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Counterexamples to Strichartz inequalities for the wave

equation in domains II

1 Introduction

Let Ω be a smooth manifold of dimension d ≥ 2 with C∞ boundary ∂Ω, equipped with a
Riemannian metric g. Let ∆g be the Laplace-Beltrami operator associated to g on Ω, acting
on L2(Ω) with Dirichlet boundary condition. Let 0 < T <∞ and consider the wave equation
with Dirichlet boundary conditions:






(∂2
t − ∆g)u = 0 on Ω × [0, T ],

u|t=0 = u0, ∂tu|t=0 = u1,
u|∂Ω = 0.

(1.1)

Strichartz estimates are a family of dispersive estimates on solutions u : Ω × [0, T ] → C to
the wave equation (1.1). In their most general form, local Strichartz estimates state that

‖u‖Lq([0,T ],Lr(Ω)) ≤ C(‖u0‖Ḣγ(Ω) + ‖u1‖Ḣγ−1), (1.2)

where Ḣγ(Ω) denotes the homogeneous Sobolev space over Ω and where the pair (q, r) is
wave admissible in dimension d, i.e. it satisfies 2 ≤ q ≤ ∞, 2 ≤ r <∞ and moreover

1

q
+
d

r
=
d

2
− γ,

2

q
+
d− 1

r
≤ d− 1

2
. (1.3)

When equality holds in (1.3) the pair (q, r) is called sharp wave admissible in dimension d.
Estimates involving r = ∞ hold when (q, r, d) 6= (2,∞, 3), but typically require the use of
Besov spaces.

In Rd and for gij = δij , Strichartz estimates in the context of the wave and Schrödinger
equations have a long history, beginning with Strichartz pioneering work [31], where he
proved the particular case q = r for the wave and (classical) Schrödinger equation. This was
later generalized to mixed Lq((−T, T ), Lr(Ω)) norms by Ginibre and Velo [9] for Schrödinger
equation, where (q, r) is sharp admissible and q > 2; the wave estimates were obtained inde-
pendently by Ginibre-Velo [11] and Lindblad-Sogge [21], following earlier work by Kapitanski
[16]. The remaining endpoints for both equations were finally settled by Keel and Tao [19].
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In that case γ = (d+1)
2

(1
2
− 1

r
) and one can obtain a global estimate with T = ∞; (see also

Kato [18], Cazenave-Weissler [7]).

However, for general manifolds phenomena such as trapped geodesics or finiteness of
volume can preclude the development of global estimates, leading us to consider local in
time estimates.

In the variable coefficients case, even without boundary, the situation is much more
complicated: we simply recall here the pioneering work of Staffilani and Tataru [30], dealing
with compact, non trapping perturbations of the flat metric and recent work of Bouclet
and Tzvetkov [4] in the context of Schrodinger equation, which considerably weakens the
decay of the perturbation (retaining the non trapping character at spatial infinity). On
compact manifolds without boundary, due to the finite speed of propagation, it is enough to
work in coordinate charts and to establish local Strichartz estimates for variable coefficients
wave operators in Rd: we recall here the works by Kapitanski [17] and Mockenhaupt, Seeger
and Sogge [25] in the case of smooth coefficients when one can use the Lax parametrix
construction to obtain the appropriate dispersive estimates. In the case of C1,1 coefficients,
Strichartz estimates were shown in the works by Smith [26] and by Tataru [32], the latter
work establishing the full range of local estimates; here the lack of smoothness prevents the
use of Fourier integral operators and instead wave packets and coherent state methods are
used to construct parametrices for the wave operator.

Let us recall a result for the flat space: if we denote by ∆ the Euclidian Laplace operator,
then the Strichartz estimates for the wave equation posed on Rd read as follows (see [19]):

Proposition 1.1. Let (q, r) be a wave admissible pair in dimension d ≥ 2. If u satisfies

(∂2
t − ∆)u = 0, [0, T ] × R

d, u|t=0 = u0, ∂tu|t=0 = u1 (1.4)

for some 0 < T <∞, u0, u1 ∈ C∞(Rd), then there is a constant C = CT such that

‖u‖Lq([0,T ],Lr(Rd)) ≤ C(‖u0‖
Ḣ

(d+1)
2 ( 1

2− 1
r )(Rd)

+ ‖u1‖
Ḣ

(d+1)
2 ( 1

2− 1
r )−1(Rd)

). (1.5)

In this paper we prove that Strichartz estimates for the wave equation inside the domain
Ω suffer losses when compared to the usual case Rd, at least for a subset of the usual
range of indices, under the assumption that there exists a point in T ∗∂Ω where the second
fundamental form on the boundary of the manifold has a strictly positive eigenfunction.

Assumption 1. We assume that there exists a point (ρ0, ϑ0) ∈ T ∗(∂Ω × R) and a bicharac-
teristic which is tangential to ∂Ω × R at (ρ0, ϑ0) having exactly second order contact with
the boundary. We call such a point a gliding point.

Our main result reads as follows:

Theorem 1.2. Let (q, r) be a sharp wave admissible pair in dimension d ∈ {2, 3, 4} with
r > 4. Under the Assumption 1, for every small ǫ > 0 there exist sequences Vh,j,ǫ ∈ C∞(Ω̄),
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j = 0, 1 such that the solution Vh,ǫ to the wave equation with Dirichlet boundary conditions






(∂2
t − ∆g)Vh,ǫ = 0,

Vh,ǫ|t=0 = Vh,0,ǫ, ∂tVh,ǫ|t=0 = Vh,1,ǫ,
Vh,ǫ|∂Ω×[0,T ] = 0,

(1.6)

satisfies

sup
ǫ>0,h∈(0,1],j

h−
(d+1)

2
( 1
2
− 1

r
)− 1

6
( 1
4
− 1

r
)+2ǫ+j‖Vh,j,ǫ‖L2(Ω) ≤ 1 (1.7)

and
lim
h→0

‖Vh,ǫ‖Lq
t ([0,T ],Lr(Ω)) = ∞. (1.8)

Moreover Vh,ǫ has compact support for the normal variable in (0, h
1−ǫ
2 ] and is well localized

at spatial frequency 1
h

in the tangential variable.

Remark 1.3. The proof of Theorem 1.2 will show that the restriction on the dimension comes
only from the fact that for d ≥ 5 all admissible pairs (q, r) satisfy r ≤ 4.

For a manifold with smooth, strictly geodesically concave boundary (i.e. for which the
second fundamental form is strictly negative definite), the Melrose and Taylor parametrix
yields the Strichartz estimates for the wave equation with Dirichlet boundary condition for
the range of exponents in (1.3) (not including the endpoints) as shown in the paper of Smith
and Sogge [27]. If the concavity assumption is removed, however, the presence of multiply
reflecting geodesic and their limits, the gliding rays, prevent the construction of a similar
parametrix!

Note that on an exterior domain a source point does not generate caustics and that the
presence of caustics generated in small time near a source point is the one which makes
things difficult inside a strictly convex set.

Recently, Burq, Lebeau and Planchon [5], [6] established Strichartz type inequalities on
a manifold with boundary using the Lr(Ω) estimates for the spectral projectors obtained by
Smith and Sogge [28]. The range of triples (q, r, γ) that can be obtained in this manner,
however, is restricted by the allowed range of r in the square function estimate for the wave
equation, which controls the norm of u in the space Lr(Ω, L2(−T, T )) (see [28]). In dimension
3, for example, this restricts the indices to q, r ≥ 5. The work of Blair, Smith and Sogge
[3] expands the range of indices q and r obtained in [5]: specifically, they show that if Ω is
a compact manifold with boundary (or without boundary but with Lipschitz metric g) and
(q, r, γ) is a triple satisfying the first condition in (1.3) together with the restriction

{ 3
q

+ d−1
r

≤ d−1
2
, d ≤ 4

1
q

+ 1
r
≤ 1

2
, d ≥ 4,

then the Strichartz estimates (1.2) hold true for solutions u to (1.1) satisfying Dirichlet or
Neumann homogeneous boundary conditions, with a constant C depending on Ω and T .
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Remark 1.4. Notice that Theorem 1.2 states for instance that the scale-invariant Strichartz
estimates fail for 3

q
+ 1

r
> 15

24
, whereas the result of Blair, Smith and Sogge states that such

estimates hold if 3
q
+ 1

r
≤ 1

2
. Of course, the counterexample places a lower bound on the loss

for such indices (q, r), and the work [3] would place some upper bounds, but this concise
statement shows one explicit gap in our knowledge that remains to be filled.

A very interesting and natural question would be to determine the sharp range of expo-
nents for (1.2) in any dimension d ≥ 2!

A classical way to prove Strichartz inequalities is to use dispersive estimates: the fact
that weakened dispersive estimates can still imply optimal (and scale invariant) Strichartz
estimates for the solution of the wave equation was first noticed by Lebeau: in [20] he proved
that a loss of derivatives is unavoidable for the wave equation inside a strictly convex domain,
and this appears because of swallowtail type caustics in the wave front set of u:

|χ(hDt)u(t, x)| . h−d min(1, (h/t)
d−2
2

+ 1
4 ).

However, these estimates, although optimal for the dispersion, imply Strichartz type inequal-
ities without losses, but with indices (q, r, d) satisfying

1

q
≤ (d− 1)

4
(
1

2
− 1

r
).

A natural strategy for proving Theorem 1.2 would be to use the Rayleigh whispering gallery
modes which accumulate their energy near the boundary contributing to large Lr(Ω) norms.
Applying the semi-classical Schrödinger evolution shows that a loss of derivatives is necessary
for the Strichartz estimates. However, when dealing with the wave operator this strategy
fails as the gallery modes satisfy the Strichartz estimates of the free space, as it is shown in
[15].

In the proof of Theorem 1.2 we shall proceed in a different manner, using co-normal
waves with multiply reflected cusps at the boundary, together with Melrose’s Theorem of
glancing rays to reduce the study of the iterated boundary operators to the Friedlander case,
in which case all the computations are explicit. We only recall here the main ingredients
of the proof and show how this can be used to construct a counterexample under the much
more general assumptions of Theorem 1.2. The reduction to the model case relies essentially
on Melrose’s Theorem [24] of glancing surfaces.

The organization of the paper is as follows: in Section 2 we show that in order to prove
Theorem 1.2 it is enough to consider the two-dimensional case. In Section 3 we deal with
a strictly convex domain of dimension two and use the model construction to determine an
approximate solution of (1.6) which satisfies Theorem 1.2. In the Appendix we compute the
Lr norms of a cusp.
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2 Reduction to the two dimensional case

Let Ω satisfy the assumptions of Theorem 1.2. Write local coordinates on Ω as (x, y1, .., yd−1)
with x > 0 on Ω, ∂Ω = {(0, y)|y = (y1, .., yd−1) ∈ Rd−1} and local coordinates induced by
the product X = Ω × Rt, as (x, y, t).

Local coordinates on the base induce local coordinates on the cotangent bundle, namely
(ρ, ϑ) = (x, y, t, ξ, η, τ) on T ∗X near π−1(q), q ∈ T ∗∂X, where π : T ∗X →b T ∗X is the
canonical inclusion from the cotangent bundle into the b-cotangent bundle defined by bT ∗X =
T ∗X̊ ∪ T ∗∂X. The corresponding local coordinates on the boundary are denoted (y, t, η, τ)
(on a neighborhood of a point q in T ∗∂X). The metric function in T ∗Ω has the form

g(x, y, ξ, η) = A(x, y)ξ2 + 2
d−1∑

j=1

Cj(x, y)ξηj +
d−1∑

j,k=1

Bj,k(x, y)ηjηk,

with A, Bj,k, Cj smooth. Moreover, these coordinates can be chosen so that A(x, y) = 1
and Cj(x, y) = 0 (see [14, Appendix C]). Thus, in this coordinates chart the metric on the
boundary writes

g(0, y, ξ, η) = ξ2 +
d−1∑

j,k=1

Bj,k(0, y)ηjηk.

On T ∗∂Ω the metric g takes even a simpler form, since introducing geodesic coordinates we
can assume moreover that, locally,

B1,1(0, y) = 1, B1,j(0, y) = 0 ∀j ∈ {2, .., d− 1}.

Hence, if R(x, y, η) :=
∑d−1

j,k=1Bj,k(x, y)ηjηk, then for small x we have

R(x, y, η) = (1 + x∂xB1,1(0, y1, 0) +O(x|y′|))η2
1+

+

d−1∑

j=1

(x∂xB1,j(0, y) +O(x2))η1ηj +

d−1∑

j,k=2

Bj,k(x, y)ηjηk. (2.1)

The Assumption 1 on the domain Ω is equivalent to saying that there exists a point (0, y0, ξ0, η0)
on T ∗Ω where the boundary is microlocally strictly convex, i.e. that there exists a bichar-
acteristic passing through this point that intersects ∂Ω tangentially having exactly second
order contact with the boundary and remaining in the complement of ∂Ω̄. If p ∈ C∞(T ∗X\o)
(where we write o for the ”zero” section) denotes the principal symbol of the wave operator
∂2

t − ∆g, this last condition translates into

τ 2 = R(0, y0, η0), {p, x} =
∂p

∂ξ
= 2ξ0 = 0, (2.2)

{{p, x}, p} = {∂p
∂ξ
, p} = 2∂xR(0, y0, η0) > 0, (2.3)
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where {f1, f2} denotes the Poisson bracket

{f1, f2} =
∂f1

∂ϑ

∂f2

∂ρ
− ∂f1

∂ρ

∂f2

∂ϑ
.

Denote the gliding point (in T ∗Ω × R) of the Assumption 1 by

(ρ0, ϑ0) = (0, y0, 0, 0, η0, τ0 = −
√
R(0, y0, η0)).

We start the proof of Theorem 1.2 by reducing the problem to the study of the two dimen-
sional case. Consider the following assumptions:

Assumption 2. Let Ω̃ be a smooth manifold of dimension 2 with C∞ boundary and with a
Riemannian metric g̃. Suppose that in a chart of local coordinates Ω̃ = {(x, ỹ)|x > 0, ỹ ∈ R}
and that the Laplace-Beltrami operator associated to g̃ is given by

∂2
x + (1 + xb(ỹ))∂2

ỹ ,

where b(ỹ) is a smooth function. Suppose in addition that there exists a point (0, ỹ0, ξ̃0, η̃0) ∈
T ∗Ω̃ and a bicharacteristic intersecting the boundary tangentially at this point and hav-
ing exactly second order contact with the boundary. This is equivalent to saying that at
(0, ỹ0, ξ̃0, η̃0) the following holds

ξ̃0 = 0, 2b(ỹ0) > 0.

We suppose b(ỹ0) = 1 and that there exists a neighborhood N of y0 and 0 < b0 < 1/4 small
enough such that for ỹ ∈ N we have |b(ỹ) − 1| ≤ b0.

Theorem 2.1. Under the Assumption 2, given T > 0, for every ǫ > 0 small enough there
exist sequences Ṽh,j,ǫ, j ∈ {0, 1} and approximate solutions Ṽh,ǫ to the wave equation on Ω̃
with Dirichlet boundary condition






∂2
t V − ∂2

xV − (1 + xb(ỹ))∂2
ỹV = 0, on Ω̃ × R

V |t=0 = Ṽh,0,ǫ, ∂tV |t=0 = Ṽh,1,ǫ,
V |∂Ω×[0,T ] = 0,

(2.4)

which satisfy the following conditions:

• First, Ṽh,ǫ is an approximate solution to (2.4) in the sense that

∂2
t Ṽh,ǫ − ∂2

xṼh,ǫ − (1 + xb(ỹ))∂2
ỹ)Ṽh,ǫ = OL2(Ω̃)(1/h), ‖Ṽh,ǫ‖L2(Ω̃) ≤ 1. (2.5)

• Secondly, Ṽh,ǫ writes as a sum

Ṽh,ǫ(x, ỹ, t) =

N∑

n=0

vn
h,ǫ(x, ỹ, t), (2.6)

where the functions vn
h,ǫ(x, ỹ, t) satisfy the following conditions:
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– for 4 < r <∞:

{
‖vn

h,ǫ(., t)‖Lr(Ω̃) ≥ Ch−
3
2
( 1
2
− 1

r
)− 1

6
( 1
4
− 1

r
)+2ǫ,

supǫ>0(‖vn
h,ǫ(., t)‖L2(Ω̃) + h‖∂tv

n
h,ǫ(., t)‖L2(Ω̃)) ≤ 1,

(2.7)

where the constants C > 0 are independent of h and n;

– vn
h,ǫ(x, ỹ, t) are essentially supported for the time variable t in almost disjoint in-

tervals of time and for the tangential variable ỹ in almost disjoint intervals.

