 

xc = xbest = x
0
; 

For Iter = 0 to Maxiter do 

x’ = best_neighbor(xc); 

xc = x’; 

If f(x’) < f(xbest) then 

 xbest = x’ ; tlch = Iter; 

Else 

 If Iter – tlch > Td then 

Diversify(xc, xf); 

xc = xf; 

Si f(xc) < f(xbest) then  

xbest = xc; tlch = Iter; 

 Else 

 If Iter – tlch > Ti then 

 Intensify(L, xf); xc = xf; 

  If f(xf) < f(xbest) then 

   xbest = xf; tlch = Iter; 

End. 

 

3.2 Greedy Method (GM) 
Consider a tree enumerating all the feasible combinations of trips to generate a duty. 

The root node does not have included trips, and the next node level has duties that contain a 

pair of assigned trips. The intermediate nodes contain duties without all the trips having 

been assigned. The leaf nodes of this tree correspond to solutions of the problem in which 

each trip is assigned to some duty. Therefore, a constructive algorithm for the CSP can be 

obtained by identifying a way to find a path from the origin node to a leaf node. Algorithm 
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2 finds a path on this tree aiming to accumulate minimal idle time. The next node in a path 

is obtained incorporating a new trip to a duty in the earliest time possible.  

The algorithm constructs sequentially a set of duties through feasible insertions of 

the trips. Initially, the trips are ordered in ascendant order according to the start time.  In 

any stage of the algorithm, a duty is constructed by reviewing one by one the remaining 

trips and inserting them in a feasible manner until no new insertion is possible. Figure 4  

presents an example of the construction strategy. In the upper part, the trips are presented 

ordered by start time, while the lower part presents the three duties obtained from those 

trips. The first duty is built with trips 1, 3, 5 and 8, leaving the trips 2, 4, 6, 7 and 9, which 

will be distributed to the other two duties in the next two stages. 

 

Insert Figure 4 about here 

 

Meal break assignment in each duty is performed in a randomly weighted manner 

so that the assignment has the greater probability to occur where the amount of the duty’s 

conduction time is greatest. 

In algorithm 4, the function next_in_L obtains the first element of the ordered list L 

and insertion(τl, d(m)) returns true when it is feasible to insert τl in the duty d(m). 

The complexity of this algorithm is determined by the 2 cycles. When both are 

executed n times, then the complexity is O(n
2
) 

 

Algorithm 4: Greedy Method 

Input: Trip list, parameters and constraints. 

Output: Duties. 

Begin 

L ← {τ1, τ2, ...,τn} in ascendant order of sk; 

m = 0;  

Repeat 

m = m + 1; l = 0; 
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Repeat 

l = l + 1;  

τl  = next_in_L; 

If insertion(τl , d(m)) then 

d(m) ←  τl ; 

nt(m) ←  nt(m) + 1; 

L ← L\τl; 

Until l = n; 

Until L = φ ; 

End.  

 

 

4. RESULTS 

The algorithms were executed in a computer with a 950 Mhz Athlon processor and 

256 Mb RAM. Each instance was executed 5 times for both EA and GRA and the results 

correspond to the average values. The ten problems considered in this study correspond to a 

real situation that contains trips to be assigned in a work day. For example the problem Pr1 

has 733 trips, 3 relief stations and 58 trains; Pr2 has 475 trips with two relief stations and 18 

trains; Pr3 has 437 trips, 2 relief stations and 22 trains. Two work shifts are considered, the 

first from 6:00 AM to 2:30 PM, the second from 2: 00 PM to 10:00 PM. Partial time 

conductors can be assigned at any moment during the day. 

A parameter calibration experiment was performed for algorithm 1 using the 

problems Pr2 and Pr3. An approximate range for each parameter was identified from 

preliminary executions of the algorithm. Subsequently, the best set of parameters was 

defined within those ranges. The decision was made based on the best performance of the 

ones measured in terms of f(node). Thus, the established parameters are na = 10, nb =5, fs = 

0.2 and pm = 0.02. 

Similarly, a parameter-tuning experiment was performed for TSM. Using a set of 

preliminary executions to solve Pr1, a range of best performance was determined for Ti, Td 
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and λ. Fixing two parameters, the third was tuned, beginning with t1 and finishing with λ. 

As a result of this process, Ti = 250, Td = 350 and λ = 17 were obtained. 

Figure 5 shows the evolution of the algorithm through the best construction of each 

generation A(t). The minimum of  f(node) corresponds to the largest number of “good” 

duties generated, i.e. duties containing the maximum number of trips. After such point, 

f(node) due to the increase difficulty of produce good duties waiting to be assigned. When 

there are few trips remaining in each construction, it is not possible to generate duties as 

good as the first ones. The function h(node) has linear behavior since, in calculating the 

remaining number of duties to generate, only trips that have not yet been assigned to any 

duty are considered. This number diminishes linearly as the iterative process increases.  