– Ṽh,ǫ are supported for the normal variable x ∈ [0, C̃ǫh
(1−ǫ)/2] with C̃ǫ > 0 in-

dependent of h and localized at spatial frequency 1
h

in the tangential variable ỹ.
Moreover,

sup
ǫ>0

‖Ṽh,ǫ‖L2(Ω̃) . 1, sup
ǫ>0

‖∂ỹṼh,ǫ‖L2(Ω̃) .
1

h
, sup

ǫ>0
‖∂2

ỹ Ṽh,ǫ‖L2(Ω̃) .
1

h2
; (2.8)

In the rest of this section we show how Theorem 2.1 implies Theorem 1.2. Suppose
we have proved Theorem 2.1. Let (Ω, g) be a Riemannian manifold of dimension d > 2
satisfying the assumptions of Theorem 1.2 and let (0, y0, ξ0, η0) ∈ T ∗Ω be a point satisfying
(2.2), (2.3). If e1 is the eigenfunction corresponding to the strictly positive eigenvalue of
the second fundamental form associated to the metric g then from (2.1) it follows that local
coordinates can be chosen such that y0 = 0 ∈ Rd−1, η0 = (1, 0, .., 0) ∈ Rd−1 and such that
the Laplace-Beltrami operator ∆g be given by

∆g = ∂2
x +

d−1∑

j,k=1

Bj,k(x, y)∂j∂k, (2.9)

where for x and |y′| close to zero

B1,1(x, y) = 1 + x∂xB1,1(0, y1, 0) +O(x|y′|) +O(x2),

and for j ∈ {2, .., d− 1}
B1,j(x, y) = x∂xB1,j(0, y) +O(x2).

Define Ω̃ = {(x, y1)|x > 0, y1 ∈ R} the two dimensional manifold equipped with the metric

g̃(x, y1, ξ, η1) = ξ2 + (1 + xb(y1))η
2
1, b(y1) := ∂xB1,1(0, y1, 0), b(0) = 1.

Applying Theorem 2.1 near (0, y1 = 0, 0, η1 = 1) ∈ T ∗Ω̃ we obtain, for ǫ > 0 small enough,
sequences Ṽh,ǫ,j, j ∈ {0, 1} such that the solution Ṽh,ǫ to (2.4) satisfies (2.6), (2.7) and (2.8).
Let χ ∈ C∞

0 (Rd−2) be a cut-off function supported in the coordinate chart such that χ = 1
in a neighborhood of 0 ∈ Rd−2 and for j ∈ {0, 1} set

Vh,ǫ,j(x, y1, y
′) := h−(d−2)/4Ṽh,ǫ/3,j(x, y1)e

− |y′|2

2h χ(y′). (2.10)
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Proposition 2.2. The solution Vh,ǫ to the wave equation (1.6) with Dirichlet boundary
condition where ∆g is given by (2.9) and with initial data (Vh,ǫ,0, Vh,ǫ,1) defined in (2.10)
satisfies (1.7), (1.8).

Remark 2.3. Notice that Proposition 2.2 implies immediately Theorem 1.2.

Proof. We proceed by contradiction. Let (q, r) be a sharp wave admissible pair in dimension
d > 2 with r > 4 and set

β(r, d) =
(d+ 1)

2
(
1

2
− 1

r
) +

1

6
(
1

4
− 1

r
).

Let us suppose to the contrary that the operator

sin t
√
−∆g : L2(Ω) → Lq([0, T ], Lr(Ω))

is bounded by h−β(r,d)+2ǫ. Let Ṽh,ǫ/3 be the approximate solution to (2.4) with initial data

(Ṽh,ǫ/3,j)j=0,1 satisfying all the conditions in Theorem 2.1. We define

Wh,ǫ(x, y, t) := h−(d−2)/4Ṽh,ǫ/3(x, y1, t)e
− |y′|2

2h χ(y′).

Lemma 2.4. There exists constants cj, j = 0, 1, independent of h such that Wh,ǫ satisfies

‖Wh,ǫ‖Lq([0,T ],Lr(Ω)) ≥ c0h
−β(r,d)+2ǫ/3, (2.11)

‖Wh,ǫ|t=0‖L2(Ω) + h‖∂tWh,ǫ|t=0‖L2(Ω) ≤ c1. (2.12)

Proof. Indeed, using the special form of Ṽh,ǫ provided by Theorem 2.1 we can estimate

‖Wh,ǫ‖q
Lq([0,T ],Lr(Ω)) =

∫ T

0

‖Wh,ǫ‖q
Lr(Ω)dt (2.13)

=
(∫ T

0

‖
N∑

n=0

vn
h,ǫ/3‖q

Lr(Ω̃)
dt

)
× ‖h−(d−2)/4e−

|y′|2

2h χ(y′)‖q
Lr(Rd−2)

(2.14)

≥ cǫh
− q(d−2)

2
( 1
2
− 1

r
)

∑

k≤N/5

∫

t∈Ik

‖
N∑

n=0

vn
h,ǫ/3‖q

Lr(Ω̃)
dt+O(h∞) (2.15)

≃ cǫh
− q(d−2)

2
( 1
2
− 1

r
)

∑

k≤N/5

|Ik|‖v0
h,ǫ/3‖q

Lr(Ω̃)
+O(h∞) (2.16)

≃ cǫh
− q(d−2)

2
( 1
2
− 1

r
)‖v0

h,ǫ/3‖q

Lr(Ω̃)
+O(h∞) (2.17)

≥ c0,ǫh
(−β(r,d)+2ǫ/3)q . (2.18)

To estimate the L2(Ω) norm we use again the fact that vn
h,ǫ and its time derivative have

disjoint essential supports in the tangential variable y1. For Wh,ǫ(., 0) we have, for instance

‖Wh,ǫ|t=0‖L2(Ω) = ‖Ṽh,ǫ/3,0‖L2(x,y1)‖h−(d−2)/4e−
|y′|2

2h χ(y′)‖L2(Rd−2) . 1.
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Let Vh,ǫ be the solution to the wave equation (1.6) with initial data (Vh,ǫ,j)j=0,1 and write

Vh,ǫ = Wh,ǫ + wh,ǫ,err.

If we denote ∆g̃ = ∂2
x + (1 + xb(y1))∂

2
y1

, �g̃ = ∂2
t − ∆g̃, then Wh,ǫ solves






�g̃Wh,ǫ = �g̃Ṽh,ǫ/3h
−(d−2)/4e−

|y′|2

2h χ(y′),
Wh,ǫ|t=0 = Vh,ǫ,0, ∂tWh,ǫ|t=0 = Vh,ǫ,1,
Wh,ǫ|∂Ω×[0,T ] = 0.

(2.19)

Since Vh,ǫ is a solution to (1.6), wh,ǫ,err must satisfy the following equation





�gwh,ǫ,err = −�g̃Ṽh,ǫ/3h
−(d−2)/4e−

|y′|2

2h χ(y′) − (1 + xb(y1))∂
2
y1
Wh,ǫ+

+
∑d−1

j,k=1Bj,k(x, y)∂
2
yj ,yk

Wh,ǫ,

wh,ǫ,err|t=0 = 0, ∂twh,ǫ,err|t=0 = 0,
wh,ǫ|∂Ω×[0,T ] = 0,

(2.20)

where we set �g := ∂2
t − ∆g and we used that

∆g − ∆g̃ = −(1 + xb(y1))∂
2
y1

+
d−1∑

j,k=1

Bj,k(x, y)∂
2
yj ,yk

.

Lemma 2.5. The solution wh,ǫ,err to the wave equation (2.20) satisfies

‖(∂2
t − ∆g)wh,err‖L2(Ω) ≃ O(h−2(1−(1−ǫ/3)/2))‖wh,err‖L2(Ω) (2.21)

≥ O(h−ǫ/3)‖wh,err‖Ḣ−1(Ω). (2.22)

Moreover,
‖wh,ǫ,err‖Lq([0,T ],Lr(Ω)) ≤ Cǫh

−β(r,d)+2ǫ−ǫ/3. (2.23)

Proof. We start with (2.23). Assume we have already proved (2.21). The Duhamel formula
for wh,ǫ,err writes

wh,ǫ,err(x, y, t) =

∫ t

0

sin(t− s)
√
−∆g√

−∆g

((∂2
t − ∆g)wh,ǫ,err(x, y, s))ds. (2.24)

Using the Minkowski inequality together with (2.21) we find

‖wh,ǫ,err(., t)‖Lr(Ω) = ‖
∫ t

0

sin(t− s)
√
−∆g√

−∆g

((∂2
t − ∆g)wh,ǫ,err(., s))ds‖Lr(Ω) (2.25)

.

∫ t

0

‖sin(t− s)
√
−∆g√

−∆g

((∂2
t − ∆g)wh,ǫ,err(., s))‖Lr(Ω)ds (2.26)

. h−β(r,d)+2ǫ‖(
√
−∆g)

−1(∂2
t − ∆g)wh,ǫ,err‖L1([0,T ],L2(Ω)) (2.27)

≃ h−β(r,d)+2ǫ‖(∂2
t − ∆g)wh,ǫ,err‖L1([0,T ],Ḣ−1(Ω)) (2.28)

. h−β(r,d)+2ǫ−ǫ/3, (2.29)
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where in the third line we used that the wave operator sin t
√

−∆g was supposed to be

bounded by h−β(r,d)+2ǫ and where in the last line we used (2.21).

We now proceed with (2.21). In order to do this we use the special form of ∆g and
the fact that Ṽh,ǫ/3(x, y1, t) (and therefore Vh,ǫ) is supported for x ∈ [0, C̃ǫ/3h

(1−ǫ/3)/2]. The
inhomogeneous part of the equation (2.20) writes

�Ṽh,ǫ/3h
−(d−2)/4e−

|y′|2

2h χ(y′) + (1 + xb(y1))∂
2
y1
Wh,ǫ −

d−1∑

j,k=1

Bj,k(x, y)∂
2
yj ,yk

Wh,ǫ. (2.30)

The L2(Ω) norm of �Ṽh,ǫ/3h
−(d−2)/4e−

|y′|2

2h χ(y′) is estimated using the last condition in The-
orem 2.1 and its contribution in the norm of the non-linear term of (2.20) is OL2(Ω)(1/h).
The last two terms in (2.30) write

− (1 + xb(y1))∂
2
y1
Wh,ǫ +

d−1∑

j,k=1

Bj,k(x, y)∂
2
yj ,yk

Wh,ǫ = h−(d−2)/4e−
|y′|2

2h ×

×
[(
B1,1(x, y) − 1 − b(y1)

)
χ(y′)∂2

y1
Ṽh,ǫ/3 −

1

h

d−1∑

j=2

B1,j(x, y)
(
yjχ(y′) + h∂yj

χ(y′)
)
∂y1 Ṽh,ǫ/3

+
1

h2

d−1∑

j,k=2

(
yjykχ(y′) − h(yj∂yk

χ(y′) + yk∂yj
χ(y′) + δj=k) + h2∂2

yj ,yk
χ(y′)

)
Bj,k(x, y)Ṽh,ǫ/3

]
.

(2.31)

If |y′| ≥ h(1−ǫ′)/2 for some ǫ′ > 0, then e−
|y′|2

2h ≤ CMh
M , for all M ≥ 0, thus taking ǫ′ = ǫ/3

we can estimate the L2(Ω) norm of (2.31) as follows

‖ − (1 + xb(y1))∂
2
y1
Wh,ǫ +

d−1∑

j,k=1

Bj,k(x, y)∂yj
∂yk

Wh,ǫ‖L2(Ω)

. h−2+(1−ǫ/3)‖Ṽh,ǫ/3‖L2(Ω̃)

. h−1−ǫ/3, (2.32)

where we used that

sup
ǫ>0

‖Ṽh,ǫ/3‖L2(Ω̃) . 1, sup
ǫ>0

‖∂y1 Ṽh,ǫ/3‖L2(Ω̃) .
1

h
, sup

ǫ>0
‖∂2

y1
Ṽh,ǫ/3‖L2(Ω̃) .

1

h2
.
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In the same way we can estimate

‖ − (1 + xb(y1))∂
2
y1
Wh,ǫ +

d−1∑

j,k=1

Bj,k(x, y)∂
2
yj ,yk

Wh,ǫ‖Ḣ−1(Ω)

. h‖ − (1 + xb(y1))∂
2
y1
Wh,ǫ +

d−1∑

j,k=1

Bj,k(x, y)∂
2
yj ,yk

Wh,ǫ‖L2(Ω)

. h−ǫ/3. (2.33)

For the last inequality we used the following lemma

Lemma 2.6. Let f(x, y) : Ω → R be localized at frequency 1/h in the y ∈ Rd−1 variable, i.e.
such that there exists ψ ∈ C∞

0 (Rd−1 \ {0}) with ψ(hDy)f = f . Then there exists a constant
C > 0 independent of h such that one has

‖f‖Ḣ−1(Ω) ≤ Ch‖f‖L2(Ω).

Proof. (of Lemma 2.6:) Since ψ(hDy)f = f we have

‖f‖Ḣ−1(Ω) = sup
‖g‖Ḣ1(Ω)≤1

∫
ψfḡ ≤ ‖f‖L2(Ω) × sup

‖g‖Ḣ1(Ω)≤1

‖ψ(hDy)g‖L2(Ω)

≤ h‖f‖L2(Ω)‖ψ̃(hDy)∇yg‖L2(Ω) ≤ Ch‖f‖L2(Ω),

where we set ψ̃(η) = |η|−1ψ(η). Hence Lemma 2.6 is proved.

End of the proof of Proposition 2.2:

Recall that we have assumed that the operator

sin t
√
−∆g : L2(Ω) → Lq([0, T ], Lr(Ω))

is bounded by h−β(r,d)+2ǫ. This assumption implies

‖Vh,ǫ‖Lq([0,T ],Lr(Ω)) . C0,ǫh
−β(r,d)+2ǫ(‖Vh,ǫ,0‖L2(Ω) + ‖Vh,ǫ,1‖Ḣ−1(Ω)) (2.34)

. C1,ǫh
−β(r,d)+2ǫ, (2.35)

where Cj,ǫ > 0 are independent of h. If (2.34) were true, together with (2.11) it would yield

h−β(r,d)+2ǫ/3 . ‖Wh,ǫ‖Lq([0,T ],Lr(Ω)) (2.36)

. (‖Vh,ǫ‖Lq([0,T ],Lr(Ω)) + ‖wh,ǫ,err‖Lq([0,T ],Lr(Ω))). (2.37)

The last estimate together with (2.23) and (2.34) gives a contradiction, since it would imply

h−β(r,d)+2ǫ/3 . h−β(r,d)+2ǫ + h−β(r,d)+2ǫ−ǫ/3

which is obviously not true. The proof is complete.
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3 Form of an approximate solution in 2D

We are reduced to prove Theorem 2.1. We may suppose T = 1. In what follows we fix
ǫ > 0 small enough and we do not mention anymore the dependence on ǫ of the solution
of the wave equation (1.1) we shall construct. We keep the notations of Theorem 1.2 in
the two-dimensional case. Let therefore Ω be a Riemannian manifold of dimension d = 2
with smooth boundary ∂Ω satisfying the assumptions of Theorem 2.1 and let g denote its
Riemannian metric. Let local coordinates be chosen such that Ω be given by

Ω = {(x, y)|x > 0, y ∈ R}, (3.1)

and the Laplace-Beltrami operator ∆g associated to the metric g be given by

∆g = ∂2
x + (1 + xb(y))∂2

y , (3.2)

where b is a smooth function. Set X = Ω×Rt, let �g = ∂2
t −∆g denote the wave operator on

X and let p ∈ C∞(T ∗X \ o) be the principal symbol of �g, which is homogeneous of degree
2 in T ∗X \ o (where we write o for the ”zero section” of T ∗X),

p(x, y, t, ξ, η, τ) = ξ2 + (1 + xb(y))η2 − τ 2. (3.3)

The characteristic set P := Char(p) ⊂ T ∗X \ o of �g is defined by p−1({0}). If we denote
N∗∂Ω the conormal bundle of ∂X we notice that Char(p) ∩ N∗∂Ω = ∅, meaning that the
boundary is non-characteristic for �g.

We briefly recall some definitions we shall use in the rest of the paper (for details see [14]
or [34], for example). Let us consider the Dirichlet problem for �g:

�gu = 0, u|∂X = 0. (3.4)

The statement of the propagation of singularities of solutions to (3.4) has two main in-
gredients: locating singularities of a distribution, as captured by the wave front set, and
describing the curves along which they propagate, namely the bicharacteristics. Both of
these are closely related to an appropriate notion of ”phase space”, in which both the wave
front set and the bicharateristics are located. On manifolds without boundary, this phase
space is the standard cotangent bundle T ∗X. In presence of boundaries the phase space is
the b-cotangent bundle, bT ∗X. Let o denote the zero section of bT ∗X. Then bT ∗X \ o is
equipped with an R+-action (fiberwise multiplication) which has no fixed points. There is
a natural non-injective ”inclusion” π : T ∗X →b T ∗X. We define the elliptic, glancing and
hyperbolic sets in T ∗∂X as follows:

E = {q ∈ π(T ∗X) \ o|π−1(q) ∩ Char(p) = ∅},

G = {q ∈ π(T ∗X) \ o|Card(π−1(q) ∩ Char(p)) = 1},
H = {q ∈ π(T ∗X) \ o|Card(π−1(q) ∩ Char(p)) ≥ 2},
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with Card denoting the cardinality of a set; each of these is a conic subset of π(T ∗X) \ o.
Note that in T ∗X̊, π is the identity map, so every point q ∈ T ∗X̊ is either elliptic or glancing,
depending on weather q /∈ Char(p) or q ∈ Char(p).

The canonical local coordinates on T ∗X will be denoted (x, y, t, ξ, η, τ), so one forms are
α = ξdx + ηdy + τdt. Let (ρ, ϑ) = (x, y, t, ξ, η, τ) on T ∗X near π−1(q), q ∈ T ∗∂X, and
corresponding coordinates (y, t, η, τ) on a neighborhood U of q in T ∗∂X. Consequently,

E ∩ U = {(y, t, η, τ)|τ 2 < η2},

G ∩ U = {(y, t, η, τ)|τ 2 = η2},
H ∩ U = {(y, t, η, τ)|τ 2 > η2}.

Let ρ = ρ(s) = (x, y, t)(s), ϑ = ϑ(s) = (ξ, η, τ)(s) be a bicharacteristic of p(ρ, ϑ), i.e. such
that (ρ, ϑ) satisfies

dρ

ds
=
∂p

∂ϑ
,

dϑ

ds
= −∂p

∂ρ
, p(ρ(0), ϑ(0)) = 0. (3.5)

We say that (ρ(s), ϑ(s))|s=0 on the boundary ∂X is a gliding point if it satisfies

x(ρ(0)) = 0,
d

ds
x(ρ(0)) = 0,

d2

ds2
x(ρ(0)) < 0. (3.6)

This is equivalent to saying that (ρ, ϑ) ∈ T ∗X \ o is a gliding point if

p(ρ, ϑ) = 0, {p, x}|(ρ,ϑ) = 0, {{p, x}, p}|(ρ,ϑ) > 0. (3.7)

The assumption on the domain Ω is equivalent to saying that there exists a point (0, y0, ξ0, η0)
on T ∗Ω through which there exists a bicharacteristic passing tangentially and having exactly
second order contact with ∂Ω. From (3.7) we see that this last condition writes

τ 2 = (1 + xb(y))η2|x=0, {p, x} =
∂p

∂ξ
= 2ξ0 = 0, (3.8)

{{p, x}, p} = {∂p
∂ξ
, p} = 2b(y0)η

2
0 > 0. (3.9)

We can suppose that b(y0) = 1 and that for some small 0 < b0 < 1/4 we have |b(y)− 1| ≤ b0
for y in a fixed neighborhood N of y0. Denote the gliding point (in T ∗∂X) by

π(ρ0, ϑ0) = (y0, 0, η0, τ0 = −η0). (3.10)

Suppose without loss of generality that y0 = 0, η0 = 1, thus π(ρ0, ϑ0) = (0, 0, 1,−1) ∈ G.
We define the semi-classical wave front set WFh(u) of a distribution u on R3 to be the
complement of the set of points (ρ = (x, y, t), ζ = (ξ, η, τ)) ∈ R3 × (R3 \ 0) for which there
exists a symbol a(ρ, ζ) ∈ S(R6) such that a(ρ, ζ) 6= 0 and for all integers m ≥ 0 the following
holds

‖a(ρ, hDρ)u‖L2 ≤ cmh
m.
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3.1 Choice of an approximate solution

We look for an approximate solution to the equation (1.6) of the form

uh(x, y, t) =

∫

ξ,η,τ

e
i
h
(θ+ζξ+ ξ3

3
)ghdξdηdτ, (3.11)

where the phase functions θ(x, y, t, η, τ), ζ(x, y, η, τ) are real valued and homogeneous in
(η, τ) of degree 1 and 2/3, respectively, and where we have, moreover,

ζ0(η, τ) := ζ(0, y, η, τ) = −(τ 2 − η2)

η2
η2/3. (3.12)

Here gh is a symbol to be determined in the next sections. The functions θ, ζ must solve
an eikonal equation that we derive in what follows. We denote by < ., . > the symmetric
bilinear form obtained by polarization of the second order homogeneous principal symbol p
of the wave operator �g,

< da, db >= ∂xa∂xb+ (1 + xb(y))∂ya∂yb− ∂ta∂tb. (3.13)

Applying the wave operator h2�g to uh, the main contribution becomes

(∂xθ + ξ∂xζ)
2 + (1 + xb(y))(∂yθ + ξ∂yζ)

2 − (∂tθ + ξ∂tζ)
2 =

=< dθ, dθ > −2ξ < dθ, dζ > +ξ2 < dζ, dζ > . (3.14)

In order to eliminate this term after integrations by parts in ξ we ask that the right hand
side of (3.14) to be a nontrivial multiple of ∂ξΦ, where we set

Φ = θ + ζξ +
ξ3

3
. (3.15)

This is equivalent to determine θ, ζ solutions to
{
< dθ, dθ > −ζ < dζ, dζ >= 0,
< dθ, dζ >= 0.

(3.16)

The system (3.16) is a nonlinear system of partial differential equations, which is elliptic
where ζ > 0 (shadow region), hyperbolic where ζ < 0 (illuminated region) and parabolic
where ζ = 0 (caustic curve or surface). It is crucial that there is a solution of the form

φ± = θ ∓ 2

3
(−ζ)3/2 (3.17)

with θ, ζ smooth. In terms of (3.17), the eikonal equation takes the form

p(x, y, t, dφ±) = 0 (3.18)

by taking the sum and the difference of the equations (3.18). It is easy, by Hamilton-Jacobi
theory, to find many smooth solutions to the eikonal equation (3.18). Solutions with the
singularity (3.17) arise from solving the initial value problem for (3.18) off an initial surface
which does not have the usual transversality condition, corresponding to the fact that there
are bicharacteristics tangent to the boundary.
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3.1.1 Geometric reduction

Let X = Ω × R as before. Let p and q be functions on T ∗X with independent differentials
at a point (ρ, ϑ) ∈ T ∗X \ o. We denote by P and Q the hypersurfaces defined by p and q,
respectively.

Definition 3.1. We say that the hypersurfaces P , Q in the symplectic manifold T ∗X are
glancing surfaces at (ρ, ϑ) if

1. {p, q}((ρ, ϑ)) = 0,

2. {p, {p, q}}((ρ, ϑ)) 6= 0 and {q, {q, p}}((ρ, ϑ)) 6= 0.

In our case we take q to be the defining function of the boundary ∂Ω, therefor q = x,
and p the symbol of the wave operator �g defined in (3.3). Precisely,

Q = {q(x, y, t, ξ, η, τ) = x = 0}, P = {p = ξ2 + (1 + xb(y))η2 − τ 2 = 0}, (3.19)

which are glancing at (ρ0, ϑ0) defined in (3.10). The nondegeneracy conditions in Definition
3.1 hold at a point (ρ, ϑ) with {p, q} = 0 if and only if ∂Ω is strictly convex at (ρ, ϑ).

Remark 3.2. A model case of a pair of glancing surfaces is given by

QF = {qF (x, y, ξ, η, τ) = x = 0}, PF = {pF = ξ2 + (1 + x)η2 − τ 2 = 0}, (3.20)

which have a second order intersection at the point

(ρ̄0, ϑ̄0) := (0, y0 = 0, t0 = 0, 0, η0 = 1, τ0 = −1) ∈ T ∗XF \ o.

This model case was studied in [15]. There is a deep geometrical reason underlying the
similarity of the general gliding ray parametrice for (3.19) and the one for the model example
(3.20), which will facilitate solution to the eikonal equation.

Theorem 3.3. Let P and Q be two hypersurfaces in T ∗X\o satisfying the glancing conditions
in Definition 3.1 at (ρ0, ϑ0) ∈ P ∩ Q ⊂ T ∗X \ o. Then there exist real functions θ and ζ
which are C∞ in a conic neighborhood U of (ρ0, 1,−1) ∈ X×R2, are homogeneous of degrees
one and two-thirds, respectively, and have the following properties

• ζ0 := ζ |x=0 = −(τ 2 − η2)η−4/3 and ∂ζ |∂X > 0 on U ∩ ∂X × R2,

• dy,t(∂ηθ, ∂τθ) are linearly independent on U ,

• the system (3.16) holds in ζ ≤ 0 and in Taylor series on ∂X.

Moreover, ζ is a defining function for the fold set denoted Σ. By translation invariance in
time ζ is independent of t while the phase function θ is linear in the time variable.
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Remark 3.4. Theorem 3.3 determines the phase functions θ, ζ , solutions to the eikonal
equations (3.16). In what follows we shall use the construction of the model case (3.20) in
order to determine a parametrice for the general case (3.19). This will be possible using the
symplectomorphism generated by the restriction of the phase function θ to ∂X.

Remark 3.5. Notice in fact that if P and Q are the hypersurfaces in the symplectic space
T ∗X \ o defined in (3.19) and glancing at (ρ0, ϑ0) ∈ T ∗X \ o, then there exists a canonical
transformation

χ : Γ ⊂ T ∗XF \ o→ T ∗X \ o, (3.21)

defined in a conic neighborhood Γ of (ρ̄0, ϑ̄0) and taking (ρ̄0, ϑ̄0) to (ρ0, ϑ0) and the model
pair PF and QF to P and Q. The fact that χ, which is symplectic, maps QF onto Q means
that it defines a local canonical transformation from the quotient space of QF , modulo its
Hamilton fibration, to the corresponding quotient space of Q, which is naturally identified
as the cotangent space of the hypersurface

Q/RHq ≃ T ∗∂X.

Now, as we just said, on Q (and similarly on QF ) the symplectic form gives a Hamilton
foliation. Let this determine an equivalence relation ∼. Then Q ∩ P/ ∼ has the structure
of a symplectic manifold with boundary, and it is naturally isomorphic to the closure of the
”hyperbolic” set in T ∗∂X, the region over which real rays pass, and similarly QF ∩ PF/ ∼.

Therefor, the restriction of χ to T ∗∂XF , that we denote χ∂, is also a canonical transfor-
mation from a neighborhood γ ⊂ T ∗∂XF \ o of π(ρ̄0, ϑ̄0) to a neighborhood of π(ρ0, ϑ0) ∈
T ∗∂X \ o,

χ∂ : γ → T ∗∂X \ o, γ ⊂ T ∗∂XF \ o,
γ = {(y, t, η, τ) ∈ T ∗∂XF |∃ξ, (0, y, t, ξ, η, τ) ∈ Γ}

defined in the hyperbolic region by

χ−1
∂ : (y, t, dyθ0, dtθ0) → (dηθ0, dτθ0, η, τ), χ−1

∂ (π(ρ0, ϑ0)) = π(ρ̄0, ϑ̄0), (3.22)

where θ0 := θ|∂X is the restriction to ∂X of the phase function θ introduced in Theorem 3.3.

Remark 3.6. The map χ∂ has the important property that near π(ρ̄0, ϑ̄0), it conjugates the
billiard ball map δ± ⊂ (T ∗∂X \ o)× (T ∗∂X \ o) to the normal form δ±F introduced in (3.32)
in Section 3.2. Roughly speaking, the billiard ball maps are defined as follows: if (y, t, η, τ)
is a hyperbolic point and if ξ+ > 0 denotes the positive solution to p(0, y, t, ξ, η, τ) = 0 we
consider the integral curve (ρ(s), ϑ(s)) = exp(sHp)(0, y, t, ξ+, η, τ) of the Hamiltonian vector
field of p starting at (0, y, t, ξ+, η, τ); if it intersects transversally T ∗X|∂X at a time s1 > 0
and lies entirely in T ∗X̊ for s ∈ (0, s1) we set (0, y′, t′, ξ′−, η

′, τ ′) = exp(s1Hp)(0, y, t, ξ+, η, τ)
and define δ+(y, t, η, τ) := (y′, t′, η′, τ ′). Its local inverse is denoted δ−. An interpolating
Hamiltonian for the billiard ball maps δ± is ζ0 and we have δ±(y, t, η, τ) = exp(±4

3
H(−ζ0)3/2).
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3.1.2 Phase functions in the Friedlander’s model

In the Friedlander’s model of the half space ΩF := {(x, y) ∈ R+ ×R} with Laplace operator
defined by ∆F := ∂2

x + (1 + x)∂2
y studied in [15], the equation (3.18) has the solution

φ±
F = θF ∓ 2

3
(−ζF )3/2, (3.23)

where

θF (x, y, t, η, τ) = yη + tτ, ζF (x, y, η, τ) = (x− τ 2 − η2

η2
)η2/3, (3.24)

as can be seen by direct computation. This solution serves very much as a guide to the
general construction as we shall see in the next sections.

3.1.3 Phase functions associated to the special operator �g

Notice that in Section 2 we reduced the problem to the construction of a solution to the
wave equation (1.6) in the special two-dimensional case of the half-space Ω defined in (3.1)
together with the Laplace operator ∆g given in (3.2). Using the simple form of the symbol
of the associated wave operator �g we easily find

ζ(x, y, η, τ) = (xb(y) − τ 2 − η2

η2
)η2/3, (3.25)

where we recall that b(0) = 1 and that for y in a fixed neighborhood N of 0 we have
|b(y) − 1| ≤ b0 for some 0 < b0 < 1/4 small enough.

We do not determine θ explicitly, but we can manage to estimate its derivatives which
will be useful later. Using the second eikonal equation in (3.16) and the fact that ∂xζ |x=0 =
b(y)η2/3 with b(y) close to 1 for y close to 0 and η on the support of Ψ we have

∂xθ = −(1 + xb(y))
∂yζ

∂xζ
∂yθ = −(1 + xb(y))

x∂yb(y)

b(y)
∂yθ,

and introducing this in the first eikonal equation in (3.16) gives

(∂yθ)
2 =

τ 2 + (η2(1 + xb(y)) − τ 2)(b2(y) + (1 + xb(y))(x∂yb(y))
2)

(1 + xb(y))(1 + (1 + xb(y))(x∂yb(y))2/b2(y))
,

and we deduce

∂2
η,yθ0 =

ηb2(y)√
τ 2 + (η2 − τ 2)b2(y)

, ∂2
η,xθ0 = 0, (3.26)

∂2
τ,yθ0 =

τ(1 − b2(y))√
τ 2 + (η2 − τ 2)b2(y)

, ∂2
τ,xθ0 = 0. (3.27)

From (3.27) it follows that for y ∈ N and 0 ≤ x . a we have |∂2
τ,yθ| ≤ b0.
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3.2 A model operator

In [15] we proved Theorem 1.2 in the case of a two-dimesional, strictly convex domain
ΩF = {(x, y) ∈ R+ × R} with Laplace operator given by

�F = ∂2
t − ∂2

x − (1 + x)∂2
y . (3.28)

Remark 3.7. In this paper we want to construct examples for general manifolds with a
gliding ray, but the heart of the matter is well illustrated by the particular example studied
in [15] which will generalize using Melrose’s equivalence of glancing hypersurfaces theorem.
Therefor we start by recalling the main steps in the construction of [15] and then use the
particular solution of the model case to define an approximate solution for the more general
domain described in Section 3.

Let XF = ΩF × R and let pF ∈ C∞(T ∗XF \ o) denote the homogeneous symbol of the
model wave operator �F , pF (x, y, t, ξ, η, τ) = ξ2+(1+x)η2−τ 2. Consider the wave equation

{
∂2

t v − ∂2
xv − (1 + x)∂2

yv = 0
v|∂ΩF×[0,1] = 0.

(3.29)

We have chosen in [15] an approximate solution to the equation (3.29) of the form

uF,h(x, y, t) =
1

h

∫

ξ,η,τ

e
i
h
(yη+tτ+(x+1− τ2

η2 )η2/3ξ+ ξ3

3
)
gF (t, ξ, η, h)×

× Ψ(η)δ(
τ

h
= −η

h
(1 + a)1/2)dξdηdτ (3.30)

where the symbol gF is a smooth function independent of x, y, δ denotes the Dirac and
Ψ ∈ C∞

0 (R∗) is supported for η in a small neighborhood of 1, 0 ≤ Ψ(η) ≤ 1, Ψ(η) = 1 for η
near 1 and where a = hα for some α ∈ (0, 2

3
).