The staggered behavior of g(node) is due to the gradual generation of new duties that 

emerge when it is not possible to incorporate a new trip into the already existing duties. 

 

Insert Figure 5 about here 

The speed of the greedy algorithm to complete its job can be appreciated in Table 1;  

the computacional time required does not exceed two seconds and in all cases is less than 

the time required  for TSM as well as EM.  In turn, EM is faster than TSM in the ten cases 

studied.   

The bicriterial nature of the problem studied in this paper can be seen to break down 

the objective function in its two components: idle time and number of duties.  In this line of 

reasoning, it is found that TSM outperforms EM in the instances Pr2, Pr3, Pr7 and Pr9.   

The number of duties is directly related to the number of train conductors required 

daily, while the idle time is related to the degree of concentration of duties and 
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consequently with the quality of work of the conductors. The manner of considering both 

elements depends on each company: in this study both criteria have been considered 

equally and the results obtained in six of the cases studied, EM solves the problem with a 

fewer number of conductors to fulfull the daily programming.  

 

Insert Table 1 about here 

 

 

5. CONCLUSIONS 

In this paper, we proposed methods to address operation management problems 

which  emerge in underground passenger transport. The first method proposed is based on 

the gradual solution construction by recurring to evolutionary methods. The generation of 

partial constructions is represented by an And / Or graph. The graph of the constructions is 

implicitly generated, following a scheme similar to that used by the evolutive algorithms, 

selecting in each stage a set that constitutes a population of constructions. Furthermore, the 

space state representation used as described in this paper is a useful tool to visualize any 

constructive algorithmic scheme. Under the framework described in this paper, such 

methods can be analyzed with the purpose of determining an admissible heuristic function 

that, at the same time, is an exactitude measurement. As a consequence, it is possible to 

identify theoretically the needed modifications in order to get an exact, instead of a 

heuristic, method. 

The EM and TSM provide better results than the GM in terms of the number of 

duties.  However, in terms of idle time, the TSM provides better results than the other two 

methods.   

It is suggested to address this problem as a multiobjective optimization in future 

investigations.   
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TABLE 1 

Comparison of Results. 

 

 

    EA TS GRA 

Problem N° of 

trips 

N° of 

Duties 

Idle time 

[h:m:s] 

Run 

time 

[m:s] 

N° of 

Duties 

Idle time 

[h:m:s] 

Run 

time 

[m:s] 

N° of 

Duties 

Idle time 

[h:m:s] 

Run 

time 

[m:s] 

P1 733 82.8 163:26:54 01:04 86 102:38:05 07:46 87.4 132:6:30 00:02 

P2 437 37.0 71:04:43 00:10 31 49:29:05 01:35 33.6 60:23:37 00:01 

P3 475 44.0 62:55:02 00:17 38 59:13:52 02:08 42.4 58:55:50 00:01 

P4 281 150.0 158:11:45 00:07 174 46:54:11 02:28 153.0 26:49:06 00:01 

P5 733 117.4 197:47:42 01:45 121 101:32:31 40:00 135.0 152:32:43 00:01 

P6 779 92.4 221:04:06 01:22 156 19:52:58 19:09 98.4 79:47:59 00:02 

P7 697 74.6 155:35:07 00:59 74 79:23:53 07:24 98.4 141:29:00 00:01 

P8 900 108.8 216:15:54 02:38 193 38:29:31 30:07 114.6 73:50:59 00:02 

P9 764 132.8 174:32:11 01:42 121 41:48:11 45:00 139.8 121:14:38 00:01 

P10 797 95.0 215:19:14 01:24 179 58:27:31 40:00 107.0 66:33:53 00:02 
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(a)        (b) 

FIGURE 1 

 Schematic representation of the problem 

 

 

 

 

 

 

…  ... 

…  ... 

Elapsed Time 
D

u
ti

e
s 

1 

2 

…
 

S
h
if

t 
2

 
S

h
if

t 
1

 

... 

… 

Elapsed Time 

T
ri

p
s 

1 

2 

k 

n 

…
 

…
 

o1 - d1 

o2 – d2 

ok – dk 

on – dn 

       sk            dk 



 29

 
 

 

FIGURE 2  

Algorithm 
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FIGURE 3  

An example of the constructive operator 
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FIGURE 4 

Nine originally ordered trips generating three duties 
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FIGURE 5 (f(node)) 

Convergence of EM 

 

 

 

 

 

 

 