Remark 3.8. Notice that the case α = 0 would correspond to a data localized away from
the boundary: in this situation the finite speed of propagation of the wave flow yields the
same Strichartz estimates as in the flat case. Sharp Strichartz estimates follow even if
the data is very close to the boundary but the wave is transversal, in which case there is
only one reflection at the boundary. On the other hand, the case α = 2/3 corresponds to
considering highly-multiply reflected waves localized in a h2/3-neighborhood of the boundary
which propagate along the boundary (an example of such waves is given by the gallery
modes), when one should manage to prove the same result for general operators using the
parametrix introduced by Eskin [8] together with the approach in [15, Theorem 1.8]. Notice
that in [15, Thm.1.8] we proved sharp Strichartz estimates for data in the space of the gallery
modes, which are eigenfunctions of the Laplace operator which concentrate their energy near
the boundary and contribute in this way to large Lr(Ω) norms.

Remark 3.9. This specific choice of the solution to (3.29) is motivated by the following: if
v(t, x, y) satisfies (3.29), then taking the Fourier transform v̂ in time and tangential variable
it follows that v̂ can be expressed using Airy’s function Ai((x+1− τ2

η2 )η
2/3) and its derivative.
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Remark 3.10. The particular manifold studied in [15] is one for which the eigenmodes are
explicitly expressed in terms of Airy’s function and can be written as

eiyηAi(|η|2/3x− ωk),

where the domain is ΩF and the Dirichlet condition dictates that −ωk be the zeroes of the
Airy function Ai(−ωk) = 0. Rewriting the mode in the form

eiyηAi(|η|2/3(x− a)),

the eigenvalue is |η|(1 + a)1/2, which means that such a wave moves with velocity (1 + a)1/2

in the y direction. To construct wave-fronts that do not disperse requires superimposing
waves with the same value of a. If one ignores the boundary condition for the moment, the
superposition of such waves over a range η ≃ 1/hwould give, as can be seen by the asymptotic
expansions of the Airy function, a solution living in an h-depending neighborhood of the cusp

y − (1 + a)1/2t = ±|a− x|3/2, x ∈ [0, a].

The goal is to construct a similar solution that satisfies boundary conditions at x = 0, while
taking a as small as possible depending on h. Rather than attempt to deal with the zeros
of the Airy function, the boundary conditions are met by taking a superposition of localized
cusp solutions, each term in the sum being chosen to cancel off the boundary values of the
previous one. The relation between amplitudes in the sum is dictated by the billiard ball
maps.

We now concentrate on the approximate solution (3.30) and describe its properties:

After the change of variables ξ = η1/3s, the phase function ΦF of (3.30) becomes homo-
geneous of degree one in (η, τ) and its associated Lagrangian manifold writes

ΛΦF
:= {(x, y, t, s, η, τ)|s2 + (x+ 1 − τ 2

η2
) = 0, ∂ηΦF = 0, ∂τΦF = 0} ⊂ T ∗XF \ o. (3.31)

Let prF : ΛΦF
→ XF denote the natural projection and let ΣF be the set of singular points

of prF . The points where the Jacobian of d(prF ) vanishes lie over the caustic set, thus the
fold set is given by ΣF = {s = 0} and the caustic is defined by prF (ΣF ) = {x+(1− τ2

η2 ) = 0}.
If the symbol is chosen such that on the boundary to be localized away from the caustic

set prF (ΣF ), ΛΦF |∂XF
is the graph of a pair of canonical transformations, the billiard ball

maps δ±F . Roughly speaking, the billiard ball maps δ±F : T ∗∂XF → T ∗∂XF , defined on the
hyperbolic region H, continuous up to the boundary, smooth in the interior, are defined at
a point of T ∗∂XF by taking the two rays that lie over this point, in the variety Char(pF ),
and following the null bicharacteristic through these points until you pass over ∂XF again,
projecting such a point onto T ∗∂XF (a gliding point being ”a diffractive point viewed from
the other side of the boundary”, there is no bicharacteristic in T ∗∂XF through it, but in any
neighborhood of a gliding point there are hyperbolic points).
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In the model case the analysis is simplified by the presence of a large commutative group
of symmetries, the translations in (y, t), and the billiard ball maps have specific formulas

δ±F (y, t, η, τ) =
(
y ± 4(

τ 2

η2
− 1)1/2 ± 8

3
(
τ 2

η2
− 1)3/2, t∓ 4(

τ 2

η2
− 1)1/2 τ

η
, η, τ

)
. (3.32)

Away from prF (ΣF ) these maps have no recurrent points, since under iteration t((δ±F )n) →
±∞ as n→ ∞. The composite relation with n factors ΛΦF |x=0 ◦ ...◦ΛΦF |x=0 has, always away
from prF (ΣF ), n+ 1 components, obtained namely using the graphs of the iterates (δ+

F )n,

(δ±F )n(y, t, η, τ) = (y ± 4n(
τ 2

η2
− 1)1/2 ± 8

3
n(
τ 2

η2
− 1)3/2, t∓ 4n(

τ 2

η2
− 1)1/2 τ

η
, η, τ). (3.33)

All these graphs, of the powers of δ±F , are disjoint away from prF (ΣF ) and locally finite, in

the sense that only a finite number of components meet any compact subset of { τ2

η2 −1 > 0}.
Since (δ±F )n are all immersed canonical relations, it is necessary to find a parametrization of
each to get at least microlocal representations of the associated Fourier integral operators.
We see that a parametrization of ΛΦF |x=0

is

yη + tτ +
4

3
η(
τ 2

η2
− 1)3/2,

thus the iterated Lagrangians (ΛΦF |x=0)
◦n are parametrized by

yη + tτ +
4

3
nη(

τ 2

η2
− 1)3/2,

and the corresponding phase functions associated to (ΛΦF
)◦n will be given by

Φn
F = ΦF +

4

3
nη(

τ 2

η2
− 1)3/2. (3.34)

The domain ΩF being strictly convex, at each point on the boundary there is a bichar-
acteristic that intersects the boundary ∂ΩF tangentially having exactly second order con-
tact with the boundary and remaining in the complement of Ω̄F . In [15] we considered
(ρ̄0, ϑ̄0) ∈ T ∗ XF to be such a point and assumed without loss of generality that

π(ρ̄0, ϑ̄0) = (0, 0, 1,−1) ∈ T ∗∂XF ,

where π : T ∗XF →b T ∗XF is the natural, non-injective inclusion. In a neighborhood of
(ρ̄0, ϑ̄0) we then constructed a sequence un

F,h of approximate solutions to (3.29) of the form

un
F,h(x, y, t) =

1

h

∫

ξ,η,τ

e
i
h
Φn

F gn
F (t, ξ, η, h)Ψ(η)δ(

τ

h
= −η

h
(1 + a)1/2)dξdηdτ,
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Figure 1: Propagation of the cusp.

where Φn
F were the phase functions defined in (3.34) such that ΛΦn

F
= (ΛΦF

)◦n and where
the symbols gn

F have been chosen such that on the boundary the Dirichlet condition to be
satisfied by

UF,h(x, y, t) =

N∑

n=0

un
F,h(x, y, t).

In fact on the boundary {x = 0} the phases have two critical, non-degenerate points, thus
each un

F,h writes as a sum of two trace operators, Tr±(un
F,h), localized for y − (1 + a)1/2t

near ±2
3
na3/2, respectively, and in order to obtain a contribution OL2(h∞) on the boundary

we had to define the symbol gn+1
F such that Tr−(gn

F ) + Tr+(gn+1
F ) = OL2(h∞). This was

possible by Egorov theorem, as long as N ≪ a3/2/h. This last condition, together with the
assumption of finite time T = 1, allowed to estimate the number of iterations N and the
”distance to the gliding region” a. We finally found a = h

1−ǫ
2 for ǫ > 0 as small as we want.

The motivation of this construction came from the fact that near the caustic set prF (ΣF )
we noticed a singularity of cusp type for which we were able to estimate the Lr(Ω) norm.
Localizing the symbols at t = 0 in a small, fixed, neighborhood of the caustic set, we then
proved that the respective ”pieces of cusps” propagate until they reach the boundary but
that short after that their contribution becomes OL2(h∞), since as t increases, one quickly
quits a neighborhood of the Lagrangian ΛΦn

F
which contains the semi-classical wave front set

WFh(u
n
F,h) of un

F,h. This argument is valid for all un
F,h, thus the approximate solutions un

F,h

have almost disjoints essential supports and the Lq([0, 1], Lr(Ω)) norms of the sum Uh can
be bounded from below by the sum of the Lr(Ω) norms of each un

F,h on small intervals of
time of size

√
a.
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3.2.1 Construction of an approximate solution in the model case

In this section we recall the construction of the symbols for the model case of the wave
operator �F defined by (3.28). In Section 3.2 we introduced the approximate solution used
in [15]. Using the Dirac distribution we easily get

uF,h(x, y, t) =

∫

ξ,η

e
i
h
(θF +ζF ξ+ ξ3

3
)gF (t, ξ, η, h)dξdη, (3.35)

where the symbol gF is a smooth function supported for η in a small neighborhood of 1 and
where a = hδ, 0 < δ < 2/3 will be chosen later. Recall from (3.24) that the model phase
functions are given by

θF (x, y, t, η, τ) = yη + tτ, ζF (x, y, η, τ) = (x− τ 2 − η2

η2
)η2/3,

and on the support of the symbol of (3.30) we have τ = −(1 + a)1/2η. Applying the wave
operator �F to uF,h and integrating by parts with respect to ξ using the eikonal system
(3.16) gives

�FuF,h(x, y, t) =

∫
e

i
h
(θF +ζF ξ+ ξ3

3
)
(
∂2

t gF +
i

h
2τ∂tgF +

1

h2
η4/3((x−A)η2/3 + ξ2)gF

)
dξdη

=

∫
e

i
h
(θF +ζF ξ+ ξ3

3
)
(
∂2

t gF +
i

h
(η4/3∂ξgF + 2τ∂tgF )

)
dξdη. (3.36)

Let ΦF = θF + ζF ξ + ξ3

3
. After the change of variables ξ = η1/3s, ΦF becomes homogeneous

of degree 1 in η and the transport equation in (3.36) becomes independent of the variable η.

3.2.2 Choice of the symbols and main properties

Definition 3.11. Let λ ≥ 1. For a given compactK ⊂ R we define the space SK(λ), consisting
of functions ̺(z, λ) ∈ C∞(R) which satisfy

1. supz∈R,λ≥1 |∂α
z ̺(z, λ)| ≤ Cα, where Cα are constants independent of λ,

2. If ψ(z) ∈ C∞
0 is a smooth function equal to 1 in a neighborhood of K, 0 ≤ ψ ≤ 1 then

(1 − ψ)̺ ∈ OS(R)(λ
−∞).

Here S(R) denotes the Schwartz space of rapidly decreasing functions.

An example of function ̺(z, λ) ∈ SK(λ), K ⊂ R is the following: let k(z) be the smooth
function on R defined by

k(z) =

{
C exp (−1/(1 − |z|2)), if |z| < 1,
0, if |z| ≥ 1,

where C is a constant chosen such that
∫

R
k(z)dz = 1. Define a mollifier kλ(z) := λk(λz)

and let ˜̺ ∈ C∞
0 (K) be a smooth function with compact support included in K. If we set

̺(z, λ) = (˜̺∗ kλ)(z), then one can easily check that ̺ belongs to SK(λ).
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Let ǫ > 0 be fixed, small enough and let a = h(1−ǫ)/2. In what follows we continue to
write a instead of replacing it by the respective power of h to keep the notations in [15].

We also let λ = λ(h) = a3/2/h and define K0 = [−c0, c0] for some small 0 < c0 < 1 and
let ̺(., λ) ∈ SK0(λ) be the smooth function defined in Definition 3.11. We define

gF (t, ξ, η, h) = ̺(
t+ 2ξ(1 + a)1/2η−1/3

2(1 + a)1/2a1/2
, λ)Ψ(η), (3.37)

where Ψ ∈ C∞
0 (R∗) is supported for η in a small neighborhood of 1 and 0 ≤ Ψ(η) ≤ 1.

Proposition 3.12. ([15, Prop.6]) On the boundary uF,h writes (modulo OL2(λ−∞)) as a
sum of two trace operators,

uF,h(0, y, t) =
∑

±
Tr±(uF,h)(y, t), (3.38)

where

Tr±(uF,h)(y, t) := h1/3

∫

η

e
i
h
(yη−t(1+a)1/2η∓ 2

3
a3/2η)Ψ(η)(ηλ)−1/6×

× I±(̺(., λ))η(
t

2(1 + a)1/2a1/2
, λ)dη, (3.39)

where I±(̺(., λ))η(z, λ) are given by

I±(̺(., λ))η(z, λ) = e±iπ/2−iπ/4 ηλ

2π

∫

w

eiηλ(w(z−z′)∓ 2
3
((1−w)3/2−1))κ(w)a±(w, ηλ)̺(z′, λ)dw.

(3.40)
Here κ is a smooth function supported for w as close as we want to 0 and

a±(w, η, λ) ≃ (1 − w)−1/4
∑

j≥0

a±,j(−1)−j/2(1 − w)−3j/2(ηλ)−j

are the asymptotic expansions of the symbols of the Airy functions. Moreover, the symbols
k(w)a±(w, ηλ) are elliptic at w = 0.

Proposition 3.13. ([15, Lemma 4]) Let p ∈ Z and Kp = [−c0 + p, c0 + p]. Then for some
small 0 < c0 < 1 and η belonging to the support of Ψ we have

I±,η : SKp(λ) → SKp∓1(λ).

Proposition 3.14. ([15, Chp.3.3]) For η belonging to the support of Ψ the operators J±,η

defined for some λ̃ ≥ 1 and ˘̺ ∈ SK∓1(λ̃) by

J±(˘̺(., λ̃))η(z
′, λ) :=

e∓iπ/2+iπ/4 ηλ

2π

∫
eiηλ((z′−z)w± 2

3
((1−w)3/2−1))b±(w, ηλ)˘̺(z, λ̃)dzdw (3.41)
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where b±(w, ηλ) = k(w)
a±(w,ηλ)

are asymptotic expansions in (ηλ)−1 satisfy

˘̺(., λ̃) = I±(J±(˘̺(., λ̃))η(., λ))η(., λ) +OS(R)(λ
−∞) +OS(R)(λ̃

−∞),

̺(., λ̃) = J±(I±(̺(., λ̃))η(., λ))η(., λ) +OS(R)(λ
−∞) +OS(R)(λ̃

−∞).

3.2.3 Iteration

In this section we iterate the preceding construction a sufficiently large number of times,
such that the sum of the iterates satisfies the Dirichlet boundary condition in finite time.
Here we just recall the main results of [15, Section 3.3.1].

Proposition 3.15. ([15, Prop.7]) Let N ≃ λhǫ and 1 ≤ n ≤ N . For η ∈ supp(Ψ) we have

(J+(.)η ◦ I−(.)η)
◦n : SK0(λ) → SK2n(λ/n) uniformly in n. (3.42)

Notice that since λ/n ≥ h−ǫ ≫ 1, then OS(R)(λ
−∞) = OS(R)((λ/n)−∞) = OS(R)(h

∞).

Moreover, if Tk denotes the translation operator which to a given function ̺(z) associates
̺(z + k) then the operator defined above writes as a convolution

(T1 ◦ J+(.)η ◦ I−(.)η ◦ T1)
◦n = (Fηλ)

∗n,

where

(Fηλ)
∗n(z) =

ηλ

2π

∫

w

eiηλ(wz+n(2w+ 4
3
((1−w)3/2−1))

(
κ(w)a+(w, ηλ)b−(w, ηλ)

)n

dw. (3.43)

Definition 3.16. Let ̺(., λ) ∈ SK0(λ) and η ∈ supp(Ψ). For 1 ≤ n ≤ N , N ≃ λhǫ set

̺n(z, η, λ) := (−1)n(T1 ◦ J+(.)η ◦ I−(.)η ◦ T1)
n(̺(., λ))(z), ̺0(z, η, λ) = ̺(z, λ).

From Proposition 3.15 it follows that ̺n(z, η, λ) ∈ SK0(λ/n).

Definition 3.17. For 0 ≤ n ≤ N with N ≃ λhǫ also define

un
F,h(x, y, t) :=

∫

s,η

e
i
h
Φn

F (x,y,t,η1/3s,η,−(1+a)1/2η)×

× ̺n(
t+ 2η1/3s(1 + a)1/2

2(1 + a)1/2a1/2
− 2n, η, λ)Ψ(η)η1/3dsdη, (3.44)

where

Φn
F (x, y, t, ξ, η, τ) = θF (x, y, t, η, τ) + ξζF (x, y, η, τ) +

ξ3

3
+

4

3
n(−ζF,0)

3/2(η, τ).

Proposition 3.18. ([15, Prop.8]) This choice of the symbols gives for all 0 ≤ n ≤ N − 1

Tr−(un
F,h)(y, t) + Tr+(un+1

F,h )(y, t) = OL2(λ−∞). (3.45)
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Proof. The equality (3.45) follows from the relation

eiπ/2I−(T1(̺
n(., η, λ)))η + e−iπ/2 ◦ I+(T−1(̺

n+1(., η, λ)))η = OS(R)(λ
−∞),

together with the fact that the operators I±,η are of convolution type so they commute with
translations.

Proposition 3.19. ([15, Lemma 4.3]) If 0 ≤ n ≤ N , un
F,h(., t) is essentially supported for t

in the interval

[4na1/2 − 2a1/2(1 + c0), 4na
1/2 + 2a1/2(1 + c0)](1 + a)1/2,

meaning that for t outside this interval its contribution is OL2(h∞).

3.3 Construction of an approximate solution to (1.6)

In this section we construct an approximate solution to (1.6) satisfying Theorem 2.1. It
will be essentially based on the model construction recalled in Section 3.2 together with the
Melrose’s equivalence of glancing surfaces Theorem 3.3.

Recall the form of the approximate solution uh we considered in (3.11), where the func-
tions θ and ζ are those given in Theorem 3.3 and where the symbol has to be determined.
Away from the caustic set defined by the locus where ξ = ζ = 0, there are two main contri-
butions in uh denoted uh,± with phase functions φ± = θ ∓ 2

3
(−ζ)3/2 given in (3.17). These

are the phases corresponding to the Airy functions A±(ζ) and one can think (at least away
from the boundary x = 0) of the part uh,− corresponding to A−(ζ) as a free wave or the
”incoming piece”: after hitting the boundary it gives rise to the outgoing one which cor-
responds to A+(ζ)A−(ζ0)

A+(ζ0)
with phase −2

3
(−ζ)3/2 + 4

3
(−ζ0)3/2. The oscillatory part 4

3
(−ζ0)3/2

corresponds to the billiard ball map shift corresponding to reflection.

Therefor, inspired from the Friedlander’s case, in order to obtain a solution to (1.6)
satisfying the Dirichlet boundary condition we construct a superposition un

h of localized cusp
solutions to (1.6), where u0

h is of the form (3.11), each term in the sum being chosen to cancel
off the boundary values of the previous one. Precisely, we take un of the form

un
h(x, y, t) =

∫

ξ,η,τ

e
i
h
Φn(x,y,t,ξ,η,τ)gn

hdξdηdτ, (3.46)

for some symbols gn
h suitably chosen and where the choice of the phase functions

Φn(x, y, t, ξ, η, τ) := θ(x, y, t, η, τ) + ξζ(x, y, η, τ) +
ξ3

3
+

4

3
n(−ζ0)3/2(η, τ) (3.47)

is dictated by the billiard ball maps, so that on the boundary the following holds:

un
h,− + un+1

h,+ = OL2(h∞). (3.48)
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3.3.1 The boundary condition

We have to determine the symbols gn
h in (3.46) such that un

h be approximate solution to (1.6)
in a sense to be precise. We start by defining their restriction to the boundary, using the
condition (3.48).

We consider an operator J

J(f)(y, t) :=
1

(2πh)2

∫

η,τ

e
i
h

θ0(y,t,η,τ)dh(y, η, τ)f̂(η/h, τ/h)dηdτ, (3.49)

where dh(y, η, τ) = d(y, η/h, τ/h) is an elliptic symbol of order 0 and type (1, 0), compactly
supported in a conic neighborhood of the glancing point π(ρ0, ϑ0) and where θ0 is the re-
striction to the boundary of the phase function θ introduced in Theorem 3.3.

This is an elliptic Fourier integral operator in a neighborhood of (π(ρ̄0, ϑ̄0), π(ρ0, ϑ0)),
with canonical relation χ∂ given by the symplectomorphism generated by θ0 and such that
χ∂(π(ρ̄0, ϑ̄0)) = π(ρ0, ϑ0) (see the remarks following Theorem 3.3).

Remark 3.20. Using Proposition 3.18 it is clear that if we define un
h,± on the boundary as

the composition J ◦ Tr±(un
F,h) of the elliptic FIO with the trace operators Tr±(un

F,h), the
condition (3.48) will be fulfilled. We first compute J ◦ Tr±(un

F,h). We keep the notations of
Section 3.2.

Lemma 3.21. On the boundary J ◦ Tr±(un
F,h) writes

J ◦ Tr±(un
F,h)(y, t) = h1/3

∫
e

i
h
(θ0(y,t,η,−η(1+a)1/2)+ 2

3
(2n∓1)(−ζ0)3/2(η,−η(1+a)1/2))λ−1/6η−1/2

× I±(gn
h(., y, η))η

( ∂τθ0
∂τζ0(−ζ0)1/2

(y, t, η,−η(1 + a)1/2) − 2n, λ
)
dη, (3.50)

where
gn

h(z, y, η) ≃ Ψ(η)η1/3
(∑

k≥0

hk/2a−k/2µk(y, η, h)∂
k̺n(z, η, λ)

)
, (3.51)

where µk(y, η, h) are symbols of order 0 and type (1, 0) independent of n. Moreover, if
η ∈ supp(Ψ) and 1 ≤ n ≤ N ≃ λhǫ for some small ǫ > 0 then gn

h(., y, η) ∈ SK0(λ/n).

We recall that λ = h3α/2−1. Recall also

∂τζ0(η,−(1 + a)1/2η) = 2(1 + a)1/2η−1/3, (−ζ0)1/2(η,−(1 + a)1/2η) = a1/2η1/3.

Proof. We compute explicitely the restriction of each un
F,h to x = 0, for 0 ≤ n ≤ N .

un
F,h(0, ȳ, t̄) =

∫

ξ,η̄

e
i
h
(ȳη̄−t̄(1+a)1/2 η̄+ξ(x−a)+ ξ3

3
+ 4

3
na3/2η̄)×

× Ψ(η̄)̺n(
t̄+ 2ξ(1 + a)1/2η̄−1/3

2(1 + a)1/2a1/2
− 2n, η̄, λ)dξdη̄. (3.52)
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Taking ξ = a1/2η1/3v, the integral in ξ in (3.52) becomes, modulo OS(R)(λ
−∞)

Ψ(η̄)a1/2η̄1/3 η̄λ

2π

∫

z,w

∫

v

eiη̄λ( v3

3
−v(1−w))dve

iη̄λw( t̄

2(1+a)1/2a1/2
−2n−z)

̺n(z, η̄, λ)dwdz =

Ψ(η̄)h1/3 η̄λ

2π

∫

z,w

Ai(−(η̄λ)2/3(1 − w))e
iη̄λw( t̄

2(1+a)1/2a1/2
−2n−z)

κ(w)̺n(z, η̄, λ)dwdz, (3.53)

where κ(w) ∈ C∞
0 (R) is supported for w as close as we want to 0 and where Ai is the Airy

function. We shall use the decomposition Ai(z) = A+(z) + A−(z), where

A±(−(η̄λ)2/3(1 − w)) = e±
iπ
2
− iπ

4 e∓
2
3
iη̄λ(η̄λ)−1/6a±(w, η̄, λ), (3.54)

where a±(w, η̄, λ) are defined in Proposition 3.12. For details see the proof of Proposition
3.12 from [15, Prop.6]. Finally, (3.52) becomes

un
F,h(0, ȳ, t̄) = h1/3

∑

±

∫

η̄

e
i
h
(ȳη̄−t̄(1+a)1/2 η̄∓ 2

3
a3/2η̄+ 4

3
na3/2 η̄)×

× Ψ(η̄)(η̄λ)−1/6I±(̺n(., η̄, λ))η̄(
t̄

2(1 + a)1/2a1/2
− 2n, λ)dη̄, (3.55)

where I±(̺n(., η̄, λ))η̄(z, λ) are defined in (3.40). Therefor, Tr±(un
F,h)(ȳ, t̄) are the contribu-

tions corresponding to the ± signs, respectively, in the right hand side of (3.55).

We can proceed to compute J ◦ Tr±(un
F,h)(ȳ, t̄):

J ◦ Tr±(un
F,h)(y, t) =

h1/3

(2πh)2

∫
e

i
h
(θ0(y,t,η,τ)−ȳ(η−η̄)−t̄(τ+η̄(1+a)1/2)∓ 2

3
a3/2η̄+ 4

3
na3/2η̄)×

× dh(y, η, τ)Ψ(η̄)(η̄λ)−1/6I±(̺n(., η̄, λ))η̄(
t̄

2(1 + a)1/2a1/2
− 2n, λ)dη̄dȳdt̄dηdτ. (3.56)

Since the symbol is independent of ȳ, the integration in ȳ gives η = η̄. Now we are in a
situation where the stationary phase theorem can be applied in the variables (t̄, τ). To do
this, we use the next proposition:

Proposition 3.22. ([14, Thm.7.7.7]) Let f(z, τ) be a real valued function in C∞(Rm+1),
τ0 ∈ R. If K is a compact subset of R2+m and σ ∈ C∞

0 (K), then

∫

τ,t̄

e
i
h
(f(z,τ)−t̄(τ−τ0))σ(τ, t̄, z)dτdt̄

≃ (2πi)e
i
h

f(z,τ0)
∑

ν≥0

(ih)ν(∂τ∂t̄)
ν
(
e

i
h

r(z,τ)σ(τ, t̄, z)
)
|τ=τ0,t̄=∂τ f(z,τ0). (3.57)

Here r(z, τ) = f(z, τ) − f(z, τ0) − (τ − τ0)∂τf(z, τ0).
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Remark 3.23. In the sum (3.57) the t̄ derivative must act on σ, and τ derivatives acting on

e
i
h

r(τ,z) bring out with h−1 a derivative of r vanishing at τ = τ0. Another τ derivative must
act on it to give a non-zero contribution. This shows that the terms in the sum are O(hν/2),
for at most ν/2 derivations bring out a factor h−1.

We apply Proposition 3.22 with z = (y, t, η) ∈ R3, f(z, τ) = θ0(z, τ), τ0 = −η(1 + a)1/2

and with symbol

σ(τ, t̄, z) := dh(y, η, τ)I±(̺n(., η, λ))η(
t̄

2(1 + a)1/2a1/2
− 2n, λ).

Consequently, J ◦ Tr±(un
F,h) admits the asymptotic expansion

J ◦ Tr±(un
F,h)(y, t) ≃ h1/3

∫
e

i
h
(θ0(y,t,η,−η(1+a)1/2)+ 2

3
(2n∓1)(−ζ0)3/2(η,−η(1+a)1/2))(ηλ)−1/6Ψ(η)

×
(∑

k≥0

(ih)ka−k/22−k(1 + a)−k/2∂k
(
e

i
h

r(y,t,η,τ)dh(y, η, τ)
)
| τ = −η(1 + a)1/2,

t̄ = ∂τ θ0(y, t, η,−η(1 + a)1/2)

× ∂kI±(̺n(., η, λ))η(
∂τθ0(y, t, η,−η(1 + a)1/2)

2(1 + a)1/2a1/2
− 2n, λ)

)
dη. (3.58)

According to the Remark 3.23 it follows that each τ derivative of order k writes

ik2−k(1 + a)−k/2∂k
(
e

i
h

r(y,t,η,τ)dh(y, η, τ)
)
| τ = −η(1 + a)1/2,

t̄ = ∂τ θ0(y, t, η,−η(1 + a)1/2

=: h−k/2µk(y, η, h),

where the main contribution of µ2ν is (∂2
τ r)

νdhe
i
h

r and that of µ2ν−1 is h(∂2
τ r)

ν∂τdhe
i
h

r, all
the other terms in the sum defining µk being positive powers of h; since dh is a symbol of
order 0 and type (1, 0), we deduce that µk is a also symbol of order 0 and type (1, 0).

Notice, moreover, that I±(̺n)η is a convolution product and consequently ∂k(I±(̺n)η) =
I±(∂k̺n)η. Since from Proposition 3.15 and Definition 3.16 the symbols ̺n(., η, λ) belong to
SK0(λ/n), where K0 = [−c0, c0], it follows that the sum

Ψ(η)η1/3
(∑

k≥0

hk/2a−k/2µk(y, η, h)∂
k̺n(z, η, λ)

)
,

denoted gn
h(z, y, η) in the Lemma, belongs also to SK0(λ/n). This achieves the proof of

Lemma 3.21.

3.3.2 Transport equations

The symbol gn
h defined in Lemma 3.21 will be the one we were looking for to define un

h in
(3.46). However, notice that since we want un

h to solve (1.6), at least at first order, the
symbols we choose should satisfy at least the eikonal (3.16) and the first transport equations

28



associated to the wave operator �g. Since there is no reason for which gn
h defined in (3.51)

would satisfy such transport equations and since we need to use their precise form in order
to have the condition (3.48) satisfied on the boundary, we shall take the composition of gn

h

with an integral curve of the vector field < 2dΦn, d. > −η−1/3 < dζ, dζ > ∂s associated to
the first transport equation associated to the wave operator. We first determine this integral
curve.

Lemma 3.24. The functions

η−2/3ζ + s2, ∂τθ + η1/3s∂τζ (3.59)

are integral curves of the vector field < 2dΦn, d. > −η−1/3 < dζ, dζ > ∂s, where we recall
that Φn is the homogeneous phase function

Φn(x, y, t, η1/3s, η, τ) = θ(x, y, t, η, τ) + η1/3sζ(x, y, η, τ) + η
s3

3
+

4

3
n(−ζ0)3/2(η, τ).

Proof. The Hamiltonian system writes





ẋ = 2(∂xθ + η1/3s∂xζ),
ẏ = 2(1 + xb(y))(∂yθ + η1/3s∂yζ),
ṫ = −2τ,
ṡ = −η−1/3 < dζ, dζ >

(3.60)

and we can compute the derivative of the first integral curve in (3.59)

˙︷ ︸︸ ︷
(s2 + η−2/3ζ) = 2ṡs+ η−2/3ζ̇ = 2η−1/3 < dζ, dζ > s+ η−2/3(ẋ∂xζ + ẏ∂yζ)

= 2η−1/3 < dζ, dζ > s− 2η−4/3 < dθ, dζ > +2η−1/3 < dζ, dζ > s

= 0,

where we used the eikonal equations (3.16). For the second one we have

˙︷ ︸︸ ︷
(∂τθ + η1/3∂τζ) = ẋ∂2

τ,xθ + ẏ∂2
τ,yθ + ṫ∂2

τ,tθ + η1/3s(ẋ∂2
τ,xζ + ẏ∂2

τ,yζ) + η1/3ṡ∂τζ

= ∂τ (< dθ, dθ > −ζ < dζ, dζ >) + 2η−2/3s∂τ < dθ, dζ >

+ ∂τ (ζ < dζ, dζ >) + η−4/3s2∂τ < dζ, dζ >

− < dζ, dζ > ∂τζ = η2/3(s2 + η−2/3ζ)∂τ < dζ, dζ >

= 0

on the Lagrangian ΛΦn which contains the semi-classical wave front set WFh(u
n
h),

ΛΦn := {(x, y, t, η1/3s, η, τ)|∂sΦ
n = η−2/3ζ + s2 = 0, ∂ηΦ

n = 0, τ = −η(1 + a)1/2}.
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Now we are in the situation when we can define un
h everywhere:

Definition 3.25. Let gn
h be the one defined in (3.51) and for 0 ≤ n ≤ N ≃ λhǫ let

un
h(x, y, t) :=

∫

s,η

e
i
h
Φn(x,y,t,η1/3s,η,−η(1+a)1/2)

× gn
h(
∂τθ + η1/3s∂τζ

∂τζ0(−ζ0)1/2
(x, y, t, η,−η(1 + a)1/2) − 2n, y, η)dsdη. (3.61)

Remark 3.26. Notice that since ∂τθ, η
1/3∂τζ are homogeneous of degree 0 in (η, τ), for

τ = −η(1 + a)1/2 they are independent of η, so the term in the first variable in gn
h depends

only of (x, y, t) and a. Recall also that ∂τζ0(−ζ0)1/2(η,−η(1 + a)1/2) = 2(1 + a)1/2a1/2.

We shall prove that the restriction to un
h defined in (3.61) to the boundary coincides with

the sum of the two terms in (3.58). This will imply (3.48).

Proposition 3.27. On the boundary ∂Ω we have

un
h(0, y, t) =

∑

±
J(Tr±(un

F,h))(y, t, h). (3.62)

Moreover,
J(Tr−(un

F,h))(y, t) + J(Tr+(un+1
F,h ))(y, t) = OL2(h∞). (3.63)

Proof. We first proceed with (3.63). Since J is an elliptic Fourier integral operator the proof
follows from Proposition 3.18, since

Tr−(un
F,h)(y, t, h) + Tr+(un+1

F,h )(y, t, h) = OL2(h∞).

We now prove (3.62). At x = 0 the integral in s in (3.61) writes

Ψ(η)η1/3

∫
e

i
h
(η1/3sζ0(η,−η(1+a)1/2)+η s3

3
)

× ∂k̺n(
∂τθ0 + η1/3s∂τζ0
∂τζ0(−ζ0)1/2

(y, t, η,−η(1 + a)1/2) − 2n, η, λ)ds

= h1/3Ψ(η)
ηλ

2π

∫
e

iηλw

(
∂τ θ0(y,t,η,−η(1+a)1/2)

2(1+a)1/2a1/2
−2n−z

)

Ai(−(ηλ)2/3(1 − w))

× κ(w)∂k̺(z, λ)dzdw +OS(R)((ηλ)−∞), (3.64)

where κ is a smooth function supported for w as close as we want to 0. We distinguish two
contributions in (3.64), obtained using the decomposition Ai(z) = A+(z) + A−(z), where
A±(z) are recalled in (3.54). Consequently, (3.64) becomes

h1/3Ψ(η)e∓
2
3
iηλ(ηλ)−1/6I±(∂k̺n(., η, λ))η(

∂τθ0(y, t, η,−η(1 + a)1/2)

2(1 + a)1/2a1/2
− 2n, λ).

Using again the fact that I±(̺n)η is a convolution product we obtain I±(∂k̺n)η = ∂k(I±(̺n)η),
which allows achieve the proof of (3.62).
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Let un
h be defined by (3.61) above. We now show that it is an approximate solution to

(1.6) and we obtain L2 bounds for �gu
n
h. Applying the wave operator �g to un

h and using
the eikonal equations (3.16) yields

�gu
n
h(x, y, t) =

∫

s,η,τ

e
i
h
Φn(x,y,t,η1/3s,η,−η(1+a)1/2)×

×
( i
h

(< 2dΦn, dgn
h > +η−1/3 < dζ, dζ > ∂sg

n
h + (�gΦ

n)gn
h) + �gn

h

)
dsdη. (3.65)

Using Lemma 3.24 we obtain the following:

Proposition 3.28.

‖�gu
n
h(., t)‖L2(Ω) = O(h−1)‖un

h(., t)‖L2(Ω). (3.66)

Remark 3.29. This result is useful since in order to estimate the error between the approx-
imate solution we are constructing and the exact solution to (1.6) we are going to use the
same approach as in Lemma 2.5 where an error of at least

Proof. Using the eikonal equations (3.16) and we integrating by parts with respect to s we
find

�gu
n
h(x, y, t) =

∫

s,η

e
i
h
Φn(x,y,t,η1/3s,η,−η(1+a)1/2)

( i
h

((�gΦ
n)gn

h + 2(1 + xb(y))∂yΦh∂2g
n
h)

+
1

4(1 + a)a
(< d∂τΦ, d∂τΦ > −∂τζ∂τ < dζ, dζ >)∂2

1g
n
h +

1

2(1 + a)1/2a1/2
�g(∂τΦ)∂1g

n
h

− (1 + xb(y))∂2
2g

n
h

)
(
∂τθ + η1/3s∂τζ

2(1 + a)1/2a1/2
(x, y, t, η,−η(1 + a)1/2) − 2n, y, η, h)dsdη, (3.67)

Here ∂1g
n
h , ∂2g

n
h denote the derivatives of gn

h(z, y, η) with respect to z and y, respectively.

We estimate the L2(Ω) norm of the terms in the integral above: since �gΦ
n is bounded

in (x, y), uniformly in 0 ≤ n ≤ N ≃ λhǫ, independent of t then

‖
∫

s,η

e
i
h
Φn(x,y,t,η1/3s,η,−η(1+a)1/2)(�gΦ

n)gn
h‖L2(Ω) . ‖�gΦ

n‖L∞(Ω)‖un
h‖L2(Ω).

The remaining terms have coefficients . a−1 and their symbols are uniformly bounded func-
tions in (x, y) as well. In order to estimate the L2(Ω) norms of these terms involving deriva-
tives of gn

h with respect to its first variable we use the fact that gn
h(., y, η) ∈ SK0(λ/n) so that

for every k ≥ 0 there exist constants Ck > 0 independent of h such that supz |∂k
1g

n
h(z, η, λ)| ≤

Ck and the essential support of ∂k
1g

n
h is included in K0 = [−c0, c0]. To handle the terms in-

volving derivatives of gn
h with respect to y we use the form (3.51) and the fact that µk are

symbols of order 0 and type (1, 0).

31



3.4 Main properties of the parametrix

In this section we state the main properties of the sum

Uh(x, y, t) :=

N∑

n=0

un
h(x, y, t), (3.68)

where un
h(x, y, t) are introduced in (3.61) and where N ≃ λhǫ for some small ǫ > 0. We first

prove that each un
h is essentially supported for t in an interval of time of size a1/2 and that

they have almost disjoint supports. Because of this reason, in order to construct Uh on an
interval of time of size one we shall take a = hα with to satisfy

Na1/2 ≃ λhǫhα/2 ≃ 1, where λ = h3α/2−1. (3.69)

This condition gives immediately α = 1−ǫ
2

, ǫ > 0 being the one fixed from the beginning.
From now on, a and N will be those determined by (3.69),

a = h(1−ǫ)/2 and N ≃ h−(1−ǫ)/4.

Remark 3.30. Recall that the assumption that the number N should be ”much” smaller than
the parameter λ was necessary in the construction of the model solution (see Section 3.2).
Precisely, the construction of the operator (J+,η ◦ I−,η)

◦n in the proof of Proposition 3.15
involves a stationary phase argument with (large) parameter λ/n; although this parameter
was large, but not a fixed, positive power of h−1, the construction would have failed since
the contribution coming from the error terms wouldn’t have belonged to OS(R)(h

∞), which
is possible only taking n ≤ N ≤ λhǫ. Since the loss of derivatives in the Lq

tL
r(Ω) norms

becomes larger when ǫ goes to zero, we choose to take N ≃ λhǫ (for details see [15, Prop.3.6]).

3.4.1 Wave front set

Lemma 3.31. Let un
h be given in (3.61). Then the wave front set WFh(u

n
h) of un

h is contained
in the Lagrangian set ΛΦn defined as follows

ΛΦn := {(x, y, t, η1/3s, η,−η(1 + a)1/2)|ζ(x, y, η,−η(1 + a)1/2) + η2/3s2 = 0,

(∂ηθ − (1 + a)1/2∂τθ + sζ)(x, y, t, 1,−(1 + a)1/2) +
s3

3
+

4

3
na3/2 = 0}. (3.70)

In other words, outside any neighborhood of ΛΦn the contribution of un
h is OL2(h∞). Notice

that to define ΛΦn we used here the homogeneity of the phases θ and ζ in (η, τ) of degrees 1
and 2/3, respectively.

Proof. Let (x, y) be such that |∂sΦ
n| ≥ c for some c > 0 and let L1 be the operator L1 :=

h
i

1
|s2+η−2/3ζ|∂s. After each integration by parts with respect to s we gain a factor h1−α/2 and

the contribution of un
h in this case is obviously OL2(h∞).
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Let now |∂ηΦ
n| ≥ c > 0 for some positive constant c: we shall perform (repeated)

integrations by parts using this time the operator L2 := h
i

∂ηΦn

|∂ηΦn|2∂η. We need however to

estimate the derivatives with respect to η of gn
h , precisely we have to estimate

L∗m
2

(
gn

h(
∂τθ + η1/3s∂τζ

2(1 + a)1/2a1/2
(x, y, t, η,−η(1 + a)1/2) − 2n, y, η).

Since ∂τθ and η1/3∂τζ are homogeneous of degree 0 with respect to (η, τ), the first variable
in the symbol gn

h is independent of η.

The symbol gn
h(z, y, η) is an asymptotic sum whose general term is of the form

hk/2a−k/2Ψ(η)η1/3µk(y, η, h)∂
k̺n(z, η, λ),

where we recall from Definition 3.16 and Proposition 3.15 of Section 3.2 that ∂k̺n writes as
a convolution

∂k̺n(z, η, λ) = (Fηλ)
∗n ∗ ∂k̺0(., λ)(z), ∀k ≥ 0,

where ̺0 ∈ SK0(λ) is independent of η and where (Fηλ)∗n is defined in (3.43). Since µk are
symbols of order 0 and type (1, 0) it will be enough to estimate the contribution of the terms
involving the derivates on (Fηλ)∗n. We recall that (Fηλ)

∗n has the explicit form

(Fηλ)∗n(z) =
ηλ

2π

∫

w

eiηλ(wz+n(2w+ 4
3
((1−w)3/2−1))(c(w, ηλ))ndw,

where c(w, ηλ) := κ(w)a+(w, ηλ)b−(w, ηλ) ≃ κ2(w)
∑

j≥0 cj(1 − w)−3j/2(ηλ)−j with c0 = 1.

Making the change of variables w̃ = nw and setting λ̃ = λ/n ≥ h−ǫ ≫ 1, we can write

(Fηλ)
∗n(z) =

ηλ̃

2π

∫

w̃

eiηλ̃(zw̃+n2f( w̃
n

))cn(
w̃

λ
, ηnλ̃)dw̃,

where we set f(w) := 2w + 4
3
((1 − w)3/2 − 1). Hence one η-derivative yields

∂η(Fηλ)∗n(z) =
1

η
(Fηλ)∗n(z) +

ηλ̃

2π

∫

w̃

eiηλ̃(zw̃+n2f( w̃
n

))iλ̃(zw̃ + n2f(
w̃

n
))cn(

w̃

n
, ηnλ̃)dw̃

+
ηλ̃

2π

∫

w̃

eiηλ̃(zw̃+n2f( w̃
n

))n∂ηc(
w̃

n
, ηnλ̃)cn−1(

w̃

n
, ηnλ̃)dw̃. (3.71)

The symbol of the third term in the right hand side of (3.71) is n∂ηc(w, ηλ)cn−1(w, ηλ) and
we have

∂ηc(w, ηλ) = −η−2λ−1
∑

j≥1

jcj(1 − w)−3j/2(ηλ)−(j−1),

and since n≪ λ, the contribution from this term is easily handled with.

The symbol in the second term in the right hand side of (3.71) equals the symbol of
(Fηλ)

∗n multiplied by the factor iλ̃(zw̃ + λnf( w̃
n
)). Recall that on the support of c(w, ηλ)
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we have w = w̃/n ∈ supp(κ) is as close to zero as we want and there f(w) = w2/2 +O(w3),
hence n2f( w̃

n
) = w̃2/2+O(w̃3/n). On the other hand, when we take the convolution product

of the second term in (3.71) with ̺0(., λ) we find that the critical points of the phase in the
oscillatory integral obtained in this way,

ηλ̃

2π

∫

w̃,z′
eiηλ̃((z−z′)w̃+n2f( w̃

n
))iλ̃((z − z′)w̃ + n2f(

w̃

n
))cn(

w̃

n
, ηnλ̃)̺0(z′, λ)dw̃dz′,

are given by w̃ = 0 and z = z′. The phase function which we denoted by φn(z, z
′, w̃) satisfies

φn(z, z, 0) = 0. Applying the stationary phase theorem in w̃ and z′, the first term in the
asymptotic expansion obtained in this way vanishes, and the next ones are multiplied by
strictly negative, integer powers of λ̃, hence the contribution from this term will is also
bounded.

Notice that when we take higher order derivatives in η of ̺n, we obtain symbols which are
products of λ̃j(φn)j∂k−j

η (cn(w̃/n, ηnλ̃)) and can be dealt with in the same way, taking into
account this time that the first j terms in the asymptotic expansion obtained after applying
the stationary phase vanish. As a consequence, after each integration by parts in η using
the operator L2 we gain a factor h, meaning that the contribution of un

h is OL2(h∞).

3.4.2 Localization of the supports

In the rest of this section we shall localize the essential supports of un
h. Recall from Proposi-

tion 3.19 that in the Friedlander’s case the solutions un
F,h to (3.29) were essentially supported

in time in the intervals, respectively

[4na1/2 − 2a1/2(1 + c0), 4na
1/2 + 2a1/2(1 + c0)](1 + a)1/2, (3.72)

where c0 is a constant sufficiently small and such that ̺ ∈ SK0(λ), where K0 = [−c0, c0].
We prove a similar property for un

h: precisely, their essential supports in the time vari-
ables will be contained in almost disjoint intervals obtained as the image of (3.72) by the
symplectomirphisme χ∂ . For, we define

t̄0,± = ±2(1 + a)1/2a1/2, ȳ0 = ±2(1 + a)a1/2 ∓ 2

3
a3/2,

and for n ≥ 1 we set

t̄n,± = t̄0,± + 4n(1 + a)1/2a1/2, ȳn,± = ȳ0,± + 4na1/2 +
8

3
na3/2,

so that (ȳn,±, t̄n,±, 1,−(1 + a)1/2) := (δ+
F )n(ȳ0,±, t̄0,±, 1,−(1 + a)1/2), where we recall that δ+

F

is the billiard ball map of the model case defined in (3.32). Notice that for n ≥ 0 we have

t̄n,+ = t̄n+1,−, ȳn,+ = ȳn+1,−, ȳn,± − t̄n,±(1 + a)1/2 +
4

3
na3/2 = ∓2

3
a3/2.
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Since (ȳn,±, tn,±) ∈ ΛΦn
F |x=0 and using Proposition 3.19 it follows that each un

F is also essen-
tially supported for the tangential variable in a small neighborhood of [ȳn,−, ȳn,+].

For 0 ≤ n ≤ N , we define

In(c) := [t̄n,− − 2c(1 + a)1/2a1/2, t̄n,+ + 2c(1 + a)1/2a1/2] (3.73)

and also

Dn(c) := {(ȳ, t̄)|t̄ ∈ In(c), ȳ − (1 + a)1/2t̄− 4

3
na3/2 ∈ [−2

3
a3/2,

2

3
a3/2]}. (3.74)

Remark 3.32. Notice that with these notations un
F,h is essentially supported in the set

{(x, y, t)|0 ≤ x ≤ a, (y, t) ∈ Dn(c0)}.

Notice moreover that since na1/2 . 1 for 0 ≤ n ≤ N , the essential support in the tangential
variable is contained in an interval of same size as the time interval (3.72).

For small x ≥ 0 we define

χx(y, t) := (∂ηθ, ∂τθ)(x, y, t, 1,−(1 + a)1/2).

Theorem 3.3 implies that if x is sufficiently small, then the application χx is invertible.

We prove the following:

Proposition 3.33. If c0 > 0 is sufficiently small, then un
h have almost disjoint supports in

the time and tangential variables (y, t). Precisely, it is sufficient to show that

ess-supp(un
h) ⊂ {(x, y, t)|0 ≤ x . a, (y, t) ∈ χ−1

x (Dn(c0))}. (3.75)

By ess-supp(un
h) we denote the closure of the set of points outside which un

h is OL2(h∞).

Proof. Since according to Lemma 3.21 we have gn
h(., y, η) ∈ S[−c0,c0](λ/n), on the essential

support (in the first variable) of the symbol gn
n the following holds

|(∂τθ + η1/3s∂τζ)(x, y, t, η,−η(1 + a)1/2) − 4n(1 + a)1/2a1/2|
≤ 2c0(1 + a)1/2a1/2. (3.76)

Let c ∈ (0, 1) be such that

|∂τθ(x, y, t, η,−η(1 + a)1/2) − 4n(1 + a)1/2a1/2| ≥ 2(1 + c)(1 + a)1/2a1/2. (3.77)

We show that on the essential support of un
h we must have c ≤ c0, therefor the contribution

of un
h will be OL2(h∞) for (x, y, t) outside a set on which

|∂τθ(x, y, t, η,−η(1 + a)1/2) − 4n(1 + a)1/2a1/2)| ≤ 2(1 + c0)(1 + a)1/2a1/2. (3.78)

35



The inequalities (3.76) and (3.77) yield

|η1/3s∂τζ(x, y, η,−η(1 + a)1/2)| ≥ |∂τθ(x, y, t, η,−η(1 + a)1/2) − 4n(1 + a)1/2a1/2|
− |(∂τθ + η1/3s∂τζ)(x, y, t, η,−η(1 + a)1/2) − 4n(1 + a)1/2a1/2|
≥ 2(1 + c− c0)(1 + a)1/2a1/2.

On the other hand, on the Lagrangian ΛΦn introduced in (3.70) we have

|η1/3s| = (−ζ)1/2(x, y, η,−η(1 + a)1/2), ζ ≤ 0. (3.79)

From the properties of the phase function ζ stated in Theorem 3.3 we deduce that ζ ≤ 0
and from its explicit form (3.25) we obtain

0 ≤ −ζ(x, y, η,−η(1 + a)1/2) = (a− xb(y))η2/3 ≤ aη2/3, (3.80)

and also
∂τζ(x, y, η,−η(1 + a)1/2) = 2(1 + a)1/2η−1/3. (3.81)

Since, according to Lemma 3.31, outside any neighborhood of the Lagrangian set ΛΦn the
contribution of un

h equals OL2(h∞), it follows from (3.79), (3.80), (3.81) together with the
consequence of the inequalities (3.76) and (3.77) stated above that if (x, y, t) ∈ ess-supp(un

h)
and c is such that (3.77) holds, then

(1 + c− c0)
2 ≤ 1 which yields c ≤ c0. (3.82)

Till now we proved that if (x, y, t) ∈ ess-supp(un
h), then

∂τθ(x, y, t, 1,−(1 + a)1/2) ∈ In(c0), (3.83)

(which follows using the homogeneity of degree 0 of ∂τθ in (η, τ)) and also that

0 ≤ x ≤ a/b(y) ≤ a/(1 − b0), (3.84)

where we recall that b0 ∈ (0, 1/4) is such that on a fixed, sufficiently small neighborhood N
of y0 = 0 we have |b(y)−1| ≤ b0. To conclude that χx(y, t) ∈ Dn(c0) it remains to show that

|∂ηθ(x, y, t, η,−η(1 + a)1/2)

− (1 + a)1/2∂τθ(x, y, t, η,−η(1 + a)1/2) − 4

3
na3/2| ≤ 2

3
a3/2, (3.85)

but this follows immediately from Lemma 3.31 together with (3.80).

In what follows we show that un
h are essentially supported in time in (almost disjoint)

intervals of size ≃ a1/2. We also prove that if we consider shrunk enough intervals of time
Jn, the respective pieces of cusps do not ”live” enough to reach the boundary: this property
will be useful to estimate from below the Lq in time norm of Uh defined in (3.68), which will
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be bounded from below by a sum of integrals over Jn on which only the cusp un
h will have a

nontrivial contribution. This bound will be estimated in Section 3.4.3 as the sum over n of
the Lq(Jn) norms of un

h.

We set

Jn := projt

(
ess-supp(un

h) ∩ {(x, χ−1
x (Dn(c0/3 − 1))), 0 ≤ x ≤ a/(1 − b0)}

)
, (3.86)

where projt denotes the projection on the time variable.

Lemma 3.34. If |Jn| denotes the size of Jn, then

|Jn| ≥
1

2
c0a

1/2. (3.87)

Moreover, if c0 is chosen sufficiently small and if (x, y, t) is such that t ∈ Jn, then

a/2 ≤ x ≤ a/(1 − b0). (3.88)

Proof. We start with (3.88): let (x, y, t) ∈ ess-supp(un
h), 0 ≤ x ≤ a/(1 − b0), so that

|∂τθ(x, y, t, 1,−(1 + a)1/2) − 4n(1 + a)1/2a1/2| ≤ 2
c0
3

(1 + a)1/2a1/2. (3.89)

Combining the inequality (3.76) which holds on the support of the symbol gn
h with the

condition (3.79) which assures the localization on the Lagrangian ΛΦn and using the explicit
form (3.25) of ζ , we obtain

|∂τθ(x, y, t, 1,−(1 + a)1/2) − 4n(1 + a)1/2a1/2 + 2(a− xb(y))1/2(1 + a)1/2|
≤ 2c0(1 + a)1/2a1/2. (3.90)

The last two inequalities yield

xb(y) ≥ a(1 − 16

9
c20),

and if we take c0 ≤ 3/8, using 3/4 < b(y) ≤ 1 + b0 < 5/4 for y ∈ N , we get (3.88).

Now we proceed with (3.87): we write In(c0/3 − 1) = [t̄−, t̄+], where

t̄± := (4n(1 + a)1/2a1/2 ± 2
c0
3

(1 + a)1/2a1/2).

Since θ is linear in time, the derivative ∂ηθ(x, y, t, η, τ) is independent of t and we write it
∂ηθ(x, y, ., η, τ). The application y → ∂ηθ(a/b(y), y, ., 1,−(1 + a)1/2) is a diffeomorphisme
in a neighborhood of y0 = 0 since from the estimates (3.26) in Section 3.1.3 it follows that
∂2

y,ηθ ∈ [(1− b0)
2, (1+ b0)

2], hence for small b0 ∈ (0, 1/2) this derivative doesn’t vanish. This
implies that there exist uniques points y± such that

∂ηθ(a/b(y±), y±, ., 1,−(1 + a)1/2) = (1 + a)1/2t̄± +
4

3
na3/2.
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Since ∂2
t,τθ = 1, we can also determine uniques points t± such that

∂τθ(a/b(y±), y±, t±, 1,−(1 + a)1/2) = t̄±.

Moreover, t± belong to Jn, since from the choice of y± we easily see that

(a/b(y±), y±, t±) ∈ ess-supp(un
h) ∩ {(x, α−1

x (Dn(c0/3 − 1))), 0 ≤ x ≤ a/(1 − b0)}.

Therefor we estimate |Jn| ≥ |t+ − t−| and it remains to show that c0a
1/2 . |t+ − t−|. Write

t̄+ − t̄− = (t+ − t−) + (y+ − y−)

∫ 1

0

∂2
y,τθ|((1−o)y++oy−)do

+ (
a

b(y+)
− a

b(y−)
)

∫ 1

0

∂2
x,τθ|((1−o)a/b(y+)+oa/b(y−))do, (3.91)

and, on the other hand,

t̄+ − t̄− = (1 + a)−1/2
(
(y+ − y−)

∫ 1

0

∂2
y,ηθ|((1−o)y++oy−)do

+ (
a

b(y+)
− a

b(y−)
)

∫ 1

0

∂2
x,ηθ|((1−o)a/b(y+)+oa/b(y−))do

)
. (3.92)

Since ∂x,ηθ0 = ∂x,τθ0 = 0 and x ≤ a/(1 − b0), the last terms in the right hand sides of
(3.91), (3.92), respectively, are O(a2). Since ∂2

y,ηθ ∈ [(1− b0)
2, (1 + b0)

2], using (3.92) we get
|(y+−y−| ≤ 25

16
|t̄+− t̄−|. Since from (3.27) in Section 3.1.3 we have ∂2

y,τθ ≤ b0(1+2b0) ≤ 3/8

if b0 < 1/4, using (3.91) we finally get |t+ − t−| ≥ 2
5
|t̄+ − t̄−| > 1

2
c0a

1/2.

In the next lemma we prove that for (y, t) ∈ χ−1
x (Dk(c0/3 − 1)), in the sum Uh(x, y, t)

defined in (3.68) there is at most one cusp to consider, uk
h(x, y, t), the contribution from all

the others un
h(x, y, t) with n 6= k being OL2(h∞).

Lemma 3.35. If c0 is chosen small enough and k ≥ 0, then if

(x, y, t) ∈ {(x, χ−1
x (Dk(c0/3 − 1))), 0 ≤ x ≤ a/(1 − b0)} (3.93)

the following holds
Uh(x, y, t) = uk

h(x, y, t) +OL2(h∞). (3.94)

Proof. Suppose that (x, y, t) ∈ ess-supp(un
h) for some 0 ≤ n ≤ N . We show that n = k. First

we notice that we must have x ≤ a/(1−b0), otherwise being localized outside a neighborhood
of ΛΦn. From (3.93) we have

∂τθ(x, y, t, 1,−(1 + a)1/2) ∈ Ik(c0/3 − 1)

= [4k(1 + a)1/2a1/2 − 2
c0
3

(1 + a)1/2a1/2, 4k(1 + a)1/2a1/2 + 2
c0
3

(1 + a)1/2a1/2]. (3.95)
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Suppose that n 6= k. We have to show that the contribution from un
h is OL2(h∞). It is

enough to prove that if c0 is chosen small enough, then the inequality (3.76) is not satisfied.
We write

2c0(1 + a)1/2a1/2 ≥ |∂τΦ
n| = |∂τΦ

k − 4(n− k)(1 + a)1/2a1/2|
≥ 4|n− k|(1 + a)1/2a1/2 − |∂τθ + 4k(1 + a)1/2a1/2| − η1/3|s|∂τζ

≥ 4(1 + a)1/2a1/2 − 2
c0
3

(1 + a)1/2a1/2 − η1/3|s|∂τζ,

where θ = θ(x, y, t, η,−η(1 + a)1/2), ζ = ζ(x, y, η,−η(1 + a)1/2. Together with (3.79), (3.80)
and (3.81), the last inequality yields

(a− xb(y))1/2 ≥ (2 − 4

3
c0)a

1/2 ≥ 3

2
a1/2, (3.96)

if we take c0 ≤ 3
8

for example (since this values are suitable, c0 will be fixed in (0, 3/8]). This
is obviously a contradiction, showing that we can only have n = k.

Remark 3.36. Lemma 3.35 shows that un
h have almost disjoint essential supports in the

variables (y, t). Therefor, Proposition 3.28 applies and shows that Uh defined in (3.68) is
also an approximate solution to (1.6) in the sense that

‖�gUh(., t)‖L2(Ω) ≤ O(h−1)‖Uh(., t)‖L2(Ω). (3.97)

In the rest of this section we prove that Uh satisfies the Dirichlet boundary condition

Uh|∂Ω×[0,1] = O(h∞).

Moreover, using the results in the Appendix, we obtain a bound from below of the Lq
tL

r norms
of Uh in terms of its L2 norm. If we had dealt with an exact solution, this bound would have
indicated that a loss of derivatives would be necessary in the Strichartz estimates for the
wave operator �g. The problem is that there is no reason for which Uh would solve (1.6).
However, since Uh satisfies (3.97), we are able to handle the error between the parametrix
we constructed and the precise solution to (1.6) using the techniques in Section 2.

We proceed with the details:

Proposition 3.37. (Dirichlet boundary condition for Uh) The approximate solution Uh to
(1.6) defined in (3.68) satisfies the Dirichlet boundary condition

Uh|∂Ω×[0,1] = O(h∞). (3.98)

Proof. Recall from Proposition 3.27 that we have

J(Tr−(un
F,h))(y, t) + J(Tr+(un+1

F,h ))(y, t) = OL2(h∞),
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from which we deduce

Uh(0, y, t) = J(Tr+(u0
F,h))(y, t) + J(Tr−(uN

F,h))(y, t). (3.99)

We have to prove that the term in the last line is O(h∞) for t ∈ [0, 1]. Notice that the first
term in the right hand side of (3.99) is essentially supported for t in a small interval that
doesn’t meet [0, 1], hence its contribution is clearly trivial for t ∈ [0, 1]. We now proceed
with the second term in (3.99): if its essential support in time meets the interval [0, 1],
then we construct uN+1

h like in Section 3.3 and we take Uh + uN+1
h instead of Uh as an

approximate solution to (1.6); we can repeat this finitely many times, say M times, until
uN+M

h,− := Tr−(uN+M
F,h ) will be supported in a small interval outside a neighborhood of [0, 1].

Using again Proposition 3.27, the contribution of uN+M−k
h,+ := Tr−(uN+M−k

F,h ) will be cancelled

by uN+M−k−1
− for all 0 ≤ k ≤ N +M and this allows to conclude.

3.4.3 Strichartz estimates for the approximate solution Uh

Proposition 3.38. Let r > 4 and ǫ > 0 be the one fixed in Section 3. We define

β(r) =
3

2
(
1

2
− 1

r
) +

1

6
(
1

4
− 1

r
) (3.100)

and let β ≤ β(r) − ǫ. Then the approximate solution Uh of the wave equation (1.6) satisfies

hβ‖Uh‖Lq([0,1],Lr(Ω)) ≥ h−7ǫ/8‖Uh|t=0‖L2(Ω) ≫ ‖Uh|t=0‖L2(Ω). (3.101)

Remark 3.39. Notice that the condition β < β(r) shows that Uh can’t satisfy the Strichartz
inequalities of the free case, a loss of at least 1

6
(1

4
− 1

r
) derivatives being unavoidable.

Proof. We estimate from below the Lq([0, 1], Lr(Ω)) norm of Uh using Proposition 4.1 from
the Appendix. The key point here is that un

h have almost disjoint supports in time and in
the tangential variable, hence we can bound from below the Lq([0, 1]) norm by a sum of
integrals over small intervals of time Jk on which there will be only one cusp, uk

h to consider,
the contribution from all the others being trivial. The intervals Jk will be the ones defined
in (3.86) for which Lemma 3.34 applies.

‖Uh‖q
Lq([0,1],Lr(Ω)) =

∫ 1

0

‖Uh‖q
Lr(Ω)dt =

∫ 1

0

‖
N∑

n=0

un
h‖q

Lr(Ω)dt

≥
∑

k≤N/5

∫

t∈Jk

‖
N∑

n=0

un
h‖q

Lr(Ω)dt+O(h∞)

≃
∑

k≤N/5

|Jk|‖u0
h‖q

Lr(Ω) +O(h∞)

≃ ‖u0
h‖q

Lr(Ω) +O(h∞). (3.102)
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Indeed, we have shown in Lemma 3.35 that for t belonging to small intervals of time Jk

there is only uk
h to be considered in the sum since the contribution from each un

h with n 6= k
is OL2(h∞). In the last line of (3.102) we have used Lemma 3.34 to estimate from below
|Jk|, uniformly in k, by 1

2
c0a

1/2, where c0 ∈ (0, 3/8) is fixed (as shown in (3.87)), and the
fact that N ≃ a−1/2.

On the other hand, for t ∈ Jk, the ”piece” of cusp uk
h(., t) does not ”live” enough to reach

the boundary, as it is shown in the last part of Lemma 3.34. Precisely, from (3.88) it follows
that if t ∈ Jk then x ≥ a/2, therefor on the essential support of uk

h(., t) the normal variable
doesn’t approach the boundary; this means that the restrictions of uk

h to Jk have disjoint
supports.

Moreover, we see from Proposition 4.1 that for t ∈ Jk the Lr(Ω) norms of uk
h(., t) are all

equivalent to the Lr(Ω) norm of u0
h(., 0). Using Proposition 4.1 we deduce that there are

constants C independent of h such that for r = 2

‖Uh|t=0‖L2(Ω) ≃ h‖∂tUh|t=0‖L2(Ω) ≃ ‖u0
h(., 0)‖L2(Ω) ≃ h1+ δ

4 , (3.103)

while for r > 4
‖Uh‖Lq([0,1],Lr(Ω)) ≥ Ch

1
3
+ 5

3r . (3.104)

Since α = (1 − ǫ)/2 we deduce that for β ≤ β(r) − ǫ the following holds

hβ‖Uh‖Lq([0,1],Lr(Ω)) ≥ Chβ(r)−ǫh
1
3
+ 5

3r = Ch−7ǫ/8+1+(1−ǫ)/8 ≃ h−7ǫ/8‖uh(., 0)‖L2

≫ (‖Uh|t=0‖L2(Ω) + h‖∂tUh|t=0‖L2). (3.105)

Remark 3.40. Using Proposition 4.1 we can also estimate the Lr norms for 2 ≤ r < 4,

‖Uh‖Lq([0,1],Lr(Ω)) ≥ Ch
1
r
+ 1

2
+δ( 1

r
− 1

4
). (3.106)

Notice however that in this case there is no contradiction when comparing (3.106) to the
usual Strichartz inequalities of the free case (1.5) recalled in Proposition 1.1.

3.4.4 End of the proof of Theorem 2.1

We can now achieve the proof of Theorem 2.1. Let ǫ > 0 be the one fixed in Section 3 above
and N be given by (3.69). Consider the L2 normalized approximate solution to (1.6)

vn
h,ǫ(x, y, t) :=

1

‖Uh(., 0)‖L2(Ω)

un
h(x, y, t),

and set

Ṽh,ǫ(x, y, t) :=
N∑

n=0

vn
h(x, y, t) =

1

‖Uh(., 0)‖L2(Ω)

Uh(x, y, t).
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We claim that Ṽh,ǫ v
n
h satisfy the conditions of Theorem 2.1. Notice that this would achieve

the proof of Theorem 1.2, since in Section 2 we showed that matters can be reduced to
proving Theorem 2.1. Indeed, it follows from Proposition 4.1 that for 4 < r <∞, vn

h,ǫ satisfy

{
‖vn

h,ǫ(., t)‖Lr(Ω) ≥ Ch−
3
2
( 1
2
− 1

r
)− 1

6
( 1
4
− 1

r
)+2ǫ, for t ∈ Jn

supǫ>0 ‖vn
h,ǫ(., t)‖L2(Ω) ≤ 1,

(3.107)

where in order to bound uniformly the L2 norms we use the fact that for t ∈ Jn and
0 ≤ n ≤ N

‖un
h(., t)‖L2(Ω) ≃ ‖u0

h(., t)‖L2(Ω) ≃ ‖u0
h(., 0)‖L2(Ω) = ‖Uh|t=0‖L2(Ω). (3.108)

From Proposition 3.33, the cusps vn
h,ǫ have almost disjoint essential supports in the time and

tangential variable and for the normal variable in an interval of size a = hα. Moreover, the
approximate solution Ṽh,ǫ is localized at spatial frequency 1/h and satisfies

‖Ṽh,ǫ‖L2(Ω) . 1, ‖∂yṼh,ǫ‖L2(Ω) .
1

h
, ‖∂2

y Ṽh,ǫ‖L2(Ω) .
1

h2
, (3.109)

with constants independent of ǫ, which follows from the spectral localization together with
the uniform bounds of the derivatives of gn

h with respect to y.

From Proposition 3.28 and the almost orthogonality property of the supports in y we
also obtain

�gṼh,ǫ = OL2(Ω)(1/h). (3.110)

Finally, Proposition 3.37 assures that the Dirichlet boundary condition is satisfied by the
restriction of Ṽh,ǫ to the interval of time [0, 1]:

Ṽh,ǫ|∂Ω×[0,1] = O(h∞). (3.111)

4 Appendix

In this section we compute the Lr norms of the phase integrals associated to a cusp type
Lagrangian. We prove the following:

Proposition 4.1. For t ∈ Jn defined in (3.86), the Lr(Ω) norms of a cusp un
h(., t) of the

form (3.61) satisfy

• for 2 ≤ r < 4
‖un

h(., t)‖Lr(Ω) ≃ h
1
r
+ 1

2
+δ( 1

r
− 1

4
), (4.1)

‖un
h(., 0)‖L2(Ω) ≃ h1+ δ

4 ; (4.2)

• for r > 4
‖un

h(., t)‖Lr(Ω) ≃ h
1
3
+ 5

3r . (4.3)
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Proof. Recall that λ = h3α/2−1 ≫ 1, a = hα, N ≃ λhǫ, ǫ > 0 and let n ∈ {0, .., N} be fixed.
Recall the form of the cusp un

h,

un
h(x, y, t) :=

∫

s,η

e
i
h
Φn(x,y,t,η1/3s,η,−η(1+a)1/2)gn

h(
∂τθ + η1/3s∂τζ

∂τζ0(−ζ0)1/2
− 2n, η, λ)dsdη, (4.4)

where

Φn(x, y, t, ξ, η, τ) := θ(x, y, t, η, τ) + ξζ(x, y, η, τ) +
ξ3

3
+

4

3
n(−ζ0)3/2(η, τ) (4.5)

and where, according to Lemma 3.21, the symbol satisfies gn
h(., y, η) ∈ SK0(λ/(n+1)). Recall

also from (3.25) that

ζ(x, y, η,−η(1 + a)1/2) = (xb(y) − a)η2/3.

To estimate the Lr(Ω) norms of un
h, we must distinguish three cases:

• If |xb(y) − a| ≤ Mh2/3 for some constant M ≥ 1, we make the change of variables
x = x(X, y) := (a − h2/3X)/b(y) which is allowed since for t ∈ Jn, on the essential
support of un

h the factor b(y) remains close to 1 by Proposition 3.33.

In order to estimate the Lr norm with respect to y we also need to make the change of
variables y → ∂ηθ(x(X, y), y, t, η,−η(1+ a)1/2)) + 4

3
na3/2 =: Y (X, y, t). We verify that

the jacobian of this application doesn’t vanish. Since

∂η(θ(x, y, t, η,−η(1 + a)1/2)) = ∂ηθ(x, y, t, 1,−(1 + a)1/2)

− (1 + a)1/2∂τθ(x, y, t, 1,−(1 + a)1/2), (4.6)

we compute

dY

dy
(X, y, t) =

(
∂2

y,ηθ +
dx(X, y)

dy
∂2

x,ηθ − (1 + a)1/2dx(X, y)

dy
∂2

x,τθ

− (1 + a)1/2∂2
y,τθ

)
|(x(X,y),y,t,1,−(1+a)1/2). (4.7)

From (3.26), (3.27) of Section 3.1.3 we have

∂2
η,yθ0(y, t, 1,−(1 + a)1/2) =

b2(y)√
1 + a(1 − b2(y))

, ∂2
η,xθ0(y, t, 1,−(1 + a)1/2) = 0,

∂2
τ,yθ0(y, t, 1,−(1 + a)1/2) =

(1 + a)1/2(1 − b2(y))√
1 + a(1 − b2(y))

, ∂2
τ,xθ0(y, t, 1,−(1 + a)1/2) = 0,

and since from the curvature assumption it follows that in a neighborhood of 0 we have
|b(y)−1| ≤ b0 for some 0 < b0 < 1/4, we deduce that dY

dy
(X, y, t) 6= 0 in a neighborhood
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of (ρ0, ϑ0) (here we also used that if t ∈ Jn then x . a on the essential support of

un
h(., t)). We write y = y(X, Y, t) and set s = h1/3ξ. We set Q(X, u) = ξ3

3
−Xξ and for

β : R → [0, 1] we define

fn
β (X, Y, t, η, h) :=

∫
eiηQ(X,ξ)β(ξ)

× gn
h(
∂τθ(x(X, y), y(X, Y, t), t, 1,−(1 + a)1/2)

2a1/2(1 + a)1/2
+ h1/3−α/2ξ − 2n, y(X, Y, t), η, λ)dξ.

(4.8)

We introduce

F n
β (X, Y, t, h) :=

∫
eiηY/hfn

β (X, Y, t, η, h)dη, (4.9)

and we make integrations by parts with respect to η in order to compute

Y pF n
β (X, Y, t, h) = (ih)p

∫
eiηY/h∂p

ηf
n
β (X, Y, t, η, h)dη. (4.10)

The derivatives of fn
β are estimated using the precise form of the symbol gn

h : recall that

gn
h(z, y, η) ≃ Ψ(η)η1/3

( ∑

k≥0

hk/2a−k/2µk(y, η, h)∂
k
z̺

n(z, η, λ)
)
, (4.11)

where
∂k

z ̺
n(z, η, λ) = (Fηλ)

∗n ∗ ∂k
z ̺

0(., λ)(z), ∀k ≥ 0, (4.12)

with ̺0(., λ) ∈ SK0(λ) independent of η and where (Fηλ)
∗n is defined in (3.43). The

derivatives of (Fηλ)
∗n with respect to η were estimated in the proof of Lemma 3.31

and we saw there that the convolution product of those derivatives with ̺0 is bounded
uniformly in n. On the other hand, µk are symbols of order 0 and type (1, 0) hence
all the derivatives ∂p−l

η (η1/3Ψ(η)µk)(y, η, h)) are bounded (on the support of Ψ(η)) by
constants Cp−l. We now estimate ∂p

ηf
n
β :

∂p
ηf

n
β (X, Y, t, η, h) =

∫
eiηQ(X,ξ)β(ξ)

p∑

l=0

C l
p(iQ(X, ξ))p−l

× ∂l
ηg

n
h(
∂τθ(x(X, y), y(X, Y, t), t, 1,−(1 + a)1/2)

2a1/2(1 + a)1/2
+ h1/3−α/2ξ − 2n, η, λ)dξ. (4.13)

To estimate ∂l
ηg

n
h we use (4.11). We first take β(u) := 1|u|≤

√
1+M and estimate the L∞

norms of wpF n
β in this case, in order to use the multiplier’s theorem to bound the Lr
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norms of un
h. We have

‖(Y
h

)pF n
β (X, Y, t, h)‖L∞

Y
≤

∑

k≥0

hk/2a−k/2

p∑

l=0

C(p, l) sup
|u|≤

√
1+M

|Q(X, u)|l−j

×
l∑

j=0

∫

η

|∂l−j
η

(
Ψ(η)η1/3µk(y, η, h)

)
|

× |∂j
η∂

k
z ̺

n(
∂τθ(x(X, y), y(X, Y, t), t, 1,−(1 + a)1/2)

2a1/2(1 + a)1/2
+ h1/3−δ/2u− 2n, η, λ)|dη

≤ Cp,M , (4.14)

for some constants Cp,M depending only of p and M . The derivatives of ∂k
z ̺

n with
respect of η are estimated using the formula (4.12) as in the proof of Lemma 3.31.
Following the computations in that proof, we obtain the bounds (4.14) uniformly in n.

However, we have not finished yet since we need an uniform bound of ‖W pF n
1 (X, hW, t, h)‖L∞

and therefor we have to consider also the case 1−β. On the support of (1−β) we have√
1 +M ≤ |u| . h

α
2
− 1

3 , and the contribution of the integral (4.4) is OL2(h∞). Indeed,
in that case |s2 + η−2/3ζ | ≥ h2/3 and using the operator L1 = h

i
1

|s2+η−2/3ζ|∂s like in the

proof of Lemma 3.31 we obtain at each integration by parts a factor h1/3−α/2.

As a result we obtain

‖un
h(., t)‖r

Lr(|xb(y)−a|≤Mh2/3,y) = hr/3

∫

|X|≤h2/3

|F n
1 (X, Y, t, h)|rdx(X, y)

dX

dy(X, Y, t)

dY
dY dX

Y =hW ≃ h5/3+r/3‖F n
1 (X, hW, t, h)‖r

Lr(|X|≤M,W )

≃ h5/3+r/3, (4.15)

where in the second line we used the estimates (4.14), while in the last line in (4.15)
we used the fact that µ0 is elliptic.

• If |xb(y) − a| ∈ (Mh2/3, a] with M ≫ 1 big enough we apply the stationary phase:

Proposition 4.2. ([14, Thm.7.7.5]) Let K ⊂ R be a compact set, f ∈ C∞
0 (K), φ ∈

C∞(K̊) such that φ(0) = φ′(0) = 0, φ′′(0) 6= 0, φ′ 6= 0 in K̊ \ 0}. Let ω ≫ 1, then for
every k ≥ 1 we have

∫
eiωφ(u)f(u)du ≃ (2πi)1/2eiωφ(0)

(ωφ′′(0))1/2

∑

j≥0

ω−jLjf. (4.16)

Here C is bounded when φ stays in a bounded set in C∞(K̊), |u|/|φ′(u)| has a uniform
bound and

Ljf =
∑

ν−µ=j

∑

2ν≥3µ

i−j2−ν

µ!ν!
(φ′′(0))−ν∂2ν(κµf)(0). (4.17)

where κ(u) = φ(u) − φ(0) − φ′′(0)
2
u2 vanishes of third order at 0.
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We make the change of variable s = (a− xb(y))1/2(±1 + u) to compute the integral in
s in (4.4). Recall that it writes

∑

k≥0

hk/2a−k/2Ψ(η)η1/3µk(y, η, h)

∫

s

e
i
h

η( s3

3
−s(xb(y)−a))∂k

z ̺
n(z + s/a1/2 − 2n, η, λ)ds,

(4.18)

where z := ∂τ θ(x,y,t,1,−(1+a)1/2)

2a1/2(1+a)1/2 . Using Proposition 4.2 with φ±(u) = u3

3
± u2 and large

parameter ω = (a−xb(y))3/2/h≫ 1, κ±(u) = u3/3, the integral in s in (4.18) becomes

(hπ)1/2η−2/3(a− xb(y))−1/4e∓
2
3
iη(a−xb(y))3/2/h± iπ

4

∑

j≥0

hj(a− xb(y))−3j/2η−j

×Lj

(
∂k

z ̺
n(
∂τθ(x, y, t, 1,−(1 + a)1/2)

2a1/2(1 + a)1/2
+ (a− xb(y))1/2(±1 + u)/a1/2 − 2n, η, λ)

)
|u=0.

(4.19)

Since ∂k
z ̺

n writes as the convolution product (4.12), we have, for z as above,

un
h(x, y, t) = (πh)1/2

∑

k≥0

hk/2a−k/2
∑

j≥0

hj(a− xb(y))−3j/2−1/4Lj(∂
k
z ̺

0)(.)∗

∗
∫

η

e
i
h

η(θ(x,y,t,1,−(1+a)1/2)+ 4
3
na3/2∓ 2

3
(a−xb(y))3/2) Ψ(η)

ηj+1
µk(y, η, h)(Fηλ)

∗ndη|(z±(a−xb(y))1/2/a1/2−2n).

(4.20)

We set

F n,k,j(., y, η, h) :=
Ψ(η)

ηj+1
µk(y, η, h)(Fηλ)

∗n(.).

Since Ψ(η) is compactly supported for η in a neighborhood of 1, the Fourier transform

F̂ n,k,j with respect to η of each F n,k,j is rapidly decreasing and the integral in η in
(4.20) becomes

F̂ n,k,j(., y,
(θ(x, y, t, 1,−(1 + a)1/2) + 4

3
na3/2 ∓ 2

3
(a− xb(y))3/2)

h
, h)

We make again the changes of variables x = x(X, y) := (a − h2/3X)/b(y), then y =
y(X, Y, t) where Y = θ(x(X, y), y, t, 1,−(1+a)1/2)+ 4

3
na3/2 and finally Y = hW . Then

(4.20) becomes

un
h(x, y, t) := π1/2

∑

k,j≥0

hk/2a−k/2un,k,j
h (x, y, t), (4.21)

where we define, for z = ∂τ θ(x(X,y),y(X,hW,t),t,1,−(1+a)1/2)

2a1/2(1+a)1/2 ,

un,k,j
h (x, y, t) := h1/3X−1/4−3j/2Lj(∂

k
z ̺

0(., λ))∗

∗ F̂ n,k,j(., y(X, hW, t),W ∓ 2

3
X3/2, h)|(z+h1/3−α/2X1/2−2n). (4.22)
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– If r > 4 then a simple computation shows that for k ≥ 0 the Lr norms of each
un,k,j can be estimated from above as follows

‖un,k,j
h (., t)‖r

Lr((a−xb(y))∈(Mh2/3 ,a],y) . hr(1/2+j+5/3r−1/6−j)

∫ Ah−2/3

M

X−r(1/4+3j/2)dX

. hr/3+5/3 M1−r(1/4+3j/2)

(r(1/4 + 3j/2) − 1)
, (4.23)

and since the operators Lj are of order 2j, for each j there will be 2j terms in

the sum
∑

j u
n,k,j
h : summing up over j ≥ 0 (taking M ≥ 2 for example) and using

that ̺n ∈ SK0(λ/(n+ 1)) (which assures uniform bounds for the derivatives ∂k
z ̺

n

for each n, k ≥ 0), yields

‖
∑

j≥0

un,k,j
h (., t)‖Lr((a−xb(y))∈(Mh2/3 ,a],y) . C(r)hr/3+5/3, C(r) =

1

r/4 − 1
.

On the other hand

‖un
h(., t)‖Lr((a−xb(y))∈(Mh2/3 ,a],y) .

∑

k≥0

hk(1−δ/2)‖
∑

j≥0

un,k,j
h (., t)‖Lr((a−xb(y))∈(Mh2/3 ,a],y).

For k = 0, due to the ellipticity of the symbol µ0(y, η, h) = ah(y, η,−η(1 + a)1/2)
we can estimate also from below the Lr norm of un,0,j

h (., t) by C(r)h1/3+5/3r and
consequently we deduce

‖un,0
h (., t)‖Lr((a−xb(y))∈(Mh2/3 ,a],y) ≃ C(r)hr/3+5/3.

Hence (4.2) follows.

– We deal now with the case r ∈ [2, 4): since in this case we do not expect any
contradiction to the usual Strichartz estimates, we shall concentrate on the L2

norms of
∑

j≥0 u
n,k,j
h (., t) only, and prove (4.2). We let (4.1) as an exercise, since

in the proof of Theorem 1.2 we do not use this estimate.

For j = 0 we compute, as before

∫ ah−2/3

M

X−1/2dX ≃ 2(ah−2/3)1/2,

while for j ≥ 1 we have 2(1/4 + 3j/2) − 1 > 0 and

∫ ah−2/3

M

X−2(1/4+3j/2)dX = −X
1−2(1/4+3j/2)|ah−2/3

M

2(1/4 + 3j/2) − 1
≃ M1/2−3j

3j − 1/2
.

For M ≥ 2 the sum of ‖un,k,j
h (., y, t)‖2

L2((a−xb(y))∈(Mh2/3 ,a],y)
over j ≥ 1 (where for

each j we count 2j terms which appear in the expression of Lj(∂
k
z ̺

n)) is small
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enough compared to ‖un,k,0
h (., y, t)‖2

L2((a−xb(y))∈(Mh2/3 ,a],y)
, while for k = 0 we can

estimate also from below, as before

‖
∑

j≥0

un,0,j
h (., t)‖L2((a−xb(y))∈(Mh2/3 ,a],y) ≃ h1/3+5/6(ah−2/3)1/4 = h1+δ/8.

We have proved (4.1) for r = 2; for r ∈ (2, 4), as already mentioned, we do not
give the proof since it is not used in the proof of Theorem 2.1 and since it follows
exactly in the same way as for r = 2.

• We say a few words about the last regime, (a− xb(y)) ≥ Ma for some M > 1: in this
case we use Lemma 3.31 we obtain that the contribution in each un

h(., t) is OL2(h∞),
since in this case we are localized away from a neighborhood of the Lagrangian ΛΦn.
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